/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 261 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 103 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 44 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 97 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^2, INF) (22) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0) cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0, v) -> true le(s(u), 0) -> false le(s(u), s(v)) -> le(u, v) double(0) -> 0 double(s(x)) -> s(s(double(x))) square(0) -> 0 square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). The TRS R consists of the following rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: log, le, double, square, plus They will be analysed ascendingly in the following order: le < log double < log square < log double < square plus < square ---------------------------------------- (6) Obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: le, log, double, square, plus They will be analysed ascendingly in the following order: le < log double < log square < log double < square plus < square ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: le(gen_s:0'3_0(0), gen_s:0'3_0(0)) ->_R^Omega(1) true Induction Step: le(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) ->_R^Omega(1) le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: le, log, double, square, plus They will be analysed ascendingly in the following order: le < log double < log square < log double < square plus < square ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: double, log, square, plus They will be analysed ascendingly in the following order: double < log square < log double < square plus < square ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_s:0'3_0(n264_0)) -> gen_s:0'3_0(*(2, n264_0)), rt in Omega(1 + n264_0) Induction Base: double(gen_s:0'3_0(0)) ->_R^Omega(1) 0' Induction Step: double(gen_s:0'3_0(+(n264_0, 1))) ->_R^Omega(1) s(s(double(gen_s:0'3_0(n264_0)))) ->_IH s(s(gen_s:0'3_0(*(2, c265_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) double(gen_s:0'3_0(n264_0)) -> gen_s:0'3_0(*(2, n264_0)), rt in Omega(1 + n264_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: plus, log, square They will be analysed ascendingly in the following order: square < log plus < square ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: plus(gen_s:0'3_0(a), gen_s:0'3_0(n520_0)) -> gen_s:0'3_0(+(n520_0, a)), rt in Omega(1 + n520_0) Induction Base: plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) ->_R^Omega(1) gen_s:0'3_0(a) Induction Step: plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n520_0, 1))) ->_R^Omega(1) s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n520_0))) ->_IH s(gen_s:0'3_0(+(a, c521_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) double(gen_s:0'3_0(n264_0)) -> gen_s:0'3_0(*(2, n264_0)), rt in Omega(1 + n264_0) plus(gen_s:0'3_0(a), gen_s:0'3_0(n520_0)) -> gen_s:0'3_0(+(n520_0, a)), rt in Omega(1 + n520_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: square, log They will be analysed ascendingly in the following order: square < log ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: square(gen_s:0'3_0(n1099_0)) -> gen_s:0'3_0(*(n1099_0, n1099_0)), rt in Omega(1 + n1099_0 + n1099_0^2) Induction Base: square(gen_s:0'3_0(0)) ->_R^Omega(1) 0' Induction Step: square(gen_s:0'3_0(+(n1099_0, 1))) ->_R^Omega(1) s(plus(square(gen_s:0'3_0(n1099_0)), double(gen_s:0'3_0(n1099_0)))) ->_IH s(plus(gen_s:0'3_0(*(c1100_0, c1100_0)), double(gen_s:0'3_0(n1099_0)))) ->_L^Omega(1 + n1099_0) s(plus(gen_s:0'3_0(*(n1099_0, n1099_0)), gen_s:0'3_0(*(2, n1099_0)))) ->_L^Omega(1 + 2*n1099_0) s(gen_s:0'3_0(+(*(2, n1099_0), *(n1099_0, n1099_0)))) We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^2 for the following obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) double(gen_s:0'3_0(n264_0)) -> gen_s:0'3_0(*(2, n264_0)), rt in Omega(1 + n264_0) plus(gen_s:0'3_0(a), gen_s:0'3_0(n520_0)) -> gen_s:0'3_0(+(n520_0, a)), rt in Omega(1 + n520_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: square, log They will be analysed ascendingly in the following order: square < log ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^2, INF) ---------------------------------------- (22) Obligation: TRS: Rules: log(x, s(s(y))) -> cond(le(x, s(s(y))), x, y) cond(true, x, y) -> s(0') cond(false, x, y) -> double(log(x, square(s(s(y))))) le(0', v) -> true le(s(u), 0') -> false le(s(u), s(v)) -> le(u, v) double(0') -> 0' double(s(x)) -> s(s(double(x))) square(0') -> 0' square(s(x)) -> s(plus(square(x), double(x))) plus(n, 0') -> n plus(n, s(m)) -> s(plus(n, m)) Types: log :: s:0' -> s:0' -> s:0' s :: s:0' -> s:0' cond :: true:false -> s:0' -> s:0' -> s:0' le :: s:0' -> s:0' -> true:false true :: true:false 0' :: s:0' false :: true:false double :: s:0' -> s:0' square :: s:0' -> s:0' plus :: s:0' -> s:0' -> s:0' hole_s:0'1_0 :: s:0' hole_true:false2_0 :: true:false gen_s:0'3_0 :: Nat -> s:0' Lemmas: le(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) double(gen_s:0'3_0(n264_0)) -> gen_s:0'3_0(*(2, n264_0)), rt in Omega(1 + n264_0) plus(gen_s:0'3_0(a), gen_s:0'3_0(n520_0)) -> gen_s:0'3_0(+(n520_0, a)), rt in Omega(1 + n520_0) square(gen_s:0'3_0(n1099_0)) -> gen_s:0'3_0(*(n1099_0, n1099_0)), rt in Omega(1 + n1099_0 + n1099_0^2) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: log