/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 301 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 56 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 334 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 103 ms] (30) CpxRNTS (31) FinalProof [FINISHED, 0 ms] (32) BOUNDS(1, n^2) (33) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTRS (35) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (36) typed CpxTrs (37) OrderProof [LOWER BOUND(ID), 0 ms] (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 272 ms] (40) BEST (41) proven lower bound (42) LowerBoundPropagationProof [FINISHED, 0 ms] (43) BOUNDS(n^1, INF) (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 698 ms] (46) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: sum(s([])) The defined contexts are: +([], s(x1)) +([], x1) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sum(0) -> 0 sum(s(x)) -> +(sum(x), s(x)) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> +(sum(x), s(x)) [1] +(x, 0) -> x [1] +(x, s(y)) -> s(+(x, y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> plus(sum(x), s(x)) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> plus(sum(x), s(x)) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] The TRS has the following type information: sum :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: sum_1 plus_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(x)) -> plus(sum(x), s(x)) [1] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] The TRS has the following type information: sum :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: sum(0) -> 0 [1] sum(s(0)) -> plus(0, s(0)) [2] sum(s(s(x'))) -> plus(plus(sum(x'), s(x')), s(s(x'))) [2] plus(x, 0) -> x [1] plus(x, s(y)) -> s(plus(x, y)) [1] The TRS has the following type information: sum :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s plus :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x sum(z) -{ 2 }-> plus(plus(sum(x'), 1 + x'), 1 + (1 + x')) :|: x' >= 0, z = 1 + (1 + x') sum(z) -{ 2 }-> plus(0, 1 + 0) :|: z = 1 + 0 sum(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 2 }-> plus(0, 1 + 0) :|: z = 1 + 0 sum(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { plus } { sum } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 2 }-> plus(0, 1 + 0) :|: z = 1 + 0 sum(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {plus}, {sum} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 2 }-> plus(0, 1 + 0) :|: z = 1 + 0 sum(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {plus}, {sum} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 2 }-> plus(0, 1 + 0) :|: z = 1 + 0 sum(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {plus}, {sum} Previous analysis results are: plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 }-> 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 2 }-> plus(0, 1 + 0) :|: z = 1 + 0 sum(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {sum} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sum(z) -{ 4 }-> s :|: s >= 0, s <= 0 + (1 + 0), z = 1 + 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {sum} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sum after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 2*z^2 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sum(z) -{ 4 }-> s :|: s >= 0, s <= 0 + (1 + 0), z = 1 + 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: {sum} Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] sum: runtime: ?, size: O(n^2) [1 + 2*z^2] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: sum after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 5 + 3*z + 2*z^2 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: plus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 plus(z, z') -{ 1 + z' }-> 1 + s' :|: s' >= 0, s' <= z + (z' - 1), z >= 0, z' - 1 >= 0 sum(z) -{ 4 }-> s :|: s >= 0, s <= 0 + (1 + 0), z = 1 + 0 sum(z) -{ 2 }-> plus(plus(sum(z - 2), 1 + (z - 2)), 1 + (1 + (z - 2))) :|: z - 2 >= 0 sum(z) -{ 1 }-> 0 :|: z = 0 Function symbols to be analyzed: Previous analysis results are: plus: runtime: O(n^1) [1 + z'], size: O(n^1) [z + z'] sum: runtime: O(n^2) [5 + 3*z + 2*z^2], size: O(n^2) [1 + 2*z^2] ---------------------------------------- (31) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (32) BOUNDS(1, n^2) ---------------------------------------- (33) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (34) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (35) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (36) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: sum :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (37) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: sum, +' They will be analysed ascendingly in the following order: +' < sum ---------------------------------------- (38) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: sum :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: +', sum They will be analysed ascendingly in the following order: +' < sum ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Induction Base: +'(gen_0':s2_0(a), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(a) Induction Step: +'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) ->_IH s(gen_0':s2_0(+(a, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (40) Complex Obligation (BEST) ---------------------------------------- (41) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: sum :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: +', sum They will be analysed ascendingly in the following order: +' < sum ---------------------------------------- (42) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (43) BOUNDS(n^1, INF) ---------------------------------------- (44) Obligation: TRS: Rules: sum(0') -> 0' sum(s(x)) -> +'(sum(x), s(x)) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) Types: sum :: 0':s -> 0':s 0' :: 0':s s :: 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: sum ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sum(gen_0':s2_0(+(1, n403_0))) -> *3_0, rt in Omega(n403_0) Induction Base: sum(gen_0':s2_0(+(1, 0))) Induction Step: sum(gen_0':s2_0(+(1, +(n403_0, 1)))) ->_R^Omega(1) +'(sum(gen_0':s2_0(+(1, n403_0))), s(gen_0':s2_0(+(1, n403_0)))) ->_IH +'(*3_0, s(gen_0':s2_0(+(1, n403_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (46) BOUNDS(1, INF)