/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^3), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 270 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 29 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^2, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 745 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 6428 ms] (22) proven lower bound (23) LowerBoundPropagationProof [FINISHED, 0 ms] (24) BOUNDS(n^3, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: fac(0) -> 1 fac(s(x)) -> *(s(x), fac(x)) floop(0, y) -> y floop(s(x), y) -> floop(x, *(s(x), y)) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) +(x, 0) -> x +(x, s(y)) -> s(+(x, y)) 1 -> s(0) fac(0) -> s(0) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^3, INF). The TRS R consists of the following rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: fac, *', floop, +' They will be analysed ascendingly in the following order: *' < fac *' < floop +' < *' ---------------------------------------- (6) Obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: +', fac, *', floop They will be analysed ascendingly in the following order: *' < fac *' < floop +' < *' ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Induction Base: +'(gen_0':s2_0(a), gen_0':s2_0(0)) ->_R^Omega(1) gen_0':s2_0(a) Induction Step: +'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) ->_IH s(gen_0':s2_0(+(a, c5_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: +', fac, *', floop They will be analysed ascendingly in the following order: *' < fac *' < floop +' < *' ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: *', fac, floop They will be analysed ascendingly in the following order: *' < fac *' < floop ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: *'(gen_0':s2_0(a), gen_0':s2_0(n511_0)) -> gen_0':s2_0(*(n511_0, a)), rt in Omega(1 + a*n511_0 + n511_0) Induction Base: *'(gen_0':s2_0(a), gen_0':s2_0(0)) ->_R^Omega(1) 0' Induction Step: *'(gen_0':s2_0(a), gen_0':s2_0(+(n511_0, 1))) ->_R^Omega(1) +'(*'(gen_0':s2_0(a), gen_0':s2_0(n511_0)), gen_0':s2_0(a)) ->_IH +'(gen_0':s2_0(*(c512_0, a)), gen_0':s2_0(a)) ->_L^Omega(1 + a) gen_0':s2_0(+(a, *(n511_0, a))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: *', fac, floop They will be analysed ascendingly in the following order: *' < fac *' < floop ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^2, INF) ---------------------------------------- (18) Obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) *'(gen_0':s2_0(a), gen_0':s2_0(n511_0)) -> gen_0':s2_0(*(n511_0, a)), rt in Omega(1 + a*n511_0 + n511_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: fac, floop ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fac(gen_0':s2_0(+(1, n1127_0))) -> *3_0, rt in Omega(n1127_0) Induction Base: fac(gen_0':s2_0(+(1, 0))) Induction Step: fac(gen_0':s2_0(+(1, +(n1127_0, 1)))) ->_R^Omega(1) *'(s(gen_0':s2_0(+(1, n1127_0))), fac(gen_0':s2_0(+(1, n1127_0)))) ->_IH *'(s(gen_0':s2_0(+(1, n1127_0))), *3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) *'(gen_0':s2_0(a), gen_0':s2_0(n511_0)) -> gen_0':s2_0(*(n511_0, a)), rt in Omega(1 + a*n511_0 + n511_0) fac(gen_0':s2_0(+(1, n1127_0))) -> *3_0, rt in Omega(n1127_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: floop ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: floop(gen_0':s2_0(n2194_0), gen_0':s2_0(b)) -> *3_0, rt in Omega(b*n2194_0 + b*n2194_0^2 + n2194_0) Induction Base: floop(gen_0':s2_0(0), gen_0':s2_0(b)) Induction Step: floop(gen_0':s2_0(+(n2194_0, 1)), gen_0':s2_0(b)) ->_R^Omega(1) floop(gen_0':s2_0(n2194_0), *'(s(gen_0':s2_0(n2194_0)), gen_0':s2_0(b))) ->_L^Omega(1 + 2*b + b*n2194_0) floop(gen_0':s2_0(n2194_0), gen_0':s2_0(*(b, +(n2194_0, 1)))) ->_IH *3_0 We have rt in Omega(n^3) and sz in O(n). Thus, we have irc_R in Omega(n^3). ---------------------------------------- (22) Obligation: Proved the lower bound n^3 for the following obligation: TRS: Rules: fac(0') -> 1' fac(s(x)) -> *'(s(x), fac(x)) floop(0', y) -> y floop(s(x), y) -> floop(x, *'(s(x), y)) *'(x, 0') -> 0' *'(x, s(y)) -> +'(*'(x, y), x) +'(x, 0') -> x +'(x, s(y)) -> s(+'(x, y)) 1' -> s(0') fac(0') -> s(0') Types: fac :: 0':s -> 0':s 0' :: 0':s 1' :: 0':s s :: 0':s -> 0':s *' :: 0':s -> 0':s -> 0':s floop :: 0':s -> 0':s -> 0':s +' :: 0':s -> 0':s -> 0':s hole_0':s1_0 :: 0':s gen_0':s2_0 :: Nat -> 0':s Lemmas: +'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) -> gen_0':s2_0(+(n4_0, a)), rt in Omega(1 + n4_0) *'(gen_0':s2_0(a), gen_0':s2_0(n511_0)) -> gen_0':s2_0(*(n511_0, a)), rt in Omega(1 + a*n511_0 + n511_0) fac(gen_0':s2_0(+(1, n1127_0))) -> *3_0, rt in Omega(n1127_0) Generator Equations: gen_0':s2_0(0) <=> 0' gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) The following defined symbols remain to be analysed: floop ---------------------------------------- (23) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (24) BOUNDS(n^3, INF)