/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) InliningProof [UPPER BOUND(ID), 132 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 216 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 54 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 429 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^1) (33) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (34) TRS for Loop Detection (35) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (36) BEST (37) proven lower bound (38) LowerBoundPropagationProof [FINISHED, 0 ms] (39) BOUNDS(n^1, INF) (40) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: admit(x, nil) -> nil admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) cond(true, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: admit([], .(u, .(v, .(w, z)))) admit(x, .([], .(v, .(w, z)))) admit(x, .(u, .([], .(w, z)))) The defined contexts are: cond(=(sum(x0, x1, x2), w), .(x3, .(x4, .(w, [])))) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: admit(x, nil) -> nil admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) cond(true, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: admit(x, nil) -> nil [1] admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) [1] cond(true, y) -> y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: admit(x, nil) -> nil [1] admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) [1] cond(true, y) -> y [1] The TRS has the following type information: admit :: carry -> nil:. -> nil:. nil :: nil:. . :: w -> nil:. -> nil:. w :: w cond :: =:true -> nil:. -> nil:. = :: sum -> w -> =:true sum :: carry -> w -> w -> sum carry :: carry -> w -> w -> carry true :: =:true Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: admit_2 cond_2 Due to the following rules being added: admit(v0, v1) -> nil [0] cond(v0, v1) -> nil [0] And the following fresh constants: const, const1 ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: admit(x, nil) -> nil [1] admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) [1] cond(true, y) -> y [1] admit(v0, v1) -> nil [0] cond(v0, v1) -> nil [0] The TRS has the following type information: admit :: carry -> nil:. -> nil:. nil :: nil:. . :: w -> nil:. -> nil:. w :: w cond :: =:true -> nil:. -> nil:. = :: sum -> w -> =:true sum :: carry -> w -> w -> sum carry :: carry -> w -> w -> carry true :: =:true const :: carry const1 :: sum Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: admit(x, nil) -> nil [1] admit(x, .(u, .(v, .(w, nil)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, nil)))) [2] admit(x, .(u, .(v, .(w, .(u', .(v', .(w, z'))))))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, cond(=(sum(carry(x, u, v), u', v'), w), .(u', .(v', .(w, admit(carry(carry(x, u, v), u', v'), z'))))))))) [2] admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, nil)))) [1] cond(true, y) -> y [1] admit(v0, v1) -> nil [0] cond(v0, v1) -> nil [0] The TRS has the following type information: admit :: carry -> nil:. -> nil:. nil :: nil:. . :: w -> nil:. -> nil:. w :: w cond :: =:true -> nil:. -> nil:. = :: sum -> w -> =:true sum :: carry -> w -> w -> sum carry :: carry -> w -> w -> carry true :: =:true const :: carry const1 :: sum Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 0 w => 0 true => 0 const => 0 const1 => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + x + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + x + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + x + u + v) + u' + v', z'))))))) :|: v >= 0, x >= 0, z' >= 0, u' >= 0, v' >= 0, z'' = x, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 2 }-> cond(1 + (1 + x + u + v) + 0, 1 + u + (1 + v + (1 + 0 + 0))) :|: v >= 0, x >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), z'' = x, u >= 0 admit(z'', z1) -{ 1 }-> cond(1 + (1 + x + u + v) + 0, 1 + u + (1 + v + (1 + 0 + 0))) :|: v >= 0, z >= 0, x >= 0, z'' = x, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, x >= 0, z'' = x admit(z'', z1) -{ 0 }-> 0 :|: z'' = v0, v0 >= 0, z1 = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> y :|: z'' = 0, z1 = y, y >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' = v0, v0 >= 0, z1 = v1, v1 >= 0 ---------------------------------------- (13) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: cond(z'', z1) -{ 0 }-> 0 :|: z'' = v0, v0 >= 0, z1 = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> y :|: z'' = 0, z1 = y, y >= 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + x + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + x + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + x + u + v) + u' + v', z'))))))) :|: v >= 0, x >= 0, z' >= 0, u' >= 0, v' >= 0, z'' = x, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, x >= 0, z'' = x admit(z'', z1) -{ 0 }-> 0 :|: z'' = v0, v0 >= 0, z1 = v1, v1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, x >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), z'' = x, u >= 0, 1 + (1 + x + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, x >= 0, z'' = x, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + x + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> y :|: z'' = 0, z1 = y, y >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' = v0, v0 >= 0, z1 = v1, v1 >= 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { cond } { admit } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 Function symbols to be analyzed: {cond}, {admit} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 Function symbols to be analyzed: {cond}, {admit} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 Function symbols to be analyzed: {cond}, {admit} Previous analysis results are: cond: runtime: ?, size: O(n^1) [z1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 Function symbols to be analyzed: {admit} Previous analysis results are: cond: runtime: O(1) [1], size: O(n^1) [z1] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 Function symbols to be analyzed: {admit} Previous analysis results are: cond: runtime: O(1) [1], size: O(n^1) [z1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: admit after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 Function symbols to be analyzed: {admit} Previous analysis results are: cond: runtime: O(1) [1], size: O(n^1) [z1] admit: runtime: ?, size: O(n^1) [z1] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: admit after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 4*z1 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: admit(z'', z1) -{ 2 }-> cond(1 + (1 + z'' + u + v) + 0, 1 + u + (1 + v + (1 + 0 + cond(1 + (1 + (1 + z'' + u + v) + u' + v') + 0, 1 + u' + (1 + v' + (1 + 0 + admit(1 + (1 + z'' + u + v) + u' + v', z'))))))) :|: v >= 0, z'' >= 0, z' >= 0, u' >= 0, v' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + (1 + u' + (1 + v' + (1 + 0 + z'))))), u >= 0 admit(z'', z1) -{ 1 }-> 0 :|: z1 = 0, z'' >= 0 admit(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 admit(z'', z1) -{ 2 }-> 0 :|: v >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + 0)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 admit(z'', z1) -{ 1 }-> 0 :|: v >= 0, z >= 0, z'' >= 0, z1 = 1 + u + (1 + v + (1 + 0 + z)), u >= 0, 1 + (1 + z'' + u + v) + 0 = v0, v0 >= 0, 1 + u + (1 + v + (1 + 0 + 0)) = v1, v1 >= 0 cond(z'', z1) -{ 1 }-> z1 :|: z'' = 0, z1 >= 0 cond(z'', z1) -{ 0 }-> 0 :|: z'' >= 0, z1 >= 0 Function symbols to be analyzed: Previous analysis results are: cond: runtime: O(1) [1], size: O(n^1) [z1] admit: runtime: O(n^1) [4 + 4*z1], size: O(n^1) [z1] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^1) ---------------------------------------- (33) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (34) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: admit(x, nil) -> nil admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) cond(true, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence admit(x, .(u, .(v, .(w, z)))) ->^+ cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,1,1]. The pumping substitution is [z / .(u, .(v, .(w, z)))]. The result substitution is [x / carry(x, u, v)]. ---------------------------------------- (36) Complex Obligation (BEST) ---------------------------------------- (37) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: admit(x, nil) -> nil admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) cond(true, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (38) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (39) BOUNDS(n^1, INF) ---------------------------------------- (40) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: admit(x, nil) -> nil admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z))))) cond(true, y) -> y S is empty. Rewrite Strategy: FULL