/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 1 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) CompleteCoflocoProof [FINISHED, 218 ms] (12) BOUNDS(1, n^2) (13) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTRS (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) typed CpxTrs (17) OrderProof [LOWER BOUND(ID), 0 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 276 ms] (20) BEST (21) proven lower bound (22) LowerBoundPropagationProof [FINISHED, 0 ms] (23) BOUNDS(n^1, INF) (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(x, y) -> cond(ge(x, s(y)), x, y) cond(false, x, y) -> 0 cond(true, x, y) -> s(minus(x, s(y))) ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. The duplicating contexts are: minus([], y) minus(x, []) The defined contexts are: cond([], x1, x2) [] just represents basic- or constructor-terms in the following defined contexts: cond([], x1, x2) As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: minus(x, y) -> cond(ge(x, s(y)), x, y) cond(false, x, y) -> 0 cond(true, x, y) -> s(minus(x, s(y))) ge(u, 0) -> true ge(0, s(v)) -> false ge(s(u), s(v)) -> ge(u, v) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: minus(x, y) -> cond(ge(x, s(y)), x, y) [1] cond(false, x, y) -> 0 [1] cond(true, x, y) -> s(minus(x, s(y))) [1] ge(u, 0) -> true [1] ge(0, s(v)) -> false [1] ge(s(u), s(v)) -> ge(u, v) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, y) -> cond(ge(x, s(y)), x, y) [1] cond(false, x, y) -> 0 [1] cond(true, x, y) -> s(minus(x, s(y))) [1] ge(u, 0) -> true [1] ge(0, s(v)) -> false [1] ge(s(u), s(v)) -> ge(u, v) [1] The TRS has the following type information: minus :: s:0 -> s:0 -> s:0 cond :: false:true -> s:0 -> s:0 -> s:0 ge :: s:0 -> s:0 -> false:true s :: s:0 -> s:0 false :: false:true 0 :: s:0 true :: false:true Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: none ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: minus(x, y) -> cond(ge(x, s(y)), x, y) [1] cond(false, x, y) -> 0 [1] cond(true, x, y) -> s(minus(x, s(y))) [1] ge(u, 0) -> true [1] ge(0, s(v)) -> false [1] ge(s(u), s(v)) -> ge(u, v) [1] The TRS has the following type information: minus :: s:0 -> s:0 -> s:0 cond :: false:true -> s:0 -> s:0 -> s:0 ge :: s:0 -> s:0 -> false:true s :: s:0 -> s:0 false :: false:true 0 :: s:0 true :: false:true Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: false => 0 0 => 0 true => 1 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 1 }-> 0 :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 cond(z, z', z'') -{ 1 }-> 1 + minus(x, 1 + y) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 ge(z, z') -{ 1 }-> ge(u, v) :|: v >= 0, z' = 1 + v, z = 1 + u, u >= 0 ge(z, z') -{ 1 }-> 1 :|: z = u, z' = 0, u >= 0 ge(z, z') -{ 1 }-> 0 :|: v >= 0, z' = 1 + v, z = 0 minus(z, z') -{ 1 }-> cond(ge(x, 1 + y), x, y) :|: x >= 0, y >= 0, z = x, z' = y Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (11) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V5),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V5),0,[cond(V1, V, V5, Out)],[V1 >= 0,V >= 0,V5 >= 0]). eq(start(V1, V, V5),0,[ge(V1, V, Out)],[V1 >= 0,V >= 0]). eq(minus(V1, V, Out),1,[ge(V3, 1 + V2, Ret0),cond(Ret0, V3, V2, Ret)],[Out = Ret,V3 >= 0,V2 >= 0,V1 = V3,V = V2]). eq(cond(V1, V, V5, Out),1,[],[Out = 0,V = V4,V5 = V6,V4 >= 0,V6 >= 0,V1 = 0]). eq(cond(V1, V, V5, Out),1,[minus(V8, 1 + V7, Ret1)],[Out = 1 + Ret1,V = V8,V5 = V7,V1 = 1,V8 >= 0,V7 >= 0]). eq(ge(V1, V, Out),1,[],[Out = 1,V1 = V9,V = 0,V9 >= 0]). eq(ge(V1, V, Out),1,[],[Out = 0,V10 >= 0,V = 1 + V10,V1 = 0]). eq(ge(V1, V, Out),1,[ge(V12, V11, Ret2)],[Out = Ret2,V11 >= 0,V = 1 + V11,V1 = 1 + V12,V12 >= 0]). input_output_vars(minus(V1,V,Out),[V1,V],[Out]). input_output_vars(cond(V1,V,V5,Out),[V1,V,V5],[Out]). input_output_vars(ge(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [ge/3] 1. recursive : [cond/4,minus/3] 2. