/export/starexec/sandbox2/solver/bin/starexec_run_tct_rc /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: sum(x){x -> s(x)} = sum(s(x)) ->^+ +(*(s(x),s(x)),sum(x)) = C[sum(x) = sum(x){}] ** Step 1.b:1: NaturalPI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(+) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = 0 p(+) = 1 + x1 + x2 p(0) = 0 p(s) = 1 + x1 p(sqr) = 2 p(sum) = 8*x1 Following rules are strictly oriented: sqr(x) = 2 > 0 = *(x,x) sum(s(x)) = 8 + 8*x > 1 + 8*x = +(*(s(x),s(x)),sum(x)) sum(s(x)) = 8 + 8*x > 3 + 8*x = +(sqr(s(x)),sum(x)) Following rules are (at-least) weakly oriented: sum(0()) = 0 >= 0 = 0() ** Step 1.b:2: NaturalPI. WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: sum(0()) -> 0() - Weak TRS: sqr(x) -> *(x,x) sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(+) = {1,2} Following symbols are considered usable: all TcT has computed the following interpretation: p(*) = 13 p(+) = x1 + x2 p(0) = 0 p(s) = 14 + x1 p(sqr) = 14 p(sum) = 2 + x1 Following rules are strictly oriented: sum(0()) = 2 > 0 = 0() Following rules are (at-least) weakly oriented: sqr(x) = 14 >= 13 = *(x,x) sum(s(x)) = 16 + x >= 15 + x = +(*(s(x),s(x)),sum(x)) sum(s(x)) = 16 + x >= 16 + x = +(sqr(s(x)),sum(x)) ** Step 1.b:3: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: sqr(x) -> *(x,x) sum(0()) -> 0() sum(s(x)) -> +(*(s(x),s(x)),sum(x)) sum(s(x)) -> +(sqr(s(x)),sum(x)) - Signature: {sqr/1,sum/1} / {*/2,+/2,0/0,s/1} - Obligation: runtime complexity wrt. defined symbols {sqr,sum} and constructors {*,+,0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))