/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 7 ms] (4) CpxTRS (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 1 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 34 ms] (12) CdtProblem (13) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 0 ms] (14) CdtProblem (15) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (16) BOUNDS(1, 1) (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, *(y, z)) -> *(otimes(x, y), z) *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: *(x, *(y, z)) -> *(otimes(x, y), z) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: *(1, z0) -> z0 *(+(z0, z1), z2) -> oplus(*(z0, z2), *(z1, z2)) *(z0, oplus(z1, z2)) -> oplus(*(z0, z1), *(z0, z2)) Tuples: *'(1, z0) -> c *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(1, z0) -> c *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) K tuples:none Defined Rule Symbols: *_2 Defined Pair Symbols: *'_2 Compound Symbols: c, c1_2, c2_2 ---------------------------------------- (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: *'(1, z0) -> c ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: *(1, z0) -> z0 *(+(z0, z1), z2) -> oplus(*(z0, z2), *(z1, z2)) *(z0, oplus(z1, z2)) -> oplus(*(z0, z1), *(z0, z2)) Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) K tuples:none Defined Rule Symbols: *_2 Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: *(1, z0) -> z0 *(+(z0, z1), z2) -> oplus(*(z0, z2), *(z1, z2)) *(z0, oplus(z1, z2)) -> oplus(*(z0, z1), *(z0, z2)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) We considered the (Usable) Rules:none And the Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(*'(x_1, x_2)) = x_2 + [2]x_1*x_2 POL(+(x_1, x_2)) = [2] + x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(oplus(x_1, x_2)) = [2] + x_1 + x_2 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) K tuples: *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) We considered the (Usable) Rules:none And the Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(*'(x_1, x_2)) = [1] + [2]x_1 + x_2 + [2]x_1*x_2 POL(+(x_1, x_2)) = [1] + x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(oplus(x_1, x_2)) = [1] + x_1 + x_2 ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) S tuples:none K tuples: *'(z0, oplus(z1, z2)) -> c2(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c1_2, c2_2 ---------------------------------------- (15) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (16) BOUNDS(1, 1) ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, *(y, z)) -> *(otimes(x, y), z) *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (19) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence *(x, oplus(y, z)) ->^+ oplus(*(x, y), *(x, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [y / oplus(y, z)]. The result substitution is [ ]. ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, *(y, z)) -> *(otimes(x, y), z) *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, *(y, z)) -> *(otimes(x, y), z) *(1, y) -> y *(+(x, y), z) -> oplus(*(x, z), *(y, z)) *(x, oplus(y, z)) -> oplus(*(x, y), *(x, z)) S is empty. Rewrite Strategy: FULL