/export/starexec/sandbox/solver/bin/starexec_run_tct_rc /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^2)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1} / {0/0,greater/2,if/3,s/1} - Obligation: runtime complexity wrt. defined symbols {-,p} and constructors {0,greater,if,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1} / {0/0,greater/2,if/3,s/1} - Obligation: runtime complexity wrt. defined symbols {-,p} and constructors {0,greater,if,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1} / {0/0,greater/2,if/3,s/1} - Obligation: runtime complexity wrt. defined symbols {-,p} and constructors {0,greater,if,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: -(y,x){x -> s(x)} = -(y,s(x)) ->^+ if(greater(y,s(x)),s(-(y,x)),0()) = C[-(y,x) = -(y,x){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1} / {0/0,greater/2,if/3,s/1} - Obligation: runtime complexity wrt. defined symbols {-,p} and constructors {0,greater,if,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5(x) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5(x) - Strict TRS: -(x,0()) -> x -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0()) -(0(),y) -> 0() p(0()) -> 0() p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: p(s(x)) -> x -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5(x) ** Step 1.b:3: WeightGap. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5(x) - Strict TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(-#) = {2}, uargs(c_2) = {3} Following symbols are considered usable: all TcT has computed the following interpretation: p(-) = [0] p(0) = [0] p(greater) = [1] x1 + [1] x2 + [0] p(if) = [1] x1 + [1] x2 + [1] x3 + [0] p(p) = [1] x1 + [0] p(s) = [1] x1 + [3] p(-#) = [1] x2 + [0] p(p#) = [0] p(c_1) = [0] p(c_2) = [1] x3 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] Following rules are strictly oriented: p(s(x)) = [1] x + [3] > [1] x + [0] = x Following rules are (at-least) weakly oriented: -#(x,0()) = [0] >= [0] = c_1(x) -#(x,s(y)) = [1] y + [3] >= [1] y + [3] = c_2(x,y,-#(x,p(s(y)))) -#(0(),y) = [1] y + [0] >= [0] = c_3() p#(0()) = [0] >= [0] = c_4() p#(s(x)) = [0] >= [0] = c_5(x) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: PredecessorEstimation. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) -#(0(),y) -> c_3() p#(0()) -> c_4() p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,4} by application of Pre({3,4}) = {1,2,5}. Here rules are labelled as follows: 1: -#(x,0()) -> c_1(x) 2: -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) 3: -#(0(),y) -> c_3() 4: p#(0()) -> c_4() 5: p#(s(x)) -> c_5(x) ** Step 1.b:5: RemoveWeakSuffixes. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) p#(s(x)) -> c_5(x) - Weak DPs: -#(0(),y) -> c_3() p#(0()) -> c_4() - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:-#(x,0()) -> c_1(x) -->_1 p#(s(x)) -> c_5(x):3 -->_1 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_1 p#(0()) -> c_4():5 -->_1 -#(0(),y) -> c_3():4 -->_1 -#(x,0()) -> c_1(x):1 2:S:-#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) -->_2 p#(s(x)) -> c_5(x):3 -->_1 p#(s(x)) -> c_5(x):3 -->_2 p#(0()) -> c_4():5 -->_1 p#(0()) -> c_4():5 -->_3 -#(0(),y) -> c_3():4 -->_2 -#(0(),y) -> c_3():4 -->_1 -#(0(),y) -> c_3():4 -->_3 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_2 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_1 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_3 -#(x,0()) -> c_1(x):1 -->_2 -#(x,0()) -> c_1(x):1 -->_1 -#(x,0()) -> c_1(x):1 3:S:p#(s(x)) -> c_5(x) -->_1 p#(0()) -> c_4():5 -->_1 -#(0(),y) -> c_3():4 -->_1 p#(s(x)) -> c_5(x):3 -->_1 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_1 -#(x,0()) -> c_1(x):1 4:W:-#(0(),y) -> c_3() 5:W:p#(0()) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: -#(0(),y) -> c_3() 5: p#(0()) -> c_4() ** Step 1.b:6: PredecessorEstimationCP. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: p#(s(x)) -> c_5(x) The strictly oriented rules are moved into the weak component. *** Step 1.b:6.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {3} Following symbols are considered usable: all TcT has computed the following interpretation: p(-) = [0] p(0) = [0] p(greater) = [1] x1 + [1] x2 + [0] p(if) = [1] x1 + [1] x2 + [1] x3 + [0] p(p) = [1] x1 + [0] p(s) = [1] x1 + [0] p(-#) = [0] p(p#) = [1] p(c_1) = [0] p(c_2) = [8] x3 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] Following rules are strictly oriented: p#(s(x)) = [1] > [0] = c_5(x) Following rules are (at-least) weakly oriented: -#(x,0()) = [0] >= [0] = c_1(x) -#(x,s(y)) = [0] >= [0] = c_2(x,y,-#(x,p(s(y)))) p(s(x)) = [1] x + [0] >= [1] x + [0] = x *** Step 1.b:6.