/export/starexec/sandbox/solver/bin/starexec_run_tct_rc /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1),O(n^2)) * Step 1: Sum. WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) f(0()) -> 1() f(s(x)) -> g(x,s(x)) g(0(),y) -> y g(s(x),y) -> g(x,+(y,s(x))) g(s(x),y) -> g(x,s(+(y,x))) - Signature: {+/2,f/1,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {+,f,g} and constructors {0,1,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: Sum. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) f(0()) -> 1() f(s(x)) -> g(x,s(x)) g(0(),y) -> y g(s(x),y) -> g(x,+(y,s(x))) g(s(x),y) -> g(x,s(+(y,x))) - Signature: {+/2,f/1,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {+,f,g} and constructors {0,1,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:2: DecreasingLoops. WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) f(0()) -> 1() f(s(x)) -> g(x,s(x)) g(0(),y) -> y g(s(x),y) -> g(x,+(y,s(x))) g(s(x),y) -> g(x,s(+(y,x))) - Signature: {+/2,f/1,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {+,f,g} and constructors {0,1,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: +(x,y){y -> s(y)} = +(x,s(y)) ->^+ s(+(x,y)) = C[+(x,y) = +(x,y){}] ** Step 1.b:1: DependencyPairs. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) f(0()) -> 1() f(s(x)) -> g(x,s(x)) g(0(),y) -> y g(s(x),y) -> g(x,+(y,s(x))) g(s(x),y) -> g(x,s(+(y,x))) - Signature: {+/2,f/1,g/2} / {0/0,1/0,s/1} - Obligation: runtime complexity wrt. defined symbols {+,f,g} and constructors {0,1,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak dependency pairs: Strict DPs +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(0(),y) -> c_5(y) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(0(),y) -> c_5(y) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) f(0()) -> 1() f(s(x)) -> g(x,s(x)) g(0(),y) -> y g(s(x),y) -> g(x,+(y,s(x))) g(s(x),y) -> g(x,s(+(y,x))) - Signature: {+/2,f/1,g/2,+#/2,f#/1,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {+#,f#,g#} and constructors {0,1,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(0(),y) -> c_5(y) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) ** Step 1.b:3: PredecessorEstimation. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(0(),y) -> c_5(y) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) - Signature: {+/2,f/1,g/2,+#/2,f#/1,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {+#,f#,g#} and constructors {0,1,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3} by application of Pre({3}) = {1,5}. Here rules are labelled as follows: 1: +#(x,0()) -> c_1(x) 2: +#(x,s(y)) -> c_2(+#(x,y)) 3: f#(0()) -> c_3() 4: f#(s(x)) -> c_4(g#(x,s(x))) 5: g#(0(),y) -> c_5(y) 6: g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) 7: g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) ** Step 1.b:4: WeightGap. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(s(x)) -> c_4(g#(x,s(x))) g#(0(),y) -> c_5(y) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) - Strict TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) - Weak DPs: f#(0()) -> c_3() - Signature: {+/2,f/1,g/2,+#/2,f#/1,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {+#,f#,g#} and constructors {0,1,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(+) = {1}, uargs(s) = {1}, uargs(g#) = {2}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_7) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = [1] x1 + [1] p(0) = [0] p(1) = [0] p(f) = [4] x1 + [0] p(g) = [1] x2 + [1] p(s) = [1] x1 + [2] p(+#) = [0] p(f#) = [3] x1 + [0] p(g#) = [2] x1 + [1] x2 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [1] x1 + [0] p(c_7) = [1] x1 + [0] Following rules are strictly oriented: f#(s(x)) = [3] x + [6] > [3] x + [2] = c_4(g#(x,s(x))) g#(s(x),y) = [2] x + [1] y + [4] > [2] x + [1] y + [1] = c_6(g#(x,+(y,s(x)))) g#(s(x),y) = [2] x + [1] y + [4] > [2] x + [1] y + [3] = c_7(g#(x,s(+(y,x)))) +(x,0()) = [1] x + [1] > [1] x + [0] = x Following rules are (at-least) weakly oriented: +#(x,0()) = [0] >= [0] = c_1(x) +#(x,s(y)) = [0] >= [0] = c_2(+#(x,y)) f#(0()) = [0] >= [0] = c_3() g#(0(),y) = [1] y + [0] >= [1] y + [0] = c_5(y) +(x,s(y)) = [1] x + [1] >= [1] x + [3] = s(+(x,y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:5: WeightGap. