/export/starexec/sandbox2/solver/bin/starexec_run_tct_rc /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?,O(1)) * Step 1: Sum. WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: gcd(x,0()) -> x gcd(0(),y) -> y gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y))) - Signature: {gcd/2} / {-/2,0/0, x gcd(0(),y) -> y gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y))) - Signature: {gcd/2} / {-/2,0/0, c_1(x) gcd#(0(),y) -> c_2(y) gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))) Weak DPs and mark the set of starting terms. * Step 3: UsableRules. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: gcd#(x,0()) -> c_1(x) gcd#(0(),y) -> c_2(y) gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))) - Strict TRS: gcd(x,0()) -> x gcd(0(),y) -> y gcd(s(x),s(y)) -> if(<(x,y),gcd(s(x),-(y,x)),gcd(-(x,y),s(y))) - Signature: {gcd/2,gcd#/2} / {-/2,0/0, c_1(x) gcd#(0(),y) -> c_2(y) gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))) * Step 4: SimplifyRHS. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: gcd#(x,0()) -> c_1(x) gcd#(0(),y) -> c_2(y) gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))) - Signature: {gcd/2,gcd#/2} / {-/2,0/0, c_1(x) -->_1 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3 -->_1 gcd#(0(),y) -> c_2(y):2 -->_1 gcd#(x,0()) -> c_1(x):1 2:S:gcd#(0(),y) -> c_2(y) -->_1 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3 -->_1 gcd#(0(),y) -> c_2(y):2 -->_1 gcd#(x,0()) -> c_1(x):1 3:S:gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))) -->_2 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3 -->_1 gcd#(s(x),s(y)) -> c_3(x,y,gcd#(s(x),-(y,x)),gcd#(-(x,y),s(y))):3 -->_2 gcd#(0(),y) -> c_2(y):2 -->_1 gcd#(0(),y) -> c_2(y):2 -->_2 gcd#(x,0()) -> c_1(x):1 -->_1 gcd#(x,0()) -> c_1(x):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: gcd#(s(x),s(y)) -> c_3(x,y) * Step 5: NaturalMI. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: gcd#(x,0()) -> c_1(x) gcd#(0(),y) -> c_2(y) gcd#(s(x),s(y)) -> c_3(x,y) - Signature: {gcd/2,gcd#/2} / {-/2,0/0, [1] x + [0] = c_1(x) gcd#(0(),y) = [8] y + [25] > [1] y + [8] = c_2(y) Following rules are (at-least) weakly oriented: gcd#(s(x),s(y)) = [1] >= [1] = c_3(x,y) * Step 6: NaturalMI. WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: gcd#(s(x),s(y)) -> c_3(x,y) - Weak DPs: gcd#(x,0()) -> c_1(x) gcd#(0(),y) -> c_2(y) - Signature: {gcd/2,gcd#/2} / {-/2,0/0, [3] = c_3(x,y) Following rules are (at-least) weakly oriented: gcd#(x,0()) = [0] >= [0] = c_1(x) gcd#(0(),y) = [1] y + [0] >= [1] y + [0] = c_2(y) * Step 7: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: gcd#(x,0()) -> c_1(x) gcd#(0(),y) -> c_2(y) gcd#(s(x),s(y)) -> c_3(x,y) - Signature: {gcd/2,gcd#/2} / {-/2,0/0,