/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 243 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 1870 ms] (16) proven lower bound (17) LowerBoundPropagationProof [FINISHED, 0 ms] (18) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: fac(s(x)) -> *(fac(p(s(x))), s(x)) p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: fac(s(x)) -> *'(fac(p(s(x))), s(x)) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: *'/1 ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: fac(s(x)) -> *'(fac(p(s(x)))) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: TRS: Rules: fac(s(x)) -> *'(fac(p(s(x)))) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) Types: fac :: s:0' -> *' s :: s:0' -> s:0' *' :: *' -> *' p :: s:0' -> s:0' 0' :: s:0' hole_*'1_0 :: *' hole_s:0'2_0 :: s:0' gen_*'3_0 :: Nat -> *' gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: fac, p They will be analysed ascendingly in the following order: p < fac ---------------------------------------- (8) Obligation: TRS: Rules: fac(s(x)) -> *'(fac(p(s(x)))) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) Types: fac :: s:0' -> *' s :: s:0' -> s:0' *' :: *' -> *' p :: s:0' -> s:0' 0' :: s:0' hole_*'1_0 :: *' hole_s:0'2_0 :: s:0' gen_*'3_0 :: Nat -> *' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_*'3_0(0) <=> hole_*'1_0 gen_*'3_0(+(x, 1)) <=> *'(gen_*'3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: p, fac They will be analysed ascendingly in the following order: p < fac ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: p(gen_s:0'4_0(+(1, n6_0))) -> gen_s:0'4_0(n6_0), rt in Omega(1 + n6_0) Induction Base: p(gen_s:0'4_0(+(1, 0))) ->_R^Omega(1) 0' Induction Step: p(gen_s:0'4_0(+(1, +(n6_0, 1)))) ->_R^Omega(1) s(p(s(gen_s:0'4_0(n6_0)))) ->_IH s(gen_s:0'4_0(c7_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: fac(s(x)) -> *'(fac(p(s(x)))) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) Types: fac :: s:0' -> *' s :: s:0' -> s:0' *' :: *' -> *' p :: s:0' -> s:0' 0' :: s:0' hole_*'1_0 :: *' hole_s:0'2_0 :: s:0' gen_*'3_0 :: Nat -> *' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_*'3_0(0) <=> hole_*'1_0 gen_*'3_0(+(x, 1)) <=> *'(gen_*'3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: p, fac They will be analysed ascendingly in the following order: p < fac ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: TRS: Rules: fac(s(x)) -> *'(fac(p(s(x)))) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) Types: fac :: s:0' -> *' s :: s:0' -> s:0' *' :: *' -> *' p :: s:0' -> s:0' 0' :: s:0' hole_*'1_0 :: *' hole_s:0'2_0 :: s:0' gen_*'3_0 :: Nat -> *' gen_s:0'4_0 :: Nat -> s:0' Lemmas: p(gen_s:0'4_0(+(1, n6_0))) -> gen_s:0'4_0(n6_0), rt in Omega(1 + n6_0) Generator Equations: gen_*'3_0(0) <=> hole_*'1_0 gen_*'3_0(+(x, 1)) <=> *'(gen_*'3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: fac ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fac(gen_s:0'4_0(+(1, n213_0))) -> *5_0, rt in Omega(n213_0 + n213_0^2) Induction Base: fac(gen_s:0'4_0(+(1, 0))) Induction Step: fac(gen_s:0'4_0(+(1, +(n213_0, 1)))) ->_R^Omega(1) *'(fac(p(s(gen_s:0'4_0(+(1, n213_0)))))) ->_L^Omega(2 + n213_0) *'(fac(gen_s:0'4_0(+(1, n213_0)))) ->_IH *'(*5_0) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (16) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: fac(s(x)) -> *'(fac(p(s(x)))) p(s(0')) -> 0' p(s(s(x))) -> s(p(s(x))) Types: fac :: s:0' -> *' s :: s:0' -> s:0' *' :: *' -> *' p :: s:0' -> s:0' 0' :: s:0' hole_*'1_0 :: *' hole_s:0'2_0 :: s:0' gen_*'3_0 :: Nat -> *' gen_s:0'4_0 :: Nat -> s:0' Lemmas: p(gen_s:0'4_0(+(1, n6_0))) -> gen_s:0'4_0(n6_0), rt in Omega(1 + n6_0) Generator Equations: gen_*'3_0(0) <=> hole_*'1_0 gen_*'3_0(+(x, 1)) <=> *'(gen_*'3_0(x)) gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: fac ---------------------------------------- (17) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (18) BOUNDS(n^2, INF)