/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 299 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) +(0, y) -> y +(s(x), y) -> s(+(x, y)) +(x, +(y, z)) -> +(+(x, y), z) f(g(f(x))) -> f(h(s(0), x)) f(g(h(x, y))) -> f(h(s(x), y)) f(h(x, h(y, z))) -> f(h(+(x, y), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) f(g(f(x))) -> f(h(s(0'), x)) f(g(h(x, y))) -> f(h(s(x), y)) f(h(x, h(y, z))) -> f(h(+'(x, y), z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) f(g(f(x))) -> f(h(s(0'), x)) f(g(h(x, y))) -> f(h(s(x), y)) f(h(x, h(y, z))) -> f(h(+'(x, y), z)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: g:h -> g:h g :: g:h -> g:h h :: 0':s -> g:h -> g:h hole_0':s1_0 :: 0':s hole_g:h2_0 :: g:h gen_0':s3_0 :: Nat -> 0':s gen_g:h4_0 :: Nat -> g:h ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', f They will be analysed ascendingly in the following order: +' < f ---------------------------------------- (6) Obligation: TRS: Rules: +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) f(g(f(x))) -> f(h(s(0'), x)) f(g(h(x, y))) -> f(h(s(x), y)) f(h(x, h(y, z))) -> f(h(+'(x, y), z)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: g:h -> g:h g :: g:h -> g:h h :: 0':s -> g:h -> g:h hole_0':s1_0 :: 0':s hole_g:h2_0 :: g:h gen_0':s3_0 :: Nat -> 0':s gen_g:h4_0 :: Nat -> g:h Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_g:h4_0(0) <=> hole_g:h2_0 gen_g:h4_0(+(x, 1)) <=> g(gen_g:h4_0(x)) The following defined symbols remain to be analysed: +', f They will be analysed ascendingly in the following order: +' < f ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s3_0(a), gen_0':s3_0(n6_0)) -> gen_0':s3_0(+(n6_0, a)), rt in Omega(1 + n6_0) Induction Base: +'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(a) Induction Step: +'(gen_0':s3_0(a), gen_0':s3_0(+(n6_0, 1))) ->_R^Omega(1) s(+'(gen_0':s3_0(a), gen_0':s3_0(n6_0))) ->_IH s(gen_0':s3_0(+(a, c7_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) f(g(f(x))) -> f(h(s(0'), x)) f(g(h(x, y))) -> f(h(s(x), y)) f(h(x, h(y, z))) -> f(h(+'(x, y), z)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: g:h -> g:h g :: g:h -> g:h h :: 0':s -> g:h -> g:h hole_0':s1_0 :: 0':s hole_g:h2_0 :: g:h gen_0':s3_0 :: Nat -> 0':s gen_g:h4_0 :: Nat -> g:h Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_g:h4_0(0) <=> hole_g:h2_0 gen_g:h4_0(+(x, 1)) <=> g(gen_g:h4_0(x)) The following defined symbols remain to be analysed: +', f They will be analysed ascendingly in the following order: +' < f ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) f(g(f(x))) -> f(h(s(0'), x)) f(g(h(x, y))) -> f(h(s(x), y)) f(h(x, h(y, z))) -> f(h(+'(x, y), z)) Types: +' :: 0':s -> 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s f :: g:h -> g:h g :: g:h -> g:h h :: 0':s -> g:h -> g:h hole_0':s1_0 :: 0':s hole_g:h2_0 :: g:h gen_0':s3_0 :: Nat -> 0':s gen_g:h4_0 :: Nat -> g:h Lemmas: +'(gen_0':s3_0(a), gen_0':s3_0(n6_0)) -> gen_0':s3_0(+(n6_0, a)), rt in Omega(1 + n6_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) gen_g:h4_0(0) <=> hole_g:h2_0 gen_g:h4_0(+(x, 1)) <=> g(gen_g:h4_0(x)) The following defined symbols remain to be analysed: f