/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 281 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 82 ms] (16) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: int(0, 0) -> .(0, nil) int(0, s(y)) -> .(0, int(s(0), s(y))) int(s(x), 0) -> nil int(s(x), s(y)) -> int_list(int(x, y)) int_list(nil) -> nil int_list(.(x, y)) -> .(s(x), int_list(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: int(0', 0') -> .(0', nil) int(0', s(y)) -> .(0', int(s(0'), s(y))) int(s(x), 0') -> nil int(s(x), s(y)) -> int_list(int(x, y)) int_list(nil) -> nil int_list(.(x, y)) -> .(s(x), int_list(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: ./0 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: int(0', 0') -> .(nil) int(0', s(y)) -> .(int(s(0'), s(y))) int(s(x), 0') -> nil int(s(x), s(y)) -> int_list(int(x, y)) int_list(nil) -> nil int_list(.(y)) -> .(int_list(y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: int(0', 0') -> .(nil) int(0', s(y)) -> .(int(s(0'), s(y))) int(s(x), 0') -> nil int(s(x), s(y)) -> int_list(int(x, y)) int_list(nil) -> nil int_list(.(y)) -> .(int_list(y)) Types: int :: 0':s -> 0':s -> nil:. 0' :: 0':s . :: nil:. -> nil:. nil :: nil:. s :: 0':s -> 0':s int_list :: nil:. -> nil:. hole_nil:.1_0 :: nil:. hole_0':s2_0 :: 0':s gen_nil:.3_0 :: Nat -> nil:. gen_0':s4_0 :: Nat -> 0':s ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: int, int_list They will be analysed ascendingly in the following order: int_list < int ---------------------------------------- (8) Obligation: TRS: Rules: int(0', 0') -> .(nil) int(0', s(y)) -> .(int(s(0'), s(y))) int(s(x), 0') -> nil int(s(x), s(y)) -> int_list(int(x, y)) int_list(nil) -> nil int_list(.(y)) -> .(int_list(y)) Types: int :: 0':s -> 0':s -> nil:. 0' :: 0':s . :: nil:. -> nil:. nil :: nil:. s :: 0':s -> 0':s int_list :: nil:. -> nil:. hole_nil:.1_0 :: nil:. hole_0':s2_0 :: 0':s gen_nil:.3_0 :: Nat -> nil:. gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_nil:.3_0(0) <=> nil gen_nil:.3_0(+(x, 1)) <=> .(gen_nil:.3_0(x)) gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: int_list, int They will be analysed ascendingly in the following order: int_list < int ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: int_list(gen_nil:.3_0(n6_0)) -> gen_nil:.3_0(n6_0), rt in Omega(1 + n6_0) Induction Base: int_list(gen_nil:.3_0(0)) ->_R^Omega(1) nil Induction Step: int_list(gen_nil:.3_0(+(n6_0, 1))) ->_R^Omega(1) .(int_list(gen_nil:.3_0(n6_0))) ->_IH .(gen_nil:.3_0(c7_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: int(0', 0') -> .(nil) int(0', s(y)) -> .(int(s(0'), s(y))) int(s(x), 0') -> nil int(s(x), s(y)) -> int_list(int(x, y)) int_list(nil) -> nil int_list(.(y)) -> .(int_list(y)) Types: int :: 0':s -> 0':s -> nil:. 0' :: 0':s . :: nil:. -> nil:. nil :: nil:. s :: 0':s -> 0':s int_list :: nil:. -> nil:. hole_nil:.1_0 :: nil:. hole_0':s2_0 :: 0':s gen_nil:.3_0 :: Nat -> nil:. gen_0':s4_0 :: Nat -> 0':s Generator Equations: gen_nil:.3_0(0) <=> nil gen_nil:.3_0(+(x, 1)) <=> .(gen_nil:.3_0(x)) gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: int_list, int They will be analysed ascendingly in the following order: int_list < int ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: int(0', 0') -> .(nil) int(0', s(y)) -> .(int(s(0'), s(y))) int(s(x), 0') -> nil int(s(x), s(y)) -> int_list(int(x, y)) int_list(nil) -> nil int_list(.(y)) -> .(int_list(y)) Types: int :: 0':s -> 0':s -> nil:. 0' :: 0':s . :: nil:. -> nil:. nil :: nil:. s :: 0':s -> 0':s int_list :: nil:. -> nil:. hole_nil:.1_0 :: nil:. hole_0':s2_0 :: 0':s gen_nil:.3_0 :: Nat -> nil:. gen_0':s4_0 :: Nat -> 0':s Lemmas: int_list(gen_nil:.3_0(n6_0)) -> gen_nil:.3_0(n6_0), rt in Omega(1 + n6_0) Generator Equations: gen_nil:.3_0(0) <=> nil gen_nil:.3_0(+(x, 1)) <=> .(gen_nil:.3_0(x)) gen_0':s4_0(0) <=> 0' gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) The following defined symbols remain to be analysed: int ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: int(gen_0':s4_0(n184_0), gen_0':s4_0(n184_0)) -> gen_nil:.3_0(1), rt in Omega(1 + n184_0) Induction Base: int(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) .(nil) Induction Step: int(gen_0':s4_0(+(n184_0, 1)), gen_0':s4_0(+(n184_0, 1))) ->_R^Omega(1) int_list(int(gen_0':s4_0(n184_0), gen_0':s4_0(n184_0))) ->_IH int_list(gen_nil:.3_0(1)) ->_L^Omega(2) gen_nil:.3_0(1) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) BOUNDS(1, INF)