/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 4 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 311 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 129 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 43 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 128 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 43 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 43 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 331 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 94 ms] (46) CpxRNTS (47) FinalProof [FINISHED, 0 ms] (48) BOUNDS(1, n^2) (49) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxTRS (51) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (52) typed CpxTrs (53) OrderProof [LOWER BOUND(ID), 0 ms] (54) typed CpxTrs (55) RewriteLemmaProof [LOWER BOUND(ID), 305 ms] (56) BEST (57) proven lower bound (58) LowerBoundPropagationProof [FINISHED, 0 ms] (59) BOUNDS(n^1, INF) (60) typed CpxTrs (61) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (62) proven lower bound (63) LowerBoundPropagationProof [FINISHED, 0 ms] (64) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). The TRS R consists of the following rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: rev(nil) -> nil [1] rev(.(x, y)) -> ++(rev(y), .(x, nil)) [1] car(.(x, y)) -> x [1] cdr(.(x, y)) -> y [1] null(nil) -> true [1] null(.(x, y)) -> false [1] ++(nil, y) -> y [1] ++(.(x, y), z) -> .(x, ++(y, z)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(nil) -> nil [1] rev(.(x, y)) -> ++(rev(y), .(x, nil)) [1] car(.(x, y)) -> x [1] cdr(.(x, y)) -> y [1] null(nil) -> true [1] null(.(x, y)) -> false [1] ++(nil, y) -> y [1] ++(.(x, y), z) -> .(x, ++(y, z)) [1] The TRS has the following type information: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: car_1 cdr_1 null_1 (c) The following functions are completely defined: rev_1 ++_2 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(nil) -> nil [1] rev(.(x, y)) -> ++(rev(y), .(x, nil)) [1] car(.(x, y)) -> x [1] cdr(.(x, y)) -> y [1] null(nil) -> true [1] null(.(x, y)) -> false [1] ++(nil, y) -> y [1] ++(.(x, y), z) -> .(x, ++(y, z)) [1] The TRS has the following type information: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false const :: car Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(nil) -> nil [1] rev(.(x, nil)) -> ++(nil, .(x, nil)) [2] rev(.(x, .(x', y'))) -> ++(++(rev(y'), .(x', nil)), .(x, nil)) [2] car(.(x, y)) -> x [1] cdr(.(x, y)) -> y [1] null(nil) -> true [1] null(.(x, y)) -> false [1] ++(nil, y) -> y [1] ++(.(x, y), z) -> .(x, ++(y, z)) [1] The TRS has the following type information: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false const :: car Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: nil => 0 true => 1 false => 0 const => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 ++(z', z'') -{ 1 }-> 1 + x + ++(y, z) :|: z'' = z, z >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(0, 1 + x + 0) :|: x >= 0, z' = 1 + x + 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 1 }-> 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { ++ } { null } { cdr } { car } { rev } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 1 }-> 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {++}, {null}, {cdr}, {car}, {rev} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 1 }-> 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {++}, {null}, {cdr}, {car}, {rev} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: ++ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' + z'' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 1 }-> 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {++}, {null}, {cdr}, {car}, {rev} Previous analysis results are: ++: runtime: ?, size: O(n^1) [z' + z''] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ++ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 1 }-> 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(0, 1 + (z' - 1) + 0) :|: z' - 1 >= 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {null}, {cdr}, {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {null}, {cdr}, {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: null after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {null}, {cdr}, {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: ?, size: O(1) [1] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: null after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {cdr}, {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {cdr}, {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: cdr after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {cdr}, {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cdr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: car after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {car}, {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: O(1) [1], size: O(n^1) [z'] car: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: car after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: O(1) [1], size: O(n^1) [z'] car: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: O(1) [1], size: O(n^1) [z'] car: runtime: O(1) [1], size: O(n^1) [z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: rev after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: {rev} Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: O(1) [1], size: O(n^1) [z'] car: runtime: O(1) [1], size: O(n^1) [z'] rev: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: