/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTRS (5) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxWeightedTrs (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedTrs (9) CompletionProof [UPPER BOUND(ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (14) CpxRNTS (15) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRNTS (19) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 952 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 212 ms] (24) CpxRNTS (25) FinalProof [FINISHED, 0 ms] (26) BOUNDS(1, n^1) (27) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (28) TRS for Loop Detection (29) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (30) BEST (31) proven lower bound (32) LowerBoundPropagationProof [FINISHED, 0 ms] (33) BOUNDS(n^1, INF) (34) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> y f(x, 0) -> x f(i(x), y) -> i(x) f(f(x, y), z) -> f(x, f(y, z)) f(g(x, y), z) -> g(f(x, z), f(y, z)) f(1, g(x, y)) -> x f(2, g(x, y)) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) The TRS does not nest defined symbols. Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: f(f(x, y), z) -> f(x, f(y, z)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, y) -> y f(x, 0) -> x f(i(x), y) -> i(x) f(g(x, y), z) -> g(f(x, z), f(y, z)) f(1, g(x, y)) -> x f(2, g(x, y)) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS does not nest defined symbols, we have rc = irc. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, y) -> y f(x, 0) -> x f(i(x), y) -> i(x) f(g(x, y), z) -> g(f(x, z), f(y, z)) f(1, g(x, y)) -> x f(2, g(x, y)) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(0, y) -> y [1] f(x, 0) -> x [1] f(i(x), y) -> i(x) [1] f(g(x, y), z) -> g(f(x, z), f(y, z)) [1] f(1, g(x, y)) -> x [1] f(2, g(x, y)) -> y [1] Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0, y) -> y [1] f(x, 0) -> x [1] f(i(x), y) -> i(x) [1] f(g(x, y), z) -> g(f(x, z), f(y, z)) [1] f(1, g(x, y)) -> x [1] f(2, g(x, y)) -> y [1] The TRS has the following type information: f :: 0:i:g:1:2 -> 0:i:g:1:2 -> 0:i:g:1:2 0 :: 0:i:g:1:2 i :: a -> 0:i:g:1:2 g :: 0:i:g:1:2 -> 0:i:g:1:2 -> 0:i:g:1:2 1 :: 0:i:g:1:2 2 :: 0:i:g:1:2 Rewrite Strategy: INNERMOST ---------------------------------------- (9) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0, y) -> y [1] f(x, 0) -> x [1] f(i(x), y) -> i(x) [1] f(g(x, y), z) -> g(f(x, z), f(y, z)) [1] f(1, g(x, y)) -> x [1] f(2, g(x, y)) -> y [1] The TRS has the following type information: f :: 0:i:g:1:2 -> 0:i:g:1:2 -> 0:i:g:1:2 0 :: 0:i:g:1:2 i :: a -> 0:i:g:1:2 g :: 0:i:g:1:2 -> 0:i:g:1:2 -> 0:i:g:1:2 1 :: 0:i:g:1:2 2 :: 0:i:g:1:2 const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (11) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(0, y) -> y [1] f(x, 0) -> x [1] f(i(x), y) -> i(x) [1] f(g(x, y), z) -> g(f(x, z), f(y, z)) [1] f(1, g(x, y)) -> x [1] f(2, g(x, y)) -> y [1] The TRS has the following type information: f :: 0:i:g:1:2 -> 0:i:g:1:2 -> 0:i:g:1:2 0 :: 0:i:g:1:2 i :: a -> 0:i:g:1:2 g :: 0:i:g:1:2 -> 0:i:g:1:2 -> 0:i:g:1:2 1 :: 0:i:g:1:2 2 :: 0:i:g:1:2 const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 1 => 1 2 => 2 const => 0 ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> x :|: z'' = 0, z' = x, x >= 0 f(z', z'') -{ 1 }-> x :|: z'' = 1 + x + y, x >= 0, y >= 0, z' = 1 f(z', z'') -{ 1 }-> y :|: z'' = y, y >= 0, z' = 0 f(z', z'') -{ 1 }-> y :|: z' = 2, z'' = 1 + x + y, x >= 0, y >= 0 f(z', z'') -{ 1 }-> 1 + x :|: z' = 1 + x, z'' = y, x >= 0, y >= 0 f(z', z'') -{ 1 }-> 1 + f(x, z) + f(y, z) :|: z'' = z, z >= 0, z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (15) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> x :|: z'' = 1 + x + y, x >= 0, y >= 0, z' = 1 f(z', z'') -{ 1 }-> y :|: z' = 2, z'' = 1 + x + y, x >= 0, y >= 0 f(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 f(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 f(z', z'') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(x, z'') + f(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 ---------------------------------------- (17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f } ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> x :|: z'' = 1 + x + y, x >= 0, y >= 0, z' = 1 f(z', z'') -{ 1 }-> y :|: z' = 2, z'' = 1 + x + y, x >= 0, y >= 0 f(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 f(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 f(z', z'') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(x, z'') + f(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f} ---------------------------------------- (19) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> x :|: z'' = 1 + x + y, x >= 0, y >= 0, z' = 1 f(z', z'') -{ 1 }-> y :|: z' = 2, z'' = 1 + x + y, x >= 0, y >= 0 f(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 f(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 f(z', z'') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(x, z'') + f(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f} ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + 8*z' + 4*z'*z'' + 2*z'' ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> x :|: z'' = 1 + x + y, x >= 0, y >= 0, z' = 1 f(z', z'') -{ 1 }-> y :|: z' = 2, z'' = 1 + x + y, x >= 0, y >= 0 f(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 f(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 f(z', z'') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(x, z'') + f(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: {f} Previous analysis results are: f: runtime: ?, size: O(n^2) [2 + 8*z' + 4*z'*z'' + 2*z''] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: f(z', z'') -{ 1 }-> x :|: z'' = 1 + x + y, x >= 0, y >= 0, z' = 1 f(z', z'') -{ 1 }-> y :|: z' = 2, z'' = 1 + x + y, x >= 0, y >= 0 f(z', z'') -{ 1 }-> z' :|: z'' = 0, z' >= 0 f(z', z'') -{ 1 }-> z'' :|: z'' >= 0, z' = 0 f(z', z'') -{ 1 }-> 1 + (z' - 1) :|: z' - 1 >= 0, z'' >= 0 f(z', z'') -{ 1 }-> 1 + f(x, z'') + f(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0 Function symbols to be analyzed: Previous analysis results are: f: runtime: O(n^1) [1 + 2*z'], size: O(n^2) [2 + 8*z' + 4*z'*z'' + 2*z''] ---------------------------------------- (25) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (26) BOUNDS(1, n^1) ---------------------------------------- (27) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (28) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> y f(x, 0) -> x f(i(x), y) -> i(x) f(f(x, y), z) -> f(x, f(y, z)) f(g(x, y), z) -> g(f(x, z), f(y, z)) f(1, g(x, y)) -> x f(2, g(x, y)) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (29) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence f(g(x, y), z) ->^+ g(f(x, z), f(y, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / g(x, y)]. The result substitution is [ ]. ---------------------------------------- (30) Complex Obligation (BEST) ---------------------------------------- (31) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> y f(x, 0) -> x f(i(x), y) -> i(x) f(f(x, y), z) -> f(x, f(y, z)) f(g(x, y), z) -> g(f(x, z), f(y, z)) f(1, g(x, y)) -> x f(2, g(x, y)) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (32) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (33) BOUNDS(n^1, INF) ---------------------------------------- (34) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(0, y) -> y f(x, 0) -> x f(i(x), y) -> i(x) f(f(x, y), z) -> f(x, f(y, z)) f(g(x, y), z) -> g(f(x, z), f(y, z)) f(1, g(x, y)) -> x f(2, g(x, y)) -> y S is empty. Rewrite Strategy: FULL