/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 16 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 226 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 65 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 239 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 862 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 272 ms] (36) CpxRNTS (37) FinalProof [FINISHED, 0 ms] (38) BOUNDS(1, n^2) (39) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxTRS (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) typed CpxTrs (43) OrderProof [LOWER BOUND(ID), 0 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 270 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 32 ms] (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 100 ms] (54) proven lower bound (55) LowerBoundPropagationProof [FINISHED, 0 ms] (56) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). The TRS R consists of the following rules: sqr(0) -> 0 sqr(s(x)) -> +(sqr(x), s(double(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) sqr(s(x)) -> s(+(sqr(x), double(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: sqr(s([])) The defined contexts are: +([], x1) +(x0, []) +([], s(x1)) +(x0, s([])) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sqr(0) -> 0 sqr(s(x)) -> +(sqr(x), s(double(x))) double(0) -> 0 double(s(x)) -> s(s(double(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) sqr(s(x)) -> s(+(sqr(x), double(x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sqr(0) -> 0 [1] sqr(s(x)) -> +(sqr(x), s(double(x))) [1] double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] +(x, 0) -> x [1] +(x, s(y)) -> s(+(x, y)) [1] sqr(s(x)) -> s(+(sqr(x), double(x))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sqr(0) -> 0 [1] sqr(s(x)) -> plus(sqr(x), s(double(x))) [1] double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] sqr(s(x)) -> s(plus(sqr(x), double(x))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sqr(0) -> 0 [1] sqr(s(x)) -> plus(sqr(x), s(double(x))) [1] double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] sqr(s(x)) -> s(plus(sqr(x), double(x))) [1] The TRS has the following type information: sqr :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s double :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: sqr_1 double_1 plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sqr(0) -> 0 [1] sqr(s(x)) -> plus(sqr(x), s(double(x))) [1] double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] sqr(s(x)) -> s(plus(sqr(x), double(x))) [1] The TRS has the following type information: sqr :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s double :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sqr(0) -> 0 [1] sqr(s(0)) -> plus(0, s(0)) [3] sqr(s(s(x'))) -> plus(plus(sqr(x'), s(double(x'))), s(s(s(double(x'))))) [3] sqr(s(s(x''))) -> plus(s(plus(sqr(x''), double(x''))), s(s(s(double(x''))))) [3] double(0) -> 0 [1] double(s(x)) -> s(s(double(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] sqr(s(0)) -> s(plus(0, 0)) [3] sqr(s(s(x1))) -> s(plus(plus(sqr(x1), s(double(x1))), s(s(double(x1))))) [3] sqr(s(s(x2))) -> s(plus(s(plus(sqr(x2), double(x2))), s(s(double(x2))))) [3] The TRS has the following type information: sqr :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s double :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(x)) :|: x >= 0, z = 1 + x plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x sqr(z) -{ 3 }-> plus(plus(sqr(x'), 1 + double(x')), 1 + (1 + (1 + double(x')))) :|: x' >= 0, z = 1 + (1 + x') sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> plus(1 + plus(sqr(x''), double(x'')), 1 + (1 + (1 + double(x'')))) :|: x'' >= 0, z = 1 + (1 + x'') sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + plus(plus(sqr(x1), 1 + double(x1)), 1 + (1 + double(x1))) :|: z = 1 + (1 + x1), x1 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + plus(1 + plus(sqr(x2), double(x2)), 1 + (1 + double(x2))) :|: z = 1 + (1 + x2), x2 >= 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 3 }-> plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { double } { plus } { sqr } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 3 }-> plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {double}, {plus}, {sqr} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 3 }-> plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {double}, {plus}, {sqr} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2*z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 3 }-> plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {double}, {plus}, {sqr} Previous analysis results are: double: runtime: ?, size: O(n^1) [2*z] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: double after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 }-> 1 + (1 + double(z - 1)) :|: z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 3 }-> plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + (1 + double(z - 2)))) :|: z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 3 }-> 1 + plus(plus(sqr(z - 2), 1 + double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 3 }-> 1 + plus(1 + plus(sqr(z - 2), double(z - 2)), 1 + (1 + double(z - 2))) :|: z - 2 >= 0 Function symbols to be analyzed: {plus}, {sqr} Previous analysis results are: double: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 + z }-> 1 + (1 + s2) :|: s2 >= 0, s2 <= 2 * (z - 1), z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 1 + 2*z }-> plus(plus(sqr(z - 2), 1 + s), 1 + (1 + (1 + s'))) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> plus(1 + plus(sqr(z - 2), s''), 1 + (1 + (1 + s1))) :|: s'' >= 0, s'' <= 2 * (z - 2), s1 >= 0, s1 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(plus(sqr(z - 2), 1 + s3), 1 + (1 + s4)) :|: s3 >= 0, s3 <= 2 * (z - 2), s4 >= 0, s4 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(1 + plus(sqr(z - 2), s5), 1 + (1 + s6)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {plus}, {sqr} Previous analysis results are: double: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 + z }-> 1 + (1 + s2) :|: s2 >= 0, s2 <= 2 * (z - 1), z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 1 + 2*z }-> plus(plus(sqr(z - 2), 1 + s), 1 + (1 + (1 + s'))) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> plus(1 + plus(sqr(z - 2), s''), 1 + (1 + (1 + s1))) :|: s'' >= 0, s'' <= 2 * (z - 2), s1 >= 0, s1 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(plus(sqr(z - 2), 1 + s3), 1 + (1 + s4)) :|: s3 >= 0, s3 <= 2 * (z - 2), s4 >= 0, s4 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(1 + plus(sqr(z - 2), s5), 1 + (1 + s6)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {plus}, {sqr} Previous analysis results are: double: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 + z }-> 1 + (1 + s2) :|: s2 >= 0, s2 <= 2 * (z - 1), z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sqr(z) -{ 1 + 2*z }-> plus(plus(sqr(z - 2), 1 + s), 1 + (1 + (1 + s'))) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 3 }-> plus(0, 1 + 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> plus(1 + plus(sqr(z - 2), s''), 1 + (1 + (1 + s1))) :|: s'' >= 0, s'' <= 2 * (z - 2), s1 >= 0, s1 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(plus(sqr(z - 2), 1 + s3), 1 + (1 + s4)) :|: s3 >= 0, s3 <= 2 * (z - 2), s4 >= 0, s4 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 3 }-> 1 + plus(0, 0) :|: z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(1 + plus(sqr(z - 2), s5), 1 + (1 + s6)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {sqr} Previous analysis results are: double: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 + z }-> 1 + (1 + s2) :|: s2 >= 0, s2 <= 2 * (z - 1), z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s8 :|: s8 >= 0, s8 <= z + (z' - 1), z >= 0, z' - 1 >= 0 sqr(z) -{ 5 }-> s7 :|: s7 >= 0, s7 <= 0 + (1 + 0), z = 1 + 0 sqr(z) -{ 1 + 2*z }-> plus(plus(sqr(z - 2), 1 + s), 1 + (1 + (1 + s'))) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 + 2*z }-> plus(1 + plus(sqr(z - 2), s''), 1 + (1 + (1 + s1))) :|: s'' >= 0, s'' <= 2 * (z - 2), s1 >= 0, s1 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s9 :|: s9 >= 0, s9 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(plus(sqr(z - 2), 1 + s3), 1 + (1 + s4)) :|: s3 >= 0, s3 <= 2 * (z - 2), s4 >= 0, s4 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(1 + plus(sqr(z - 2), s5), 1 + (1 + s6)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {sqr} Previous analysis results are: double: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 8*z + 4*z^2 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 + z }-> 1 + (1 + s2) :|: s2 >= 0, s2 <= 2 * (z - 1), z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s8 :|: s8 >= 0, s8 <= z + (z' - 1), z >= 0, z' - 1 >= 0 sqr(z) -{ 5 }-> s7 :|: s7 >= 0, s7 <= 0 + (1 + 0), z = 1 + 0 sqr(z) -{ 1 + 2*z }-> plus(plus(sqr(z - 2), 1 + s), 1 + (1 + (1 + s'))) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 + 2*z }-> plus(1 + plus(sqr(z - 2), s''), 1 + (1 + (1 + s1))) :|: s'' >= 0, s'' <= 2 * (z - 2), s1 >= 0, s1 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s9 :|: s9 >= 0, s9 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(plus(sqr(z - 2), 1 + s3), 1 + (1 + s4)) :|: s3 >= 0, s3 <= 2 * (z - 2), s4 >= 0, s4 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(1 + plus(sqr(z - 2), s5), 1 + (1 + s6)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: {sqr} Previous analysis results are: double: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] sqr: runtime: ?, size: O(n^2) [5 + 8*z + 