/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 1 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 423 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 99 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 264 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 63 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 360 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 139 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 320 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 82 ms] (48) CpxRNTS (49) FinalProof [FINISHED, 0 ms] (50) BOUNDS(1, n^1) (51) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (52) TRS for Loop Detection (53) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (54) BEST (55) proven lower bound (56) LowerBoundPropagationProof [FINISHED, 0 ms] (57) BOUNDS(n^1, INF) (58) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: mem(x, max(x)) -> not(null(x)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] ++(x, nil) -> x [1] ++(x, g(y, z)) -> g(++(x, y), z) [1] null(nil) -> true [1] null(g(x, y)) -> false [1] mem(nil, y) -> false [1] mem(g(x, y), z) -> or(=(y, z), mem(x, z)) [1] max(g(g(nil, x), y)) -> max'(x, y) [1] max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] ++(x, nil) -> x [1] ++(x, g(y, z)) -> g(++(x, y), z) [1] null(nil) -> true [1] null(g(x, y)) -> false [1] mem(nil, y) -> false [1] mem(g(x, y), z) -> or(=(y, z), mem(x, z)) [1] max(g(g(nil, x), y)) -> max'(x, y) [1] max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) [1] The TRS has the following type information: f :: max':u -> nil:g -> nil:g nil :: nil:g g :: nil:g -> max':u -> nil:g ++ :: nil:g -> nil:g -> nil:g null :: nil:g -> true:false:or true :: true:false:or false :: true:false:or mem :: nil:g -> a -> true:false:or or :: = -> true:false:or -> true:false:or = :: max':u -> a -> = max :: nil:g -> max':u max' :: max':u -> max':u -> max':u u :: max':u Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_2 ++_2 null_1 mem_2 max_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1 ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] ++(x, nil) -> x [1] ++(x, g(y, z)) -> g(++(x, y), z) [1] null(nil) -> true [1] null(g(x, y)) -> false [1] mem(nil, y) -> false [1] mem(g(x, y), z) -> or(=(y, z), mem(x, z)) [1] max(g(g(nil, x), y)) -> max'(x, y) [1] max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) [1] The TRS has the following type information: f :: max':u -> nil:g -> nil:g nil :: nil:g g :: nil:g -> max':u -> nil:g ++ :: nil:g -> nil:g -> nil:g null :: nil:g -> true:false:or true :: true:false:or false :: true:false:or mem :: nil:g -> a -> true:false:or or :: = -> true:false:or -> true:false:or = :: max':u -> a -> = max :: nil:g -> max':u max' :: max':u -> max':u -> max':u u :: max':u const :: a const1 :: = Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, nil) -> g(nil, x) [1] f(x, g(y, z)) -> g(f(x, y), z) [1] ++(x, nil) -> x [1] ++(x, g(y, z)) -> g(++(x, y), z) [1] null(nil) -> true [1] null(g(x, y)) -> false [1] mem(nil, y) -> false [1] mem(g(x, y), z) -> or(=(y, z), mem(x, z)) [1] max(g(g(nil, x), y)) -> max'(x, y) [1] max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) [1] The TRS has the following type information: f :: max':u -> nil:g -> nil:g nil :: nil:g g :: nil:g -> max':u -> nil:g ++ :: nil:g -> nil:g -> nil:g null :: nil:g -> true:false:or true :: true:false:or false :: true:false:or mem :: nil:g -> a -> true:false:or or :: = -> true:false:or -> true:false:or = :: max':u -> a -> = max :: nil:g -> max':u max' :: max':u -> max':u -> max':u u :: max':u const :: a const1 :: = Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 0 true => 1 false => 0 u => 0 const => 0 const1 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 ++(z', z'') -{ 1 }-> 1 + ++(x, y) + z :|: z >= 0, z' = x, x >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(x, y) + z :|: z >= 0, z' = x, x >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + x :|: z'' = 0, z' = x, x >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' = y, y >= 0, z' = 0 mem(z', z'') -{ 1 }-> 1 + (1 + y + z) + mem(x, z) :|: z'' = z, z >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 1 }-> 1 + (1 + y + z'') + mem(x, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { mem } { max } { f } { null } { ++ } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 1 }-> 1 + (1 + y + z'') + mem(x, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {mem}, {max}, {f}, {null}, {++} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 1 }-> 1 + (1 + y + z'') + mem(x, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {mem}, {max}, {f}, {null}, {++} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: