/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 28 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 369 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 78 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 178 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 43 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^1) (33) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTRS (35) SlicingProof [LOWER BOUND(ID), 0 ms] (36) CpxTRS (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (38) typed CpxTrs (39) OrderProof [LOWER BOUND(ID), 0 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 729 ms] (42) proven lower bound (43) LowerBoundPropagationProof [FINISHED, 0 ms] (44) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sqr(s(x)), sum(x)) sqr(x) -> *(x, x) sum(s(x)) -> +(*(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sqr(s(x)), sum(x)) [1] sqr(x) -> *(x, x) [1] sum(s(x)) -> +(*(s(x), s(x)), sum(x)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sqr(s(x)), sum(x)) [1] sqr(x) -> *(x, x) [1] sum(s(x)) -> +(*(s(x), s(x)), sum(x)) [1] The TRS has the following type information: sum :: 0:s:+ -> 0:s:+ 0 :: 0:s:+ s :: 0:s:+ -> 0:s:+ + :: * -> 0:s:+ -> 0:s:+ sqr :: 0:s:+ -> * * :: 0:s:+ -> 0:s:+ -> * Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: sum_1 sqr_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sqr(s(x)), sum(x)) [1] sqr(x) -> *(x, x) [1] sum(s(x)) -> +(*(s(x), s(x)), sum(x)) [1] The TRS has the following type information: sum :: 0:s:+ -> 0:s:+ 0 :: 0:s:+ s :: 0:s:+ -> 0:s:+ + :: * -> 0:s:+ -> 0:s:+ sqr :: 0:s:+ -> * * :: 0:s:+ -> 0:s:+ -> * const :: * Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sqr(s(x)), sum(x)) [1] sqr(x) -> *(x, x) [1] sum(s(x)) -> +(*(s(x), s(x)), sum(x)) [1] The TRS has the following type information: sum :: 0:s:+ -> 0:s:+ 0 :: 0:s:+ s :: 0:s:+ -> 0:s:+ + :: * -> 0:s:+ -> 0:s:+ sqr :: 0:s:+ -> * * :: 0:s:+ -> 0:s:+ -> * const :: * Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + x + x :|: x >= 0, z = x sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 }-> 1 + sqr(1 + x) + sum(x) :|: x >= 0, z = 1 + x sum(z) -{ 1 }-> 1 + (1 + (1 + x) + (1 + x)) + sum(x) :|: x >= 0, z = 1 + x ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: sqr(z) -{ 1 }-> 1 + x + x :|: x >= 0, z = x ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + x + x :|: x >= 0, z = x sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 2 }-> 1 + (1 + x' + x') + sum(x) :|: x >= 0, z = 1 + x, x' >= 0, 1 + x = x' sum(z) -{ 1 }-> 1 + (1 + (1 + x) + (1 + x)) + sum(x) :|: x >= 0, z = 1 + x ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 2 }-> 1 + (1 + x' + x') + sum(z - 1) :|: z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 1 }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + sum(z - 1) :|: z - 1 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { sum } { sqr } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 2 }-> 1 + (1 + x' + x') + sum(z - 1) :|: z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 1 }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + sum(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {sum}, {sqr} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 2 }-> 1 + (1 + x' + x') + sum(z - 1) :|: z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 1 }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + sum(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {sum}, {sqr} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: sum after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z + 2*z^2 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 2 }-> 1 + (1 + x' + x') + sum(z - 1) :|: z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 1 }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + sum(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {sum}, {sqr} Previous analysis results are: sum: runtime: ?, size: O(n^2) [2*z + 2*z^2] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sum after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 2 }-> 1 + (1 + x' + x') + sum(z - 1) :|: z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 1 }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + sum(z - 1) :|: z - 1 >= 0 Function symbols to be analyzed: {sqr} Previous analysis results are: sum: runtime: O(n^1) [1 + 2*z], size: O(n^2) [2*z + 2*z^2] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 + 2*z }-> 1 + (1 + x' + x') + s' :|: s' >= 0, s' <= 2 * ((z - 1) * (z - 1)) + 2 * (z - 1), z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 2*z }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + s :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + 2 * (z - 1), z - 1 >= 0 Function symbols to be analyzed: {sqr} Previous analysis results are: sum: runtime: O(n^1) [1 + 2*z], size: O(n^2) [2*z + 2*z^2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 + 2*z }-> 1 + (1 + x' + x') + s' :|: s' >= 0, s' <= 2 * ((z - 1) * (z - 1)) + 2 * (z - 1), z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 2*z }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + s :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + 2 * (z - 1), z - 1 >= 0 Function symbols to be analyzed: {sqr} Previous analysis results are: sum: runtime: O(n^1) [1 + 2*z], size: O(n^2) [2*z + 2*z^2] sqr: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: sqr(z) -{ 1 }-> 1 + z + z :|: z >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 sum(z) -{ 1 + 2*z }-> 1 + (1 + x' + x') + s' :|: s' >= 0, s' <= 2 * ((z - 1) * (z - 1)) + 2 * (z - 1), z - 1 >= 0, x' >= 0, 1 + (z - 1) = x' sum(z) -{ 2*z }-> 1 + (1 + (1 + (z - 1)) + (1 + (z - 1))) + s :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + 2 * (z - 1), z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: sum: runtime: O(n^1) [1 + 2*z], size: O(n^2) [2*z + 2*z^2] sqr: runtime: O(1) [1], size: O(n^1) [1 + 2*z] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^1) ---------------------------------------- (33) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (34) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sqr(s(x)), sum(x)) sqr(x) -> *'(x, x) sum(s(x)) -> +'(*'(s(x), s(x)), sum(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: sqr/0 *'/0 *'/1 ---------------------------------------- (36) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sqr, sum(x)) sqr -> *' sum(s(x)) -> +'(*', sum(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (38) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sqr, sum(x)) sqr -> *' sum(s(x)) -> +'(*', sum(x)) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: *' -> 0':s:+' -> 0':s:+' sqr :: *' *' :: *' hole_0':s:+'1_0 :: 0':s:+' hole_*'2_0 :: *' gen_0':s:+'3_0 :: Nat -> 0':s:+' ---------------------------------------- (39) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum ---------------------------------------- (40) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sqr, sum(x)) sqr -> *' sum(s(x)) -> +'(*', sum(x)) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: *' -> 0':s:+' -> 0':s:+' sqr :: *' *' :: *' hole_0':s:+'1_0 :: 0':s:+' hole_*'2_0 :: *' gen_0':s:+'3_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'3_0(0) <=> 0' gen_0':s:+'3_0(+(x, 1)) <=> s(gen_0':s:+'3_0(x)) The following defined symbols remain to be analysed: sum ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_0':s:+'3_0(n5_0)) -> *4_0, rt in Omega(n5_0) Induction Base: sum(gen_0':s:+'3_0(0)) Induction Step: sum(gen_0':s:+'3_0(+(n5_0, 1))) ->_R^Omega(1) +'(*', sum(gen_0':s:+'3_0(n5_0))) ->_IH +'(*', *4_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sqr, sum(x)) sqr -> *' sum(s(x)) -> +'(*', sum(x)) Types: sum :: 0':s:+' -> 0':s:+' 0' :: 0':s:+' s :: 0':s:+' -> 0':s:+' +' :: *' -> 0':s:+' -> 0':s:+' sqr :: *' *' :: *' hole_0':s:+'1_0 :: 0':s:+' hole_*'2_0 :: *' gen_0':s:+'3_0 :: Nat -> 0':s:+' Generator Equations: gen_0':s:+'3_0(0) <=> 0' gen_0':s:+'3_0(+(x, 1)) <=> s(gen_0':s:+'3_0(x)) The following defined symbols remain to be analysed: sum ---------------------------------------- (43) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (44) BOUNDS(n^1, INF)