/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 1 ms] (10) CpxRNTS (11) CompleteCoflocoProof [FINISHED, 288 ms] (12) BOUNDS(1, n^2) (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTRS (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) typed CpxTrs (17) OrderProof [LOWER BOUND(ID), 0 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 272 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: f(true, [], y) f(true, x, []) The defined contexts are: f([], s(x1), s(s(x2))) [] just represents basic- or constructor-terms in the following defined contexts: f([], s(x1), s(s(x2))) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) [1] gt(0, v) -> false [1] gt(s(u), 0) -> true [1] gt(s(u), s(v)) -> gt(u, v) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) [1] gt(0, v) -> false [1] gt(s(u), 0) -> true [1] gt(s(u), s(v)) -> gt(u, v) [1] The TRS has the following type information: f :: true:false -> s:0 -> s:0 -> f true :: true:false gt :: s:0 -> s:0 -> true:false s :: s:0 -> s:0 0 :: s:0 false :: true:false Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: f(v0, v1, v2) -> null_f [0] And the following fresh constants: null_f ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) [1] gt(0, v) -> false [1] gt(s(u), 0) -> true [1] gt(s(u), s(v)) -> gt(u, v) [1] f(v0, v1, v2) -> null_f [0] The TRS has the following type information: f :: true:false -> s:0 -> s:0 -> null_f true :: true:false gt :: s:0 -> s:0 -> true:false s :: s:0 -> s:0 0 :: s:0 false :: true:false null_f :: null_f Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 null_f => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: f(z, z', z'') -{ 1 }-> f(gt(x, y), 1 + x, 1 + (1 + y)) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 gt(z, z') -{ 1 }-> gt(u, v) :|: v >= 0, z' = 1 + v, z = 1 + u, u >= 0 gt(z, z') -{ 1 }-> 1 :|: z = 1 + u, z' = 0, u >= 0 gt(z, z') -{ 1 }-> 0 :|: v >= 0, z' = v, z = 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (11) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V2),0,[f(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[gt(V1, V, Out)],[V1 >= 0,V >= 0]). eq(f(V1, V, V2, Out),1,[gt(V4, V3, Ret0),f(Ret0, 1 + V4, 1 + (1 + V3), Ret)],[Out = Ret,V = V4,V2 = V3,V1 = 1,V4 >= 0,V3 >= 0]). eq(gt(V1, V, Out),1,[],[Out = 0,V5 >= 0,V = V5,V1 = 0]). eq(gt(V1, V, Out),1,[],[Out = 1,V1 = 1 + V6,V = 0,V6 >= 0]). eq(gt(V1, V, Out),1,[gt(V7, V8, Ret1)],[Out = Ret1,V8 >= 0,V = 1 + V8,V1 = 1 + V7,V7 >= 0]). eq(f(V1, V, V2, Out),0,[],[Out = 0,V10 >= 0,V2 = V11,V9 >= 0,V1 = V10,V = V9,V11 >= 0]). input_output_vars(f(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(gt(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [gt/3] 1. recursive : [f/4] 2. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into gt/3 1. SCC is partially evaluated into f/4 2. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations gt/3 * CE 7 is refined into CE [8] * CE 6 is refined into CE [9] * CE 5 is refined into CE [10] ### Cost equations --> "Loop" of gt/3 * CEs [9] --> Loop 7 * CEs [10] --> Loop 8 * CEs [8] --> Loop 9 ### Ranking functions of CR gt(V1,V,Out) * RF of phase [9]: [V,V1] #### Partial ranking functions of CR gt(V1,V,Out) * Partial RF of phase [9]: - RF of loop [9:1]: V V1 ### Specialization of cost equations f/4 * CE 4 is refined into CE [11] * CE 3 is refined into CE [12,13,14,15] ### Cost equations --> "Loop" of f/4 * CEs [15] --> Loop 10 * CEs [14] --> Loop 11 * CEs [13] --> Loop 12 * CEs [12] --> Loop 13 * CEs [11] --> Loop 14 ### Ranking functions of CR f(V1,V,V2,Out) * RF of phase [10]: [V-V2] #### Partial ranking functions of CR f(V1,V,V2,Out) * Partial RF of phase [10]: - RF of loop [10:1]: V-V2 ### Specialization of cost equations start/3 * CE 1 is refined into CE [16,17,18,19] * CE 2 is refined into CE [20,21,22,23] ### Cost equations --> "Loop" of start/3 * CEs [23] --> Loop 15 * CEs [21] --> Loop 16 * CEs [19] --> Loop 17 * CEs [18,22] --> Loop 18 * CEs [16,17] --> Loop 19 * CEs [20] --> Loop 20 ### Ranking functions of CR start(V1,V,V2) #### Partial ranking functions of CR start(V1,V,V2) Computing Bounds ===================================== #### Cost of chains of gt(V1,V,Out): * Chain [[9],8]: 1*it(9)+1 Such that:it(9) =< V1 with precondition: [Out=0,V1>=1,V>=V1] * Chain [[9],7]: 1*it(9)+1 Such that:it(9) =< V with precondition: [Out=1,V>=1,V1>=V+1] * Chain [8]: 1 with precondition: [V1=0,Out=0,V>=0] * Chain [7]: 1 with precondition: [V=0,Out=1,V1>=1] #### Cost of chains of f(V1,V,V2,Out): * Chain [[10],14]: 2*it(10)+1*s(3)+0 Such that:it(10) =< V-V2 aux(1) =< 2*V-V2 s(3) =< it(10)*aux(1) with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] * Chain [[10],11,14]: 2*it(10)+1*s(3)+1*s(4)+2 Such that:it(10) =< V-V2 aux(1) =< 2*V-V2 s(4) =< 2*V-V2+1 s(3) =< it(10)*aux(1) with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] * Chain [14]: 0 with precondition: [Out=0,V1>=0,V>=0,V2>=0] * Chain [13,14]: 2 with precondition: [V1=1,V=0,Out=0,V2>=0] * Chain [12,[10],14]: 2*it(10)+1*s(3)+2 Such that:it(10) =< V aux(1) =< 2*V s(3) =< it(10)*aux(1) with precondition: [V1=1,V2=0,Out=0,V>=2] * Chain [12,[10],11,14]: 2*it(10)+1*s(3)+1*s(4)+4 Such that:it(10) =< V aux(1) =< 2*V s(4) =< 2*V+1 s(3) =< it(10)*aux(1) with precondition: [V1=1,V2=0,Out=0,V>=2] * Chain [12,14]: 2 with precondition: [V1=1,V2=0,Out=0,V>=1] * Chain [12,11,14]: 1*s(4)+4 Such that:s(4) =< 3 with precondition: [V1=1,V=1,V2=0,Out=0] * Chain [11,14]: 1*s(4)+2 Such that:s(4) =< V+1 with precondition: [V1=1,Out=0,V>=1,V2>=V] #### Cost of chains of start(V1,V,V2): * Chain [20]: 1 with precondition: [V1=0,V>=0] * Chain [19]: 1*s(20)+1*s(21)+4*s(24)+2*s(25)+4 Such that:s(20) =< 3 s(22) =< V s(23) =< 2*V s(21) =< 2*V+1 s(24) =< s(22) s(25) =< s(24)*s(23) with precondition: [V1>=0,V>=0,V2>=0] * Chain [18]: 1*s(26)+1*s(27)+2 Such that:s(27) =< V1 s(26) =< V+1 with precondition: [V1>=1,V>=V1] * Chain [17]: 1*s(28)+4*s(31)+2*s(32)+2 Such that:s(29) =< V-V2 s(30) =< 2*V-V2 s(28) =< 2*V-V2+1 s(31) =< s(29) s(32) =< s(31)*s(30) with precondition: [V1=1,V2>=1,V>=V2+1] * Chain [16]: 1 with precondition: [V=0,V1>=1] * Chain [15]: 1*s(33)+1 Such that:s(33) =< V with precondition: [V>=1,V1>=V+1] Closed-form bounds of start(V1,V,V2): ------------------------------------- * Chain [20] with precondition: [V1=0,V>=0] - Upper bound: 1 - Complexity: constant * Chain [19] with precondition: [V1>=0,V>=0,V2>=0] - Upper bound: 4*V+7+2*V*(2*V)+(2*V+1) - Complexity: n^2 * Chain [18] with precondition: [V1>=1,V>=V1] - Upper bound: V1+V+3 - Complexity: n * Chain [17] with precondition: [V1=1,V2>=1,V>=V2+1] - Upper bound: 6*V-5*V2+3+(2*V-2*V2)*(2*V-V2) - Complexity: n^2 * Chain [16] with precondition: [V=0,V1>=1] - Upper bound: 1 - Complexity: constant * Chain [15] with precondition: [V>=1,V1>=V+1] - Upper bound: V+1 - Complexity: n ### Maximum cost of start(V1,V,V2): max([max([V1+V+2,nat(2*V-V2+1)+1+nat(V-V2)*4+nat(V-V2)*2*nat(2*V-V2)]),3*V+6+2*V*(2*V)+(2*V+1)+V])+1 Asymptotic class: n^2 * Total analysis performed in 206 ms. ---------------------------------------- (12) BOUNDS(1, n^2) ---------------------------------------- (13) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (14) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) S is empty. Rewrite Strategy: FULL ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' ---------------------------------------- (17) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, gt They will be analysed ascendingly in the following order: gt < f ---------------------------------------- (18) Obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gt, f They will be analysed ascendingly in the following order: gt < f ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Induction Base: gt(gen_s:0'4_0(0), gen_s:0'4_0(0)) ->_R^Omega(1) false Induction Step: gt(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) ->_R^Omega(1) gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) ->_IH false We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: gt, f They will be analysed ascendingly in the following order: gt < f ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: TRS: Rules: f(true, x, y) -> f(gt(x, y), s(x), s(s(y))) gt(0', v) -> false gt(s(u), 0') -> true gt(s(u), s(v)) -> gt(u, v) Types: f :: true:false -> s:0' -> s:0' -> f true :: true:false gt :: s:0' -> s:0' -> true:false s :: s:0' -> s:0' 0' :: s:0' false :: true:false hole_f1_0 :: f hole_true:false2_0 :: true:false hole_s:0'3_0 :: s:0' gen_s:0'4_0 :: Nat -> s:0' Lemmas: gt(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) -> false, rt in Omega(1 + n6_0) Generator Equations: gen_s:0'4_0(0) <=> 0' gen_s:0'4_0(+(x, 1)) <=> s(gen_s:0'4_0(x)) The following defined symbols remain to be analysed: f