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) g#(0(),y) -> c_5(y) - Strict TRS: +(x,s(y)) -> s(+(x,y)) - Weak DPs: f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) - Weak TRS: +(x,0()) -> x - Signature: {+/2,f/1,g/2,+#/2,f#/1,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {+#,f#,g#} and constructors {0,1,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(+) = {1}, uargs(s) = {1}, uargs(g#) = {2}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_7) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = [1] x1 + [0] p(0) = [0] p(1) = [1] p(f) = [1] x1 + [0] p(g) = [8] x1 + [1] x2 + [1] p(s) = [1] x1 + [2] p(+#) = [4] x2 + [2] p(f#) = [10] x1 + [0] p(g#) = [4] x1 + [1] x2 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [7] p(c_3) = [0] p(c_4) = [1] x1 + [2] p(c_5) = [1] x1 + [4] p(c_6) = [1] x1 + [0] p(c_7) = [1] x1 + [0] Following rules are strictly oriented: +#(x,0()) = [2] > [1] = c_1(x) +#(x,s(y)) = [4] y + [10] > [4] y + [9] = c_2(+#(x,y)) Following rules are (at-least) weakly oriented: f#(0()) = [0] >= [0] = c_3() f#(s(x)) = [10] x + [20] >= [5] x + [4] = c_4(g#(x,s(x))) g#(0(),y) = [1] y + [0] >= [1] y + [4] = c_5(y) g#(s(x),y) = [4] x + [1] y + [8] >= [4] x + [1] y + [0] = c_6(g#(x,+(y,s(x)))) g#(s(x),y) = [4] x + [1] y + [8] >= [4] x + [1] y + [2] = c_7(g#(x,s(+(y,x)))) +(x,0()) = [1] x + [0] >= [1] x + [0] = x +(x,s(y)) = [1] x + [0] >= [1] x + [2] = s(+(x,y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:6: WeightGap. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: g#(0(),y) -> c_5(y) - Strict TRS: +(x,s(y)) -> s(+(x,y)) - Weak DPs: +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) - Weak TRS: +(x,0()) -> x - Signature: {+/2,f/1,g/2,+#/2,f#/1,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {+#,f#,g#} and constructors {0,1,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(+) = {1}, uargs(s) = {1}, uargs(g#) = {2}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_7) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = [1] x1 + [0] p(0) = [0] p(1) = [0] p(f) = [1] p(g) = [1] p(s) = [1] x1 + [2] p(+#) = [2] x1 + [1] p(f#) = [6] x1 + [2] p(g#) = [4] x1 + [1] x2 + [2] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [2] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [1] p(c_6) = [1] x1 + [0] p(c_7) = [1] x1 + [1] Following rules are strictly oriented: g#(0(),y) = [1] y + [2] > [1] y + [1] = c_5(y) Following rules are (at-least) weakly oriented: +#(x,0()) = [2] x + [1] >= [1] x + [0] = c_1(x) +#(x,s(y)) = [2] x + [1] >= [2] x + [1] = c_2(+#(x,y)) f#(0()) = [2] >= [2] = c_3() f#(s(x)) = [6] x + [14] >= [5] x + [4] = c_4(g#(x,s(x))) g#(s(x),y) = [4] x + [1] y + [10] >= [4] x + [1] y + [2] = c_6(g#(x,+(y,s(x)))) g#(s(x),y) = [4] x + [1] y + [10] >= [4] x + [1] y + [5] = c_7(g#(x,s(+(y,x)))) +(x,0()) = [1] x + [0] >= [1] x + [0] = x +(x,s(y)) = [1] x + [0] >= [1] x + [2] = s(+(x,y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:7: NaturalPI. WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: +(x,s(y)) -> s(+(x,y)) - Weak DPs: +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(0(),y) -> c_5(y) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) - Weak TRS: +(x,0()) -> x - Signature: {+/2,f/1,g/2,+#/2,f#/1,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {+#,f#,g#} and constructors {0,1,s} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any intersect of strict-rules and rewrite-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(+) = {1}, uargs(s) = {1}, uargs(g#) = {2}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_6) = {1}, uargs(c_7) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(+) = x1 + 2*x2 p(0) = 0 p(1) = 1 p(f) = 1 + 4*x1^2 p(g) = 1 + x1 + 4*x1^2 + 4*x2^2 p(s) = 1 + x1 p(+#) = 2 + 4*x1 p(f#) = 2 + 2*x1 + 4*x1^2 p(g#) = 2*x1 + 3*x1^2 + 2*x2 p(c_1) = x1 p(c_2) = x1 p(c_3) = 0 p(c_4) = 5 + x1 p(c_5) = x1 p(c_6) = x1 p(c_7) = 1 + x1 Following rules are strictly oriented: +(x,s(y)) = 2 + x + 2*y > 1 + x + 2*y = s(+(x,y)) Following rules are (at-least) weakly oriented: +#(x,0()) = 2 + 4*x >= x = c_1(x) +#(x,s(y)) = 2 + 4*x >= 2 + 4*x = c_2(+#(x,y)) f#(0()) = 2 >= 0 = c_3() f#(s(x)) = 8 + 10*x + 4*x^2 >= 7 + 4*x + 3*x^2 = c_4(g#(x,s(x))) g#(0(),y) = 2*y >= y = c_5(y) g#(s(x),y) = 5 + 8*x + 3*x^2 + 2*y >= 4 + 6*x + 3*x^2 + 2*y = c_6(g#(x,+(y,s(x)))) g#(s(x),y) = 5 + 8*x + 3*x^2 + 2*y >= 3 + 6*x + 3*x^2 + 2*y = c_7(g#(x,s(+(y,x)))) +(x,0()) = x >= x = x ** Step 1.b:8: EmptyProcessor. WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: +#(x,0()) -> c_1(x) +#(x,s(y)) -> c_2(+#(x,y)) f#(0()) -> c_3() f#(s(x)) -> c_4(g#(x,s(x))) g#(0(),y) -> c_5(y) g#(s(x),y) -> c_6(g#(x,+(y,s(x)))) g#(s(x),y) -> c_7(g#(x,s(+(y,x)))) - Weak TRS: +(x,0()) -> x +(x,s(y)) -> s(+(x,y)) - Signature: {+/2,f/1,g/2,+#/2,f#/1,g#/2} / {0/0,1/0,s/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/1} - Obligation: runtime complexity wrt. defined symbols {+#,f#,g#} and constructors {0,1,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))