/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 39 ms] (4) BOUNDS(1, n^1) (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: nil0() -> 0 00() -> 0 g0(0, 0) -> 0 s0(0) -> 0 norm0(0) -> 1 f0(0, 0) -> 2 rem0(0, 0) -> 3 01() -> 1 norm1(0) -> 4 s1(4) -> 1 nil1() -> 5 g1(5, 0) -> 2 f1(0, 0) -> 6 g1(6, 0) -> 2 nil1() -> 3 g1(0, 0) -> 3 rem1(0, 0) -> 3 01() -> 4 s1(4) -> 4 g1(5, 0) -> 6 g1(6, 0) -> 6 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence rem(g(x, y), s(z)) ->^+ rem(x, z) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / g(x, y), z / s(z)]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) S is empty. Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: norm(nil) -> 0 norm(g(x, y)) -> s(norm(x)) f(x, nil) -> g(nil, x) f(x, g(y, z)) -> g(f(x, y), z) rem(nil, y) -> nil rem(g(x, y), 0) -> g(x, y) rem(g(x, y), s(z)) -> rem(x, z) S is empty. Rewrite Strategy: FULL