/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 49 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 0 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (16) TRS for Loop Detection (17) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) sum1(0) -> 0 sum1(s(z0)) -> s(+(sum1(z0), +(z0, z0))) Tuples: SUM(0) -> c SUM(s(z0)) -> c1(SUM(z0)) SUM1(0) -> c2 SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(0) -> c SUM(s(z0)) -> c1(SUM(z0)) SUM1(0) -> c2 SUM1(s(z0)) -> c3(SUM1(z0)) K tuples:none Defined Rule Symbols: sum_1, sum1_1 Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c, c1_1, c2, c3_1 ---------------------------------------- (5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: SUM1(0) -> c2 SUM(0) -> c ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) sum1(0) -> 0 sum1(s(z0)) -> s(+(sum1(z0), +(z0, z0))) Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) K tuples:none Defined Rule Symbols: sum_1, sum1_1 Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: sum(0) -> 0 sum(s(z0)) -> +(sum(z0), s(z0)) sum1(0) -> 0 sum1(s(z0)) -> s(+(sum1(z0), +(z0, z0))) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SUM1(s(z0)) -> c3(SUM1(z0)) We considered the (Usable) Rules:none And the Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(SUM(x_1)) = 0 POL(SUM1(x_1)) = x_1 POL(c1(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples: SUM(s(z0)) -> c1(SUM(z0)) K tuples: SUM1(s(z0)) -> c3(SUM1(z0)) Defined Rule Symbols:none Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. SUM(s(z0)) -> c1(SUM(z0)) We considered the (Usable) Rules:none And the Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) The order we found is given by the following interpretation: Polynomial interpretation : POL(SUM(x_1)) = x_1 POL(SUM1(x_1)) = 0 POL(c1(x_1)) = x_1 POL(c3(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SUM(s(z0)) -> c1(SUM(z0)) SUM1(s(z0)) -> c3(SUM1(z0)) S tuples:none K tuples: SUM1(s(z0)) -> c3(SUM1(z0)) SUM(s(z0)) -> c1(SUM(z0)) Defined Rule Symbols:none Defined Pair Symbols: SUM_1, SUM1_1 Compound Symbols: c1_1, c3_1 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (17) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence sum(s(x)) ->^+ +(sum(x), s(x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / s(x)]. The result substitution is [ ]. ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) sum1(0) -> 0 sum1(s(x)) -> s(+(sum1(x), +(x, x))) S is empty. Rewrite Strategy: FULL