4*z^2] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: sqr after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 10 + 24*z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: double(z) -{ 1 }-> 0 :|: z = 0 double(z) -{ 1 + z }-> 1 + (1 + s2) :|: s2 >= 0, s2 <= 2 * (z - 1), z - 1 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s8 :|: s8 >= 0, s8 <= z + (z' - 1), z >= 0, z' - 1 >= 0 sqr(z) -{ 5 }-> s7 :|: s7 >= 0, s7 <= 0 + (1 + 0), z = 1 + 0 sqr(z) -{ 1 + 2*z }-> plus(plus(sqr(z - 2), 1 + s), 1 + (1 + (1 + s'))) :|: s >= 0, s <= 2 * (z - 2), s' >= 0, s' <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 + 2*z }-> plus(1 + plus(sqr(z - 2), s''), 1 + (1 + (1 + s1))) :|: s'' >= 0, s'' <= 2 * (z - 2), s1 >= 0, s1 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 }-> 0 :|: z = 0 sqr(z) -{ 4 }-> 1 + s9 :|: s9 >= 0, s9 <= 0 + 0, z = 1 + 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(plus(sqr(z - 2), 1 + s3), 1 + (1 + s4)) :|: s3 >= 0, s3 <= 2 * (z - 2), s4 >= 0, s4 <= 2 * (z - 2), z - 2 >= 0 sqr(z) -{ 1 + 2*z }-> 1 + plus(1 + plus(sqr(z - 2), s5), 1 + (1 + s6)) :|: s5 >= 0, s5 <= 2 * (z - 2), s6 >= 0, s6 <= 2 * (z - 2), z - 2 >= 0 Function symbols to be analyzed: Previous analysis results are: double: runtime: O(n^1) [1 + z], size: O(n^1) [2*z] plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] sqr: runtime: O(n^2) [10 + 24*z^2], size: O(n^2) [5 + 8*z + 4*z^2] ---------------------------------------- (37) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (38) BOUNDS(1, n^2) ---------------------------------------- (39) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (40) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (42) Obligation: TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) Types: sqr :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (43) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sqr, +', double They will be analysed ascendingly in the following order: +' < sqr double < sqr ---------------------------------------- (44) Obligation: TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) Types: sqr :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: +', sqr, double They will be analysed ascendingly in the following order: +' < sqr double < sqr ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Induction Base: +'(gen_0':s2_0(a), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(a) Induction Step: +'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) ->_IH s(gen_0':s2_0(+(a, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) Types: sqr :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: +', sqr, double They will be analysed ascendingly in the following order: +' < sqr double < sqr ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) Types: sqr :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: double, sqr They will be analysed ascendingly in the following order: double < sqr ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s2_0(n457_0)) -> gen_0':s2_0(*(2, n457_0)), rt in Omega(1 + n457_0) Induction Base: double(gen_0':s2_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s2_0(+(n457_0, 1))) ->_R^Omega(1) s(s(double(gen_0':s2_0(n457_0)))) ->_IH s(s(gen_0':s2_0(*(2, c458_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (52) Obligation: TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) Types: sqr :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) double(gen_0':s2_0(n457_0)) -> gen_0':s2_0(*(2, n457_0)), rt in Omega(1 + n457_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: sqr ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sqr(gen_0':s2_0(n693_0)) -> gen_0':s2_0(*(n693_0, n693_0)), rt in Omega(1 + n693_0 + n693_0^2) Induction Base: sqr(gen_0':s2_0(0)) ->_R^Omega(1) 0' Induction Step: sqr(gen_0':s2_0(+(n693_0, 1))) ->_R^Omega(1) +'(sqr(gen_0':s2_0(n693_0)), s(double(gen_0':s2_0(n693_0)))) ->_IH +'(gen_0':s2_0(*(c694_0, c694_0)), s(double(gen_0':s2_0(n693_0)))) ->_L^Omega(1 + n693_0) +'(gen_0':s2_0(*(n693_0, n693_0)), s(gen_0':s2_0(*(2, n693_0)))) ->_L^Omega(2 + 2*n693_0) gen_0':s2_0(+(+(*(2, n693_0), 1), *(n693_0, n693_0))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (54) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: sqr(0') -> 0' sqr(s(x)) -> +'(sqr(x), s(double(x))) double(0') -> 0' double(s(x)) -> s(s(double(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) sqr(s(x)) -> s(+'(sqr(x), double(x))) Types: sqr :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s double :: 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) double(gen_0':s2_0(n457_0)) -> gen_0':s2_0(*(2, n457_0)), rt in Omega(1 + n457_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: sqr ---------------------------------------- (55) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (56) BOUNDS(n^2, INF)