mem after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z' + z'*z'' + z'^2 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 1 }-> 1 + (1 + y + z'') + mem(x, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {mem}, {max}, {f}, {null}, {++} Previous analysis results are: mem: runtime: ?, size: O(n^2) [z' + z'*z'' + z'^2] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: mem after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 1 }-> 1 + (1 + y + z'') + mem(x, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {max}, {f}, {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {max}, {f}, {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: max after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {max}, {f}, {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: max after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + max(1 + (1 + x + y) + z) + 0 :|: z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f}, {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f}, {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' + z'' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f}, {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: ?, size: O(n^1) [1 + z' + z''] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + f(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 2 + y }-> 1 + s'' + z :|: s'' >= 0, s'' <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: null after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 2 + y }-> 1 + s'' + z :|: s'' >= 0, s'' <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {null}, {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] null: runtime: ?, size: O(1) [1] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: null after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 2 + y }-> 1 + s'' + z :|: s'' >= 0, s'' <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] null: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 2 + y }-> 1 + s'' + z :|: s'' >= 0, s'' <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] null: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: ++ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 2 + y }-> 1 + s'' + z :|: s'' >= 0, s'' <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {++} Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] null: runtime: O(1) [1], size: O(1) [1] ++: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ++ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 ++(z', z'') -{ 1 }-> 1 + ++(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 2 + y }-> 1 + s'' + z :|: s'' >= 0, s'' <= z' + y + 1, z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z f(z', z'') -{ 1 }-> 1 + 0 + z' :|: z'' = 0, z' >= 0 max(z') -{ 4 + x + y + z }-> 1 + s' + 0 :|: s' >= 0, s' <= 1 + (1 + x + y) + z, z' = 1 + (1 + (1 + x + y) + z) + 0, z >= 0, x >= 0, y >= 0 max(z') -{ 1 }-> 1 + x + y :|: z' = 1 + (1 + 0 + x) + y, x >= 0, y >= 0 mem(z', z'') -{ 1 }-> 0 :|: z'' >= 0, z' = 0 mem(z', z'') -{ 2 + x }-> 1 + (1 + y + z'') + s :|: s >= 0, s <= x * x + x * z'' + x, z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: Previous analysis results are: mem: runtime: O(n^1) [1 + z'], size: O(n^2) [z' + z'*z'' + z'^2] max: runtime: O(n^1) [1 + z'], size: O(n^1) [z'] f: runtime: O(n^1) [1 + z''], size: O(n^1) [1 + z' + z''] null: runtime: O(1) [1], size: O(1) [1] ++: runtime: O(n^1) [1 + z''], size: O(n^1) [z' + z''] ---------------------------------------- (49) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (50) BOUNDS(1, n^1) ---------------------------------------- (51) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (52) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) S is empty. Rewrite Strategy: FULL ---------------------------------------- (53) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence ++(x, g(y, z)) ->^+ g(++(x, y), z) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / g(y, z)]. The result substitution is [ ]. ---------------------------------------- (54) Complex Obligation (BEST) ---------------------------------------- (55) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) S is empty. Rewrite Strategy: FULL ---------------------------------------- (56) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (57) BOUNDS(n^1, INF) ---------------------------------------- (58) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) ++(x, nil) -> x ++(x, g(y, z)) -> g(++(x, y), z) null(nil) -> true null(g(x, y)) -> false mem(nil, y) -> false mem(g(x, y), z) -> or(=(y, z), mem(x, z)) mem(x, max(x)) -> not(null(x)) max(g(g(nil, x), y)) -> max'(x, y) max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u) S is empty. Rewrite Strategy: FULL