/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 3 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 411 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 98 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 596 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 379 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 509 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 3 ms] (36) CpxRNTS (37) FinalProof [FINISHED, 0 ms] (38) BOUNDS(1, n^2) (39) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxTRS (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) typed CpxTrs (43) OrderProof [LOWER BOUND(ID), 0 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 290 ms] (46) BEST (47) proven lower bound (48) LowerBoundPropagationProof [FINISHED, 0 ms] (49) BOUNDS(n^1, INF) (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 739 ms] (52) proven lower bound (53) LowerBoundPropagationProof [FINISHED, 0 ms] (54) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). The TRS R consists of the following rules: f(0) -> 1 f(s(x)) -> g(x, s(x)) g(0, y) -> y g(s(x), y) -> g(x, +(y, s(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) g(s(x), y) -> g(x, s(+(y, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: f(s([])) g(s([]), y) The defined contexts are: g(x0, []) g(x0, s([])) +([], s(x1)) +([], x1) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(0) -> 1 f(s(x)) -> g(x, s(x)) g(0, y) -> y g(s(x), y) -> g(x, +(y, s(x))) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) g(s(x), y) -> g(x, s(+(y, x))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(0) -> 1 [1] f(s(x)) -> g(x, s(x)) [1] g(0, y) -> y [1] g(s(x), y) -> g(x, +(y, s(x))) [1] +(x, 0) -> x [1] +(x, s(y)) -> s(+(x, y)) [1] g(s(x), y) -> g(x, s(+(y, x))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(0) -> 1 [1] f(s(x)) -> g(x, s(x)) [1] g(0, y) -> y [1] g(s(x), y) -> g(x, plus(y, s(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] g(s(x), y) -> g(x, s(plus(y, x))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0) -> 1 [1] f(s(x)) -> g(x, s(x)) [1] g(0, y) -> y [1] g(s(x), y) -> g(x, plus(y, s(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] g(s(x), y) -> g(x, s(plus(y, x))) [1] The TRS has the following type information: f :: 0:1:s -> 0:1:s 0 :: 0:1:s 1 :: 0:1:s s :: 0:1:s -> 0:1:s g :: 0:1:s -> 0:1:s -> 0:1:s plus :: 0:1:s -> 0:1:s -> 0:1:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_1 g_2 (c) The following functions are completely defined: plus_2 Due to the following rules being added: plus(v0, v1) -> null_plus [0] And the following fresh constants: null_plus ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0) -> 1 [1] f(s(x)) -> g(x, s(x)) [1] g(0, y) -> y [1] g(s(x), y) -> g(x, plus(y, s(x))) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] g(s(x), y) -> g(x, s(plus(y, x))) [1] plus(v0, v1) -> null_plus [0] The TRS has the following type information: f :: 0:1:s:null_plus -> 0:1:s:null_plus 0 :: 0:1:s:null_plus 1 :: 0:1:s:null_plus s :: 0:1:s:null_plus -> 0:1:s:null_plus g :: 0:1:s:null_plus -> 0:1:s:null_plus -> 0:1:s:null_plus plus :: 0:1:s:null_plus -> 0:1:s:null_plus -> 0:1:s:null_plus null_plus :: 0:1:s:null_plus Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0) -> 1 [1] f(s(x)) -> g(x, s(x)) [1] g(0, y) -> y [1] g(s(x), y) -> g(x, s(plus(y, x))) [2] g(s(x), y) -> g(x, null_plus) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] g(s(0), y) -> g(0, s(y)) [2] g(s(s(y')), y) -> g(s(y'), s(s(plus(y, y')))) [2] g(s(x), y) -> g(x, s(null_plus)) [1] plus(v0, v1) -> null_plus [0] The TRS has the following type information: f :: 0:1:s:null_plus -> 0:1:s:null_plus 0 :: 0:1:s:null_plus 1 :: 0:1:s:null_plus s :: 0:1:s:null_plus -> 0:1:s:null_plus g :: 0:1:s:null_plus -> 0:1:s:null_plus -> 0:1:s:null_plus plus :: 0:1:s:null_plus -> 0:1:s:null_plus -> 0:1:s:null_plus null_plus :: 0:1:s:null_plus Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 1 => 1 null_plus => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(x, 1 + x) :|: x >= 0, z = 1 + x f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> y :|: y >= 0, z = 0, z' = y g(z, z') -{ 1 }-> g(x, 0) :|: x >= 0, y >= 0, z = 1 + x, z' = y g(z, z') -{ 2 }-> g(x, 1 + plus(y, x)) :|: x >= 0, y >= 0, z = 1 + x, z' = y g(z, z') -{ 1 }-> g(x, 1 + 0) :|: x >= 0, y >= 0, z = 1 + x, z' = y g(z, z') -{ 2 }-> g(0, 1 + y) :|: z = 1 + 0, y >= 0, z' = y g(z, z') -{ 2 }-> g(1 + y', 1 + (1 + plus(y, y'))) :|: y >= 0, z = 1 + (1 + y'), y' >= 0, z' = y plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(z - 1, 1 + plus(z', z - 1)) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(1 + (z - 2), 1 + (1 + plus(z', z - 2))) :|: z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { g } { f } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(z - 1, 1 + plus(z', z - 1)) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(1 + (z - 2), 1 + (1 + plus(z', z - 2))) :|: z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {plus}, {g}, {f} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(z - 1, 1 + plus(z', z - 1)) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(1 + (z - 2), 1 + (1 + plus(z', z - 2))) :|: z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {plus}, {g}, {f} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(z - 1, 1 + plus(z', z - 1)) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(1 + (z - 2), 1 + (1 + plus(z', z - 2))) :|: z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {plus}, {g}, {f} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(z - 1, 1 + plus(z', z - 1)) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 }-> g(1 + (z - 2), 1 + (1 + plus(z', z - 2))) :|: z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 + z }-> g(z - 1, 1 + s) :|: s >= 0, s <= z' + (z - 1), z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 + z }-> g(1 + (z - 2), 1 + (1 + s'')) :|: s'' >= 0, s'' <= z' + (z - 2), z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z^2 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 + z }-> g(z - 1, 1 + s) :|: s >= 0, s <= z' + (z - 1), z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 + z }-> g(1 + (z - 2), 1 + (1 + s'')) :|: s'' >= 0, s'' <= z' + (z - 2), z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {g}, {f} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] g: runtime: ?, size: O(n^2) [z^2 + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 3*z + z^2 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 1 }-> g(z - 1, 1 + (z - 1)) :|: z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 2 }-> g(0, 1 + z') :|: z = 1 + 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 2 + z }-> g(z - 1, 1 + s) :|: s >= 0, s <= z' + (z - 1), z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> g(z - 1, 1 + 0) :|: z - 1 >= 0, z' >= 0 g(z, z') -{ 1 + z }-> g(1 + (z - 2), 1 + (1 + s'')) :|: s'' >= 0, s'' <= z' + (z - 2), z' >= 0, z - 2 >= 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {f} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] g: runtime: O(n^2) [5 + 3*z + z^2], size: O(n^2) [z^2 + z'] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 4 + z + z^2 }-> s1 :|: s1 >= 0, s1 <= (z - 1) * (z - 1) + (1 + (z - 1)), z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 5 + 2*z + z^2 }-> s2 :|: s2 >= 0, s2 <= (z - 1) * (z - 1) + (1 + s), s >= 0, s <= z' + (z - 1), z - 1 >= 0, z' >= 0 g(z, z') -{ 4 + z + z^2 }-> s3 :|: s3 >= 0, s3 <= (z - 1) * (z - 1) + 0, z - 1 >= 0, z' >= 0 g(z, z') -{ 7 }-> s4 :|: s4 >= 0, s4 <= 0 * 0 + (1 + z'), z = 1 + 0, z' >= 0 g(z, z') -{ 4 + 2*z + z^2 }-> s5 :|: s5 >= 0, s5 <= (1 + (z - 2)) * (1 + (z - 2)) + (1 + (1 + s'')), s'' >= 0, s'' <= z' + (z - 2), z' >= 0, z - 2 >= 0 g(z, z') -{ 4 + z + z^2 }-> s6 :|: s6 >= 0, s6 <= (z - 1) * (z - 1) + (1 + 0), z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {f} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] g: runtime: O(n^2) [5 + 3*z + z^2], size: O(n^2) [z^2 + z'] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + z + z^2 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 4 + z + z^2 }-> s1 :|: s1 >= 0, s1 <= (z - 1) * (z - 1) + (1 + (z - 1)), z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 5 + 2*z + z^2 }-> s2 :|: s2 >= 0, s2 <= (z - 1) * (z - 1) + (1 + s), s >= 0, s <= z' + (z - 1), z - 1 >= 0, z' >= 0 g(z, z') -{ 4 + z + z^2 }-> s3 :|: s3 >= 0, s3 <= (z - 1) * (z - 1) + 0, z - 1 >= 0, z' >= 0 g(z, z') -{ 7 }-> s4 :|: s4 >= 0, s4 <= 0 * 0 + (1 + z'), z = 1 + 0, z' >= 0 g(z, z') -{ 4 + 2*z + z^2 }-> s5 :|: s5 >= 0, s5 <= (1 + (z - 2)) * (1 + (z - 2)) + (1 + (1 + s'')), s'' >= 0, s'' <= z' + (z - 2), z' >= 0, z - 2 >= 0 g(z, z') -{ 4 + z + z^2 }-> s6 :|: s6 >= 0, s6 <= (z - 1) * (z - 1) + (1 + 0), z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 Function symbols to be analyzed: {f} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] g: runtime: O(n^2) [5 + 3*z + z^2], size: O(n^2) [z^2 + z'] f: runtime: ?, size: O(n^2) [2 + z + z^2] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + z + z^2 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: f(z) -{ 4 + z + z^2 }-> s1 :|: s1 >= 0, s1 <= (z - 1) * (z - 1) + (1 + (z - 1)), z - 1 >= 0 f(z) -{ 1 }-> 1 :|: z = 0 g(z, z') -{ 5 + 2*z + z^2 }-> s2 :|: s2 >= 0, s2 <= (z - 1) * (z - 1) + (1 + s), s >= 0, s <= z' + (z - 1), z - 1 >= 0, z' >= 0 g(z, z') -{ 4 + z + z^2 }-> s3 :|: s3 >= 0, s3 <= (z - 1) * (z - 1) + 0, z - 1 >= 0, z' >= 0 g(z, z') -{ 7 }-> s4 :|: s4 >= 0, s4 <= 0 * 0 + (1 + z'), z = 1 + 0, z' >= 0 g(z, z') -{ 4 + 2*z + z^2 }-> s5 :|: s5 >= 0, s5 <= (1 + (z - 2)) * (1 + (z - 2)) + (1 + (1 + s'')), s'' >= 0, s'' <= z' + (z - 2), z' >= 0, z - 2 >= 0 g(z, z') -{ 4 + z + z^2 }-> s6 :|: s6 >= 0, s6 <= (z - 1) * (z - 1) + (1 + 0), z - 1 >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] g: runtime: O(n^2) [5 + 3*z + z^2], size: O(n^2) [z^2 + z'] f: runtime: O(n^2) [5 + z + z^2], size: O(n^2) [2 + z + z^2] ---------------------------------------- (37) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (38) BOUNDS(1, n^2) ---------------------------------------- (39) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (40) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (42) Obligation: TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) Types: f :: 0':1':s -> 0':1':s 0' :: 0':1':s 1' :: 0':1':s s :: 0':1':s -> 0':1':s g :: 0':1':s -> 0':1':s -> 0':1':s +' :: 0':1':s -> 0':1':s -> 0':1':s hole_0':1':s1_0 :: 0':1':s gen_0':1':s2_0 :: Nat -> 0':1':s ---------------------------------------- (43) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: g, +' They will be analysed ascendingly in the following order: +' < g ---------------------------------------- (44) Obligation: TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) Types: f :: 0':1':s -> 0':1':s 0' :: 0':1':s 1' :: 0':1':s s :: 0':1':s -> 0':1':s g :: 0':1':s -> 0':1':s -> 0':1':s +' :: 0':1':s -> 0':1':s -> 0':1':s hole_0':1':s1_0 :: 0':1':s gen_0':1':s2_0 :: Nat -> 0':1':s Generator Equations: gen_0':1':s2_0(0) <=> 0' gen_0':1':s2_0(+(x, 1)) <=> s(gen_0':1':s2_0(x)) The following defined symbols remain to be analysed: +', g They will be analysed ascendingly in the following order: +' < g ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) -> gen_0':1':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Induction Base: +'(gen_0':1':s2_0(a), gen_0':1':s2_0(0)) ->_R^Omega(1) gen_0':1':s2_0(a) Induction Step: +'(gen_0':1':s2_0(a), gen_0':1':s2_0(+(n4_0, 1))) ->_R^Omega(1) s(+'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0))) ->_IH s(gen_0':1':s2_0(+(a, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) Complex Obligation (BEST) ---------------------------------------- (47) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) Types: f :: 0':1':s -> 0':1':s 0' :: 0':1':s 1' :: 0':1':s s :: 0':1':s -> 0':1':s g :: 0':1':s -> 0':1':s -> 0':1':s +' :: 0':1':s -> 0':1':s -> 0':1':s hole_0':1':s1_0 :: 0':1':s gen_0':1':s2_0 :: Nat -> 0':1':s Generator Equations: gen_0':1':s2_0(0) <=> 0' gen_0':1':s2_0(+(x, 1)) <=> s(gen_0':1':s2_0(x)) The following defined symbols remain to be analysed: +', g They will be analysed ascendingly in the following order: +' < g ---------------------------------------- (48) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (49) BOUNDS(n^1, INF) ---------------------------------------- (50) Obligation: TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) Types: f :: 0':1':s -> 0':1':s 0' :: 0':1':s 1' :: 0':1':s s :: 0':1':s -> 0':1':s g :: 0':1':s -> 0':1':s -> 0':1':s +' :: 0':1':s -> 0':1':s -> 0':1':s hole_0':1':s1_0 :: 0':1':s gen_0':1':s2_0 :: Nat -> 0':1':s Lemmas: +'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) -> gen_0':1':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':1':s2_0(0) <=> 0' gen_0':1':s2_0(+(x, 1)) <=> s(gen_0':1':s2_0(x)) The following defined symbols remain to be analysed: g ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':1':s2_0(n457_0), gen_0':1':s2_0(b)) -> *3_0, rt in Omega(n457_0 + n457_0^2) Induction Base: g(gen_0':1':s2_0(0), gen_0':1':s2_0(b)) Induction Step: g(gen_0':1':s2_0(+(n457_0, 1)), gen_0':1':s2_0(b)) ->_R^Omega(1) g(gen_0':1':s2_0(n457_0), +'(gen_0':1':s2_0(b), s(gen_0':1':s2_0(n457_0)))) ->_L^Omega(2 + n457_0) g(gen_0':1':s2_0(n457_0), gen_0':1':s2_0(+(+(n457_0, 1), b))) ->_IH *3_0 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (52) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: f(0') -> 1' f(s(x)) -> g(x, s(x)) g(0', y) -> y g(s(x), y) -> g(x, +'(y, s(x))) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) g(s(x), y) -> g(x, s(+'(y, x))) Types: f :: 0':1':s -> 0':1':s 0' :: 0':1':s 1' :: 0':1':s s :: 0':1':s -> 0':1':s g :: 0':1':s -> 0':1':s -> 0':1':s +' :: 0':1':s -> 0':1':s -> 0':1':s hole_0':1':s1_0 :: 0':1':s gen_0':1':s2_0 :: Nat -> 0':1':s Lemmas: +'(gen_0':1':s2_0(a), gen_0':1':s2_0(n4_0)) -> gen_0':1':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':1':s2_0(0) <=> 0' gen_0':1':s2_0(+(x, 1)) <=> s(gen_0':1':s2_0(x)) The following defined symbols remain to be analysed: g ---------------------------------------- (53) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (54) BOUNDS(n^2, INF)