/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 315 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z Types: f :: a:g -> a:g -> a:g a :: a:g g :: a:g -> a:g h :: a:g -> a:g -> a:g -> a:g hole_a:g1_0 :: a:g gen_a:g2_0 :: Nat -> a:g ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, h They will be analysed ascendingly in the following order: f = h ---------------------------------------- (6) Obligation: TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z Types: f :: a:g -> a:g -> a:g a :: a:g g :: a:g -> a:g h :: a:g -> a:g -> a:g -> a:g hole_a:g1_0 :: a:g gen_a:g2_0 :: Nat -> a:g Generator Equations: gen_a:g2_0(0) <=> a gen_a:g2_0(+(x, 1)) <=> g(gen_a:g2_0(x)) The following defined symbols remain to be analysed: h, f They will be analysed ascendingly in the following order: f = h ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1)) -> gen_a:g2_0(+(1, n4_0)), rt in Omega(1 + n4_0) Induction Base: h(gen_a:g2_0(0), gen_a:g2_0(0), gen_a:g2_0(1)) ->_R^Omega(1) gen_a:g2_0(1) Induction Step: h(gen_a:g2_0(+(n4_0, 1)), gen_a:g2_0(0), gen_a:g2_0(1)) ->_R^Omega(1) f(gen_a:g2_0(0), h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1))) ->_IH f(gen_a:g2_0(0), gen_a:g2_0(+(1, c5_0))) ->_R^Omega(1) g(g(gen_a:g2_0(n4_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z Types: f :: a:g -> a:g -> a:g a :: a:g g :: a:g -> a:g h :: a:g -> a:g -> a:g -> a:g hole_a:g1_0 :: a:g gen_a:g2_0 :: Nat -> a:g Generator Equations: gen_a:g2_0(0) <=> a gen_a:g2_0(+(x, 1)) <=> g(gen_a:g2_0(x)) The following defined symbols remain to be analysed: h, f They will be analysed ascendingly in the following order: f = h ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: f(a, g(y)) -> g(g(y)) f(g(x), a) -> f(x, g(a)) f(g(x), g(y)) -> h(g(y), x, g(y)) h(g(x), y, z) -> f(y, h(x, y, z)) h(a, y, z) -> z Types: f :: a:g -> a:g -> a:g a :: a:g g :: a:g -> a:g h :: a:g -> a:g -> a:g -> a:g hole_a:g1_0 :: a:g gen_a:g2_0 :: Nat -> a:g Lemmas: h(gen_a:g2_0(n4_0), gen_a:g2_0(0), gen_a:g2_0(1)) -> gen_a:g2_0(+(1, n4_0)), rt in Omega(1 + n4_0) Generator Equations: gen_a:g2_0(0) <=> a gen_a:g2_0(+(x, 1)) <=> g(gen_a:g2_0(x)) The following defined symbols remain to be analysed: f They will be analysed ascendingly in the following order: f = h