rev after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 3*z' + 2*z'^2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: ++(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 ++(z', z'') -{ 2 + y }-> 1 + x + s' :|: s' >= 0, s' <= y + z'', z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 car(z') -{ 1 }-> x :|: z' = 1 + x + y, x >= 0, y >= 0 cdr(z') -{ 1 }-> y :|: z' = 1 + x + y, x >= 0, y >= 0 null(z') -{ 1 }-> 1 :|: z' = 0 null(z') -{ 1 }-> 0 :|: z' = 1 + x + y, x >= 0, y >= 0 rev(z') -{ 3 }-> s :|: s >= 0, s <= 0 + (1 + (z' - 1) + 0), z' - 1 >= 0 rev(z') -{ 1 }-> 0 :|: z' = 0 rev(z') -{ 2 }-> ++(++(rev(y'), 1 + x' + 0), 1 + x + 0) :|: z' = 1 + x + (1 + x' + y'), x >= 0, x' >= 0, y' >= 0 Function symbols to be analyzed: Previous analysis results are: ++: runtime: O(n^1) [1 + z'], size: O(n^1) [z' + z''] null: runtime: O(1) [1], size: O(1) [1] cdr: runtime: O(1) [1], size: O(n^1) [z'] car: runtime: O(1) [1], size: O(n^1) [z'] rev: runtime: O(n^2) [4 + 3*z' + 2*z'^2], size: O(n^1) [z'] ---------------------------------------- (47) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (48) BOUNDS(1, n^2) ---------------------------------------- (49) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (50) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (51) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (52) Obligation: TRS: Rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) Types: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false hole_nil:.1_0 :: nil:. hole_car2_0 :: car hole_true:false3_0 :: true:false gen_nil:.4_0 :: Nat -> nil:. ---------------------------------------- (53) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: rev, ++ They will be analysed ascendingly in the following order: ++ < rev ---------------------------------------- (54) Obligation: TRS: Rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) Types: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false hole_nil:.1_0 :: nil:. hole_car2_0 :: car hole_true:false3_0 :: true:false gen_nil:.4_0 :: Nat -> nil:. Generator Equations: gen_nil:.4_0(0) <=> nil gen_nil:.4_0(+(x, 1)) <=> .(hole_car2_0, gen_nil:.4_0(x)) The following defined symbols remain to be analysed: ++, rev They will be analysed ascendingly in the following order: ++ < rev ---------------------------------------- (55) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ++(gen_nil:.4_0(n6_0), gen_nil:.4_0(b)) -> gen_nil:.4_0(+(n6_0, b)), rt in Omega(1 + n6_0) Induction Base: ++(gen_nil:.4_0(0), gen_nil:.4_0(b)) ->_R^Omega(1) gen_nil:.4_0(b) Induction Step: ++(gen_nil:.4_0(+(n6_0, 1)), gen_nil:.4_0(b)) ->_R^Omega(1) .(hole_car2_0, ++(gen_nil:.4_0(n6_0), gen_nil:.4_0(b))) ->_IH .(hole_car2_0, gen_nil:.4_0(+(b, c7_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (56) Complex Obligation (BEST) ---------------------------------------- (57) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) Types: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false hole_nil:.1_0 :: nil:. hole_car2_0 :: car hole_true:false3_0 :: true:false gen_nil:.4_0 :: Nat -> nil:. Generator Equations: gen_nil:.4_0(0) <=> nil gen_nil:.4_0(+(x, 1)) <=> .(hole_car2_0, gen_nil:.4_0(x)) The following defined symbols remain to be analysed: ++, rev They will be analysed ascendingly in the following order: ++ < rev ---------------------------------------- (58) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (59) BOUNDS(n^1, INF) ---------------------------------------- (60) Obligation: TRS: Rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) Types: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false hole_nil:.1_0 :: nil:. hole_car2_0 :: car hole_true:false3_0 :: true:false gen_nil:.4_0 :: Nat -> nil:. Lemmas: ++(gen_nil:.4_0(n6_0), gen_nil:.4_0(b)) -> gen_nil:.4_0(+(n6_0, b)), rt in Omega(1 + n6_0) Generator Equations: gen_nil:.4_0(0) <=> nil gen_nil:.4_0(+(x, 1)) <=> .(hole_car2_0, gen_nil:.4_0(x)) The following defined symbols remain to be analysed: rev ---------------------------------------- (61) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev(gen_nil:.4_0(n495_0)) -> gen_nil:.4_0(n495_0), rt in Omega(1 + n495_0 + n495_0^2) Induction Base: rev(gen_nil:.4_0(0)) ->_R^Omega(1) nil Induction Step: rev(gen_nil:.4_0(+(n495_0, 1))) ->_R^Omega(1) ++(rev(gen_nil:.4_0(n495_0)), .(hole_car2_0, nil)) ->_IH ++(gen_nil:.4_0(c496_0), .(hole_car2_0, nil)) ->_L^Omega(1 + n495_0) gen_nil:.4_0(+(n495_0, +(0, 1))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (62) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: rev(nil) -> nil rev(.(x, y)) -> ++(rev(y), .(x, nil)) car(.(x, y)) -> x cdr(.(x, y)) -> y null(nil) -> true null(.(x, y)) -> false ++(nil, y) -> y ++(.(x, y), z) -> .(x, ++(y, z)) Types: rev :: nil:. -> nil:. nil :: nil:. . :: car -> nil:. -> nil:. ++ :: nil:. -> nil:. -> nil:. car :: nil:. -> car cdr :: nil:. -> nil:. null :: nil:. -> true:false true :: true:false false :: true:false hole_nil:.1_0 :: nil:. hole_car2_0 :: car hole_true:false3_0 :: true:false gen_nil:.4_0 :: Nat -> nil:. Lemmas: ++(gen_nil:.4_0(n6_0), gen_nil:.4_0(b)) -> gen_nil:.4_0(+(n6_0, b)), rt in Omega(1 + n6_0) Generator Equations: gen_nil:.4_0(0) <=> nil gen_nil:.4_0(+(x, 1)) <=> .(hole_car2_0, gen_nil:.4_0(x)) The following defined symbols remain to be analysed: rev ---------------------------------------- (63) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (64) BOUNDS(n^2, INF)