/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection (9) DecreasingLoopProof [FINISHED, 0 ms] (10) BOUNDS(EXP, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: sort(l) -> st(0, l) st(n, l) -> cond1(member(n, l), n, l) cond1(true, n, l) -> cons(n, st(s(n), l)) cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) cond2(true, n, l) -> nil cond2(false, n, l) -> st(s(n), l) member(n, nil) -> false member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) or(x, true) -> true or(x, false) -> x equal(0, 0) -> true equal(s(x), 0) -> false equal(0, s(y)) -> false equal(s(x), s(y)) -> equal(x, y) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) max(nil) -> 0 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) if(true, u, v) -> u if(false, u, v) -> v S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: sort(l) -> st(0, l) st(n, l) -> cond1(member(n, l), n, l) cond1(true, n, l) -> cons(n, st(s(n), l)) cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) cond2(true, n, l) -> nil cond2(false, n, l) -> st(s(n), l) member(n, nil) -> false member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) or(x, true) -> true or(x, false) -> x equal(0, 0) -> true equal(s(x), 0) -> false equal(0, s(y)) -> false equal(s(x), s(y)) -> equal(x, y) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) max(nil) -> 0 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) if(true, u, v) -> u if(false, u, v) -> v S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence gt(s(u), s(v)) ->^+ gt(u, v) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [u / s(u), v / s(v)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: sort(l) -> st(0, l) st(n, l) -> cond1(member(n, l), n, l) cond1(true, n, l) -> cons(n, st(s(n), l)) cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) cond2(true, n, l) -> nil cond2(false, n, l) -> st(s(n), l) member(n, nil) -> false member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) or(x, true) -> true or(x, false) -> x equal(0, 0) -> true equal(s(x), 0) -> false equal(0, s(y)) -> false equal(s(x), s(y)) -> equal(x, y) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) max(nil) -> 0 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) if(true, u, v) -> u if(false, u, v) -> v S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). The TRS R consists of the following rules: sort(l) -> st(0, l) st(n, l) -> cond1(member(n, l), n, l) cond1(true, n, l) -> cons(n, st(s(n), l)) cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) cond2(true, n, l) -> nil cond2(false, n, l) -> st(s(n), l) member(n, nil) -> false member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) or(x, true) -> true or(x, false) -> x equal(0, 0) -> true equal(s(x), 0) -> false equal(0, s(y)) -> false equal(s(x), s(y)) -> equal(x, y) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) max(nil) -> 0 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) if(true, u, v) -> u if(false, u, v) -> v S is empty. Rewrite Strategy: FULL ---------------------------------------- (9) DecreasingLoopProof (FINISHED) The following loop(s) give(s) rise to the lower bound EXP: The rewrite sequence max(cons(u, l)) ->^+ if(gt(u, max(l)), u, max(l)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1]. The pumping substitution is [l / cons(u, l)]. The result substitution is [ ]. The rewrite sequence max(cons(u, l)) ->^+ if(gt(u, max(l)), u, max(l)) gives rise to a decreasing loop by considering the right hand sides subterm at position [2]. The pumping substitution is [l / cons(u, l)]. The result substitution is [ ]. ---------------------------------------- (10) BOUNDS(EXP, INF)