/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) DependencyGraphProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (8) BOUNDS(1, n^1) (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTRS (11) SlicingProof [LOWER BOUND(ID), 0 ms] (12) CpxTRS (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) typed CpxTrs (15) OrderProof [LOWER BOUND(ID), 0 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 259 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: rev(nil) -> nil rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ++(nil, y) -> y ++(x, nil) -> x ++(.(x, y), z) -> .(x, ++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make(x) -> .(x, nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DependencyGraphProof (UPPER BOUND(ID)) The following rules are not reachable from basic terms in the dependency graph and can be removed: rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: rev(nil) -> nil ++(nil, y) -> y ++(x, nil) -> x ++(.(x, y), z) -> .(x, ++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make(x) -> .(x, nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: ++(x, ++(y, z)) -> ++(++(x, y), z) ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: rev(nil) -> nil ++(nil, y) -> y ++(x, nil) -> x ++(.(x, y), z) -> .(x, ++(y, z)) make(x) -> .(x, nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: rev(nil) -> nil ++(nil, y) -> y ++(x, nil) -> x ++(.(x, y), z) -> .(x, ++(y, z)) make(x) -> .(x, nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: nil0() -> 0 .0(0, 0) -> 0 rev0(0) -> 1 ++0(0, 0) -> 2 make0(0) -> 3 nil1() -> 1 ++1(0, 0) -> 4 .1(0, 4) -> 2 nil1() -> 5 .1(0, 5) -> 3 .1(0, 4) -> 4 0 -> 2 0 -> 4 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev(nil) -> nil rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ++(nil, y) -> y ++(x, nil) -> x ++(.(x, y), z) -> .(x, ++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make(x) -> .(x, nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (11) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: ./0 make/0 ---------------------------------------- (12) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev(nil) -> nil rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ++(nil, y) -> y ++(x, nil) -> x ++(.(y), z) -> .(++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make -> .(nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: TRS: Rules: rev(nil) -> nil rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ++(nil, y) -> y ++(x, nil) -> x ++(.(y), z) -> .(++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make -> .(nil) Types: rev :: nil:. -> nil:. nil :: nil:. ++ :: nil:. -> nil:. -> nil:. . :: nil:. -> nil:. make :: nil:. hole_nil:.1_0 :: nil:. gen_nil:.2_0 :: Nat -> nil:. ---------------------------------------- (15) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: rev, ++ They will be analysed ascendingly in the following order: ++ < rev ---------------------------------------- (16) Obligation: TRS: Rules: rev(nil) -> nil rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ++(nil, y) -> y ++(x, nil) -> x ++(.(y), z) -> .(++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make -> .(nil) Types: rev :: nil:. -> nil:. nil :: nil:. ++ :: nil:. -> nil:. -> nil:. . :: nil:. -> nil:. make :: nil:. hole_nil:.1_0 :: nil:. gen_nil:.2_0 :: Nat -> nil:. Generator Equations: gen_nil:.2_0(0) <=> nil gen_nil:.2_0(+(x, 1)) <=> .(gen_nil:.2_0(x)) The following defined symbols remain to be analysed: ++, rev They will be analysed ascendingly in the following order: ++ < rev ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b)) -> gen_nil:.2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: ++(gen_nil:.2_0(0), gen_nil:.2_0(b)) ->_R^Omega(1) gen_nil:.2_0(b) Induction Step: ++(gen_nil:.2_0(+(n4_0, 1)), gen_nil:.2_0(b)) ->_R^Omega(1) .(++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b))) ->_IH .(gen_nil:.2_0(+(b, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: rev(nil) -> nil rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ++(nil, y) -> y ++(x, nil) -> x ++(.(y), z) -> .(++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make -> .(nil) Types: rev :: nil:. -> nil:. nil :: nil:. ++ :: nil:. -> nil:. -> nil:. . :: nil:. -> nil:. make :: nil:. hole_nil:.1_0 :: nil:. gen_nil:.2_0 :: Nat -> nil:. Generator Equations: gen_nil:.2_0(0) <=> nil gen_nil:.2_0(+(x, 1)) <=> .(gen_nil:.2_0(x)) The following defined symbols remain to be analysed: ++, rev They will be analysed ascendingly in the following order: ++ < rev ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: TRS: Rules: rev(nil) -> nil rev(rev(x)) -> x rev(++(x, y)) -> ++(rev(y), rev(x)) ++(nil, y) -> y ++(x, nil) -> x ++(.(y), z) -> .(++(y, z)) ++(x, ++(y, z)) -> ++(++(x, y), z) make -> .(nil) Types: rev :: nil:. -> nil:. nil :: nil:. ++ :: nil:. -> nil:. -> nil:. . :: nil:. -> nil:. make :: nil:. hole_nil:.1_0 :: nil:. gen_nil:.2_0 :: Nat -> nil:. Lemmas: ++(gen_nil:.2_0(n4_0), gen_nil:.2_0(b)) -> gen_nil:.2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_nil:.2_0(0) <=> nil gen_nil:.2_0(+(x, 1)) <=> .(gen_nil:.2_0(x)) The following defined symbols remain to be analysed: rev