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into ge/3 1. SCC is partially evaluated into minus/3 2. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations ge/3 * CE 9 is refined into CE [10] * CE 7 is refined into CE [11] * CE 8 is refined into CE [12] ### Cost equations --> "Loop" of ge/3 * CEs [11] --> Loop 8 * CEs [12] --> Loop 9 * CEs [10] --> Loop 10 ### Ranking functions of CR ge(V1,V,Out) * RF of phase [10]: [V,V1] #### Partial ranking functions of CR ge(V1,V,Out) * Partial RF of phase [10]: - RF of loop [10:1]: V V1 ### Specialization of cost equations minus/3 * CE 6 is refined into CE [13,14] * CE 5 is refined into CE [15] ### Cost equations --> "Loop" of minus/3 * CEs [15] --> Loop 11 * CEs [14] --> Loop 12 * CEs [13] --> Loop 13 ### Ranking functions of CR minus(V1,V,Out) * RF of phase [11]: [V1-V] #### Partial ranking functions of CR minus(V1,V,Out) * Partial RF of phase [11]: - RF of loop [11:1]: V1-V ### Specialization of cost equations start/3 * CE 1 is refined into CE [16,17,18] * CE 2 is refined into CE [19] * CE 3 is refined into CE [20,21,22] * CE 4 is refined into CE [23,24,25,26] ### Cost equations --> "Loop" of start/3 * CEs [26] --> Loop 14 * CEs [22] --> Loop 15 * CEs [18] --> Loop 16 * CEs [17,21,25] --> Loop 17 * CEs [16,24] --> Loop 18 * CEs [19,20,23] --> Loop 19 ### Ranking functions of CR start(V1,V,V5) #### Partial ranking functions of CR start(V1,V,V5) Computing Bounds ===================================== #### Cost of chains of ge(V1,V,Out): * Chain [[10],9]: 1*it(10)+1 Such that:it(10) =< V1 with precondition: [Out=0,V1>=1,V>=V1+1] * Chain [[10],8]: 1*it(10)+1 Such that:it(10) =< V with precondition: [Out=1,V>=1,V1>=V] * Chain [9]: 1 with precondition: [V1=0,Out=0,V>=1] * Chain [8]: 1 with precondition: [V=0,Out=1,V1>=0] #### Cost of chains of minus(V1,V,Out): * Chain [[11],12]: 3*it(11)+1*s(1)+1*s(4)+3 Such that:it(11) =< Out aux(2) =< V+Out s(1) =< aux(2) s(4) =< it(11)*aux(2) with precondition: [V1=Out+V,V>=0,V1>=V+1] * Chain [13]: 3 with precondition: [V1=0,Out=0,V>=0] * Chain [12]: 1*s(1)+3 Such that:s(1) =< V1 with precondition: [Out=0,V1>=1,V>=V1] #### Cost of chains of start(V1,V,V5): * Chain [19]: 3 with precondition: [V1=0,V>=0] * Chain [18]: 4 with precondition: [V=0,V1>=0] * Chain [17]: 1*s(5)+2*s(6)+4 Such that:s(5) =< V aux(3) =< V1 s(6) =< aux(3) with precondition: [V1>=1,V>=V1] * Chain [16]: 3*s(8)+1*s(10)+1*s(11)+4 Such that:s(9) =< V s(8) =< V-V5 s(10) =< s(9) s(11) =< s(8)*s(9) with precondition: [V1=1,V5>=0,V>=V5+2] * Chain [15]: 3*s(12)+1*s(14)+1*s(15)+3 Such that:s(13) =< V1 s(12) =< V1-V s(14) =< s(13) s(15) =< s(12)*s(13) with precondition: [V>=0,V1>=V+1] * Chain [14]: 1*s(16)+1 Such that:s(16) =< V with precondition: [V>=1,V1>=V] Closed-form bounds of start(V1,V,V5): ------------------------------------- * Chain [19] with precondition: [V1=0,V>=0] - Upper bound: 3 - Complexity: constant * Chain [18] with precondition: [V=0,V1>=0] - Upper bound: 4 - Complexity: constant * Chain [17] with precondition: [V1>=1,V>=V1] - Upper bound: 2*V1+V+4 - Complexity: n * Chain [16] with precondition: [V1=1,V5>=0,V>=V5+2] - Upper bound: 3*V-3*V5+(V+4+(V-V5)*V) - Complexity: n^2 * Chain [15] with precondition: [V>=0,V1>=V+1] - Upper bound: 3*V1-3*V+(V1+3+(V1-V)*V1) - Complexity: