/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 314 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] (22) CpxRNTS (23) FinalProof [FINISHED, 0 ms] (24) BOUNDS(1, n^1) (25) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxTRS (27) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (28) typed CpxTrs (29) OrderProof [LOWER BOUND(ID), 0 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 1172 ms] (32) proven lower bound (33) LowerBoundPropagationProof [FINISHED, 0 ms] (34) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] The TRS has the following type information: rev :: a:b:++ -> a:b:++ a :: a:b:++ b :: a:b:++ ++ :: a:b:++ -> a:b:++ -> a:b:++ Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: rev_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] The TRS has the following type information: rev :: a:b:++ -> a:b:++ a :: a:b:++ b :: a:b:++ ++ :: a:b:++ -> a:b:++ -> a:b:++ Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: rev(a) -> a [1] rev(b) -> b [1] rev(++(x, y)) -> ++(rev(y), rev(x)) [1] rev(++(x, x)) -> rev(x) [1] The TRS has the following type information: rev :: a:b:++ -> a:b:++ a :: a:b:++ b :: a:b:++ ++ :: a:b:++ -> a:b:++ -> a:b:++ Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 b => 1 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { rev } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rev} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rev} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: rev after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {rev} Previous analysis results are: rev: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: rev after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: rev(z) -{ 1 }-> rev(x) :|: z = 1 + x + x, x >= 0 rev(z) -{ 1 }-> 1 :|: z = 1 rev(z) -{ 1 }-> 0 :|: z = 0 rev(z) -{ 1 }-> 1 + rev(y) + rev(x) :|: z = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: Previous analysis results are: rev: runtime: O(n^1) [1 + 2*z], size: O(n^1) [1 + z] ---------------------------------------- (23) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (24) BOUNDS(1, n^1) ---------------------------------------- (25) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (26) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (27) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (28) Obligation: TRS: Rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) Types: rev :: a:b:++ -> a:b:++ a :: a:b:++ b :: a:b:++ ++ :: a:b:++ -> a:b:++ -> a:b:++ hole_a:b:++1_0 :: a:b:++ gen_a:b:++2_0 :: Nat -> a:b:++ ---------------------------------------- (29) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: rev ---------------------------------------- (30) Obligation: TRS: Rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) Types: rev :: a:b:++ -> a:b:++ a :: a:b:++ b :: a:b:++ ++ :: a:b:++ -> a:b:++ -> a:b:++ hole_a:b:++1_0 :: a:b:++ gen_a:b:++2_0 :: Nat -> a:b:++ Generator Equations: gen_a:b:++2_0(0) <=> a gen_a:b:++2_0(+(x, 1)) <=> ++(a, gen_a:b:++2_0(x)) The following defined symbols remain to be analysed: rev ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: rev(gen_a:b:++2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: rev(gen_a:b:++2_0(+(1, 0))) Induction Step: rev(gen_a:b:++2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) ++(rev(gen_a:b:++2_0(+(1, n4_0))), rev(a)) ->_IH ++(*3_0, rev(a)) ->_R^Omega(1) ++(*3_0, a) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: rev(a) -> a rev(b) -> b rev(++(x, y)) -> ++(rev(y), rev(x)) rev(++(x, x)) -> rev(x) Types: rev :: a:b:++ -> a:b:++ a :: a:b:++ b :: a:b:++ ++ :: a:b:++ -> a:b:++ -> a:b:++ hole_a:b:++1_0 :: a:b:++ gen_a:b:++2_0 :: Nat -> a:b:++ Generator Equations: gen_a:b:++2_0(0) <=> a gen_a:b:++2_0(+(x, 1)) <=> ++(a, gen_a:b:++2_0(x)) The following defined symbols remain to be analysed: rev ---------------------------------------- (33) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (34) BOUNDS(n^1, INF)