/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (2) TRS for Loop Detection (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (4) BEST (5) proven lower bound (6) LowerBoundPropagationProof [FINISHED, 0 ms] (7) BOUNDS(n^1, INF) (8) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) double(0) -> 0 double(s(x)) -> s(s(double(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (2) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) double(0) -> 0 double(s(x)) -> s(s(double(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (3) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence gt(s(u), s(v)) ->^+ gt(u, v) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [u / s(u), v / s(v)]. The result substitution is [ ]. ---------------------------------------- (4) Complex Obligation (BEST) ---------------------------------------- (5) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) double(0) -> 0 double(s(x)) -> s(s(double(x))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (6) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (7) BOUNDS(n^1, INF) ---------------------------------------- (8) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(true, x, y) -> f(and(gt(x, y), gt(y, s(s(0)))), plus(s(0), x), double(y)) gt(0, v) -> false gt(s(u), 0) -> true gt(s(u), s(v)) -> gt(u, v) and(x, true) -> x and(x, false) -> false plus(n, 0) -> n plus(n, s(m)) -> s(plus(n, m)) double(0) -> 0 double(s(x)) -> s(s(double(x))) S is empty. Rewrite Strategy: FULL