n^2 * Chain [14] with precondition: [V>=1,V1>=V] - Upper bound: V+1 - Complexity: n ### Maximum cost of start(V1,V,V5): max([max([1,nat(V1-V)*V1+V1+nat(V1-V)*3])+2,max([2*V1+3,nat(V-V5)*V+3+nat(V-V5)*3])+V])+1 Asymptotic class: n^2 * Total analysis performed in 145 ms. ---------------------------------------- (12) BOUNDS(1, n^2) ---------------------------------------- (13) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (14) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(x, y) -> cond(ge(x, s(y)), x, y) cond(false, x, y) -> 0' cond(true, x, y) -> s(minus(x, s(y))) ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) S is empty. Rewrite Strategy: FULL ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: TRS: Rules: minus(x, y) -> cond(ge(x, s(y)), x, y) cond(false, x, y) -> 0' cond(true, x, y) -> s(minus(x, s(y))) ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) Types: minus :: s:0' -> s:0' -> s:0' cond :: false:true -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> false:true s :: s:0' -> s:0' false :: false:true 0' :: s:0' true :: false:true hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' ---------------------------------------- (17) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, ge They will be analysed ascendingly in the following order: ge < minus ---------------------------------------- (18) Obligation: TRS: Rules: minus(x, y) -> cond(ge(x, s(y)), x, y) cond(false, x, y) -> 0' cond(true, x, y) -> s(minus(x, s(y))) ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) Types: minus :: s:0' -> s:0' -> s:0' cond :: false:true -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> false:true s :: s:0' -> s:0' false :: false:true 0' :: s:0' true :: false:true hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: ge, minus They will be analysed ascendingly in the following order: ge < minus ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Induction Base: ge(gen_s:0'3_0(0), gen_s:0'3_0(0)) ->_R^Omega(1) true Induction Step: ge(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) ->_R^Omega(1) ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Complex Obligation (BEST) ---------------------------------------- (21) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(x, y) -> cond(ge(x, s(y)), x, y) cond(false, x, y) -> 0' cond(true, x, y) -> s(minus(x, s(y))) ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) Types: minus :: s:0' -> s:0' -> s:0' cond :: false:true -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> false:true s :: s:0' -> s:0' false :: false:true 0' :: s:0' true :: false:true hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: ge, minus They will be analysed ascendingly in the following order: ge < minus ---------------------------------------- (22) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (23) BOUNDS(n^1, INF) ---------------------------------------- (24) Obligation: TRS: Rules: minus(x, y) -> cond(ge(x, s(y)), x, y) cond(false, x, y) -> 0' cond(true, x, y) -> s(minus(x, s(y))) ge(u, 0') -> true ge(0', s(v)) -> false ge(s(u), s(v)) -> ge(u, v) Types: minus :: s:0' -> s:0' -> s:0' cond :: false:true -> s:0' -> s:0' -> s:0' ge :: s:0' -> s:0' -> false:true s :: s:0' -> s:0' false :: false:true 0' :: s:0' true :: false:true hole_s:0'1_0 :: s:0' hole_false:true2_0 :: false:true gen_s:0'3_0 :: Nat -> s:0' Lemmas: ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) -> true, rt in Omega(1 + n5_0) Generator Equations: gen_s:0'3_0(0) <=> 0' gen_s:0'3_0(+(x, 1)) <=> s(gen_s:0'3_0(x)) The following defined symbols remain to be analysed: minus