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) - Weak DPs: p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () *** Step 1.b:6.b:1: PredecessorEstimationCP. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) - Weak DPs: p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: -#(x,0()) -> c_1(x) The strictly oriented rules are moved into the weak component. **** Step 1.b:6.b:1.a:1: NaturalMI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) - Weak DPs: p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {3} Following symbols are considered usable: all TcT has computed the following interpretation: p(-) = [2] x1 + [0] p(0) = [1] p(greater) = [1] x2 + [2] p(if) = [1] x3 + [2] p(p) = [1] x1 + [15] p(s) = [1] x1 + [0] p(-#) = [1] p(p#) = [8] x1 + [6] p(c_1) = [0] p(c_2) = [1] x3 + [0] p(c_3) = [1] p(c_4) = [2] p(c_5) = [8] x1 + [1] Following rules are strictly oriented: -#(x,0()) = [1] > [0] = c_1(x) Following rules are (at-least) weakly oriented: -#(x,s(y)) = [1] >= [1] = c_2(x,y,-#(x,p(s(y)))) p#(s(x)) = [8] x + [6] >= [8] x + [1] = c_5(x) p(s(x)) = [1] x + [15] >= [1] x + [0] = x **** Step 1.b:6.b:1.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) - Weak DPs: -#(x,0()) -> c_1(x) p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () **** Step 1.b:6.b:1.b:1: PredecessorEstimationCP. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) - Weak DPs: -#(x,0()) -> c_1(x) p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) The strictly oriented rules are moved into the weak component. ***** Step 1.b:6.b:1.b:1.a:1: NaturalMI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) - Weak DPs: -#(x,0()) -> c_1(x) p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_2) = {3} Following symbols are considered usable: all TcT has computed the following interpretation: p(-) = [1 1 1] [2 0 2] [2] [2 2 0] x1 + [2 0 2] x2 + [1] [2 2 1] [1 0 2] [1] p(0) = [1] [0] [0] p(greater) = [0 0 0] [0 0 2] [1] [0 0 2] x1 + [0 0 0] x2 + [1] [0 0 0] [0 0 0] [0] p(if) = [0 0 1] [0 0 0] [0 0 1] [0] [0 0 2] x1 + [0 0 1] x2 + [0 0 1] x3 + [0] [0 0 0] [0 0 0] [0 0 0] [0] p(p) = [2 3 0] [0] [2 0 0] x1 + [3] [0 1 0] [2] p(s) = [1 1 0] [0] [0 0 1] x1 + [0] [0 0 1] [3] p(-#) = [0 0 1] [0 0 2] [0] [0 0 3] x1 + [0 1 0] x2 + [2] [3 2 0] [2 1 1] [2] p(p#) = [0 0 2] [0] [1 0 0] x1 + [1] [1 3 1] [0] p(c_1) = [0 0 0] [0] [0 0 0] x1 + [1] [1 0 0] [0] p(c_2) = [0 0 0] [0 0 0] [1 0 0] [0] [0 0 0] x1 + [0 0 1] x2 + [0 0 0] x3 + [0] [3 0 0] [2 0 0] [0 0 0] [0] p(c_3) = [2] [0] [2] p(c_4) = [0] [2] [0] p(c_5) = [0 0 0] [2] [1 0 0] x1 + [1] [0 0 0] [2] Following rules are strictly oriented: -#(x,s(y)) = [0 0 1] [0 0 2] [6] [0 0 3] x + [0 0 1] y + [2] [3 2 0] [2 2 2] [5] > [0 0 1] [0 0 2] [4] [0 0 0] x + [0 0 1] y + [0] [3 0 0] [2 0 0] [0] = c_2(x,y,-#(x,p(s(y)))) Following rules are (at-least) weakly oriented: -#(x,0()) = [0 0 1] [0] [0 0 3] x + [2] [3 2 0] [4] >= [0 0 0] [0] [0 0 0] x + [1] [1 0 0] [0] = c_1(x) p#(s(x)) = [0 0 2] [6] [1 1 0] x + [1] [1 1 4] [3] >= [0 0 0] [2] [1 0 0] x + [1] [0 0 0] [2] = c_5(x) p(s(x)) = [2 2 3] [0] [2 2 0] x + [3] [0 0 1] [2] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x ***** Step 1.b:6.b:1.b:1.a:2: Assumption. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown, timeBCUB = Unknown, timeBCLB = Unknown}} + Details: () ***** Step 1.b:6.b:1.b:1.b:1: RemoveWeakSuffixes. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: -#(x,0()) -> c_1(x) -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) p#(s(x)) -> c_5(x) - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:-#(x,0()) -> c_1(x) -->_1 p#(s(x)) -> c_5(x):3 -->_1 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_1 -#(x,0()) -> c_1(x):1 2:W:-#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) -->_2 p#(s(x)) -> c_5(x):3 -->_1 p#(s(x)) -> c_5(x):3 -->_3 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_2 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_1 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_3 -#(x,0()) -> c_1(x):1 -->_2 -#(x,0()) -> c_1(x):1 -->_1 -#(x,0()) -> c_1(x):1 3:W:p#(s(x)) -> c_5(x) -->_1 p#(s(x)) -> c_5(x):3 -->_1 -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))):2 -->_1 -#(x,0()) -> c_1(x):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: -#(x,0()) -> c_1(x) 3: p#(s(x)) -> c_5(x) 2: -#(x,s(y)) -> c_2(x,y,-#(x,p(s(y)))) ***** Step 1.b:6.b:1.b:1.b:2: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: p(s(x)) -> x - Signature: {-/2,p/1,-#/2,p#/1} / {0/0,greater/2,if/3,s/1,c_1/1,c_2/3,c_3/0,c_4/0,c_5/1} - Obligation: runtime complexity wrt. defined symbols {-#,p#} and constructors {0,greater,if,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))