/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsMatchBoundsTAProof [FINISHED, 14 ms] (6) BOUNDS(1, n^1) (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 277 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 71 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) if(0, y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: half(double(x)) -> x ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) if(0, y, z) -> y if(s(x), y, z) -> z S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) if(0, y, z) -> y if(s(x), y, z) -> z S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: 00() -> 0 s0(0) -> 0 double0(0) -> 1 half0(0) -> 2 -0(0, 0) -> 3 if0(0, 0, 0) -> 4 01() -> 1 double1(0) -> 6 s1(6) -> 5 s1(5) -> 1 01() -> 2 half1(0) -> 7 s1(7) -> 2 -1(0, 0) -> 3 01() -> 6 s1(5) -> 6 01() -> 7 s1(7) -> 7 0 -> 3 0 -> 4 ---------------------------------------- (6) BOUNDS(1, n^1) ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s half :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s if :: 0':s -> if -> if -> if hole_0':s1_0 :: 0':s hole_if2_0 :: if gen_0':s3_0 :: Nat -> 0':s ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: double, half, - ---------------------------------------- (12) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s half :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s if :: 0':s -> if -> if -> if hole_0':s1_0 :: 0':s hole_if2_0 :: if gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: double, half, - ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s3_0(n5_0)) -> gen_0':s3_0(*(2, n5_0)), rt in Omega(1 + n5_0) Induction Base: double(gen_0':s3_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s3_0(n5_0)))) ->_IH s(s(gen_0':s3_0(*(2, c6_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s half :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s if :: 0':s -> if -> if -> if hole_0':s1_0 :: 0':s hole_if2_0 :: if gen_0':s3_0 :: Nat -> 0':s Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: double, half, - ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s half :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s if :: 0':s -> if -> if -> if hole_0':s1_0 :: 0':s hole_if2_0 :: if gen_0':s3_0 :: Nat -> 0':s Lemmas: double(gen_0':s3_0(n5_0)) -> gen_0':s3_0(*(2, n5_0)), rt in Omega(1 + n5_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: half, - ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s3_0(*(2, n249_0))) -> gen_0':s3_0(n249_0), rt in Omega(1 + n249_0) Induction Base: half(gen_0':s3_0(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s3_0(*(2, +(n249_0, 1)))) ->_R^Omega(1) s(half(gen_0':s3_0(*(2, n249_0)))) ->_IH s(gen_0':s3_0(c250_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x Types: double :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s half :: 0':s -> 0':s - :: 0':s -> 0':s -> 0':s if :: 0':s -> if -> if -> if hole_0':s1_0 :: 0':s hole_if2_0 :: if gen_0':s3_0 :: Nat -> 0':s Lemmas: double(gen_0':s3_0(n5_0)) -> gen_0':s3_0(*(2, n5_0)), rt in Omega(1 + n5_0) half(gen_0':s3_0(*(2, n249_0))) -> gen_0':s3_0(n249_0), rt in Omega(1 + n249_0) Generator Equations: gen_0':s3_0(0) <=> 0' gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) The following defined symbols remain to be analysed: - ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s3_0(n676_0), gen_0':s3_0(n676_0)) -> gen_0':s3_0(0), rt in Omega(1 + n676_0) Induction Base: -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) gen_0':s3_0(0) Induction Step: -(gen_0':s3_0(+(n676_0, 1)), gen_0':s3_0(+(n676_0, 1))) ->_R^Omega(1) -(gen_0':s3_0(n676_0), gen_0':s3_0(n676_0)) ->_IH gen_0':s3_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) BOUNDS(1, INF)