/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 402 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 220 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 96 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^1) (33) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (34) TRS for Loop Detection (35) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (36) BEST (37) proven lower bound (38) LowerBoundPropagationProof [FINISHED, 0 ms] (39) BOUNDS(n^1, INF) (40) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) +(s(x), y) -> s(+(x, y)) double(x) -> +(x, x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) +(s(x), y) -> s(+(x, y)) double(x) -> +(x, x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] +(x, 0) -> x [1] +(x, s(y)) -> s(+(x, y)) [1] +(s(x), y) -> s(+(x, y)) [1] double(x) -> +(x, x) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] double(x) -> plus(x, x) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] double(x) -> plus(x, x) [1] The TRS has the following type information: double :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: double_1 plus_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] double(x) -> plus(x, x) [1] The TRS has the following type information: double :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] plus(s(x), y) -> s(plus(x, y)) [1] double(x) -> plus(x, x) [1] The TRS has the following type information: double :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(x, x) :|: x >= 0, z = x double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(x)) :|: x >= 0, z = 1 + x plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { double } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus}, {double} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus}, {double} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus}, {double} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> plus(z, z) :|: z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {double} Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + 2*z }-> s'' :|: s'' >= 0, s'' <= z + z, z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 + z + z' }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {double} Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + 2*z }-> s'' :|: s'' >= 0, s'' <= z + z, z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 + z + z' }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {double} Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] double: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + 2*z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 2 + 2*z }-> s'' :|: s'' >= 0, s'' <= z + z, z >= 0 double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z + z' }-> 1 + s :|: s >= 0, s <= z + (z' - 1), z >= 0, z' - 1 >= 0 plus(z, z') -{ 1 + z + z' }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z + z'], size: O(n^1) [z + z'] double: runtime: O(n^1) [2 + 2*z], size: O(n^1) [2*z] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^1) ---------------------------------------- (33) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (34) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) +(s(x), y) -> s(+(x, y)) double(x) -> +(x, x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence +(x, s(y)) ->^+ s(+(x, y)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / s(y)]. The result substitution is [ ]. ---------------------------------------- (36) Complex Obligation (BEST) ---------------------------------------- (37) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) +(s(x), y) -> s(+(x, y)) double(x) -> +(x, x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (38) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (39) BOUNDS(n^1, INF) ---------------------------------------- (40) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) +(s(x), y) -> s(+(x, y)) double(x) -> +(x, x) S is empty. Rewrite Strategy: FULL