/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ) Problem 1: Valid CTRS Processor: -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) -> The system is a deterministic 3-CTRS. Problem 1: Dependency Pairs Processor: Conditional Termination Problem 1: -> Pairs: ADD(s(x:S),y:S) -> ADD(x:S,y:S) GCD(add(x:S,y:S),y:S) -> GCD(x:S,y:S) GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse GCD(y:S,add(x:S,y:S)) -> GCD(x:S,y:S) -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) Conditional Termination Problem 2: -> Pairs: Empty -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) The problem is decomposed in 2 subproblems. Problem 1.1: SCC Processor: -> Pairs: ADD(s(x:S),y:S) -> ADD(x:S,y:S) GCD(add(x:S,y:S),y:S) -> GCD(x:S,y:S) GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse GCD(y:S,add(x:S,y:S)) -> GCD(x:S,y:S) -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(add(x:S,y:S),y:S) -> GCD(x:S,y:S) GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse GCD(y:S,add(x:S,y:S)) -> GCD(x:S,y:S) -> QPairs: Empty ->->-> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->->Cycle: ->->-> Pairs: ADD(s(x:S),y:S) -> ADD(x:S,y:S) -> QPairs: Empty ->->-> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) The problem is decomposed in 2 subproblems. Problem 1.1.1: Reduction Triple Processor: -> Pairs: GCD(add(x:S,y:S),y:S) -> GCD(x:S,y:S) GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse GCD(y:S,add(x:S,y:S)) -> GCD(x:S,y:S) -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [add](X1,X2) = 2.X1 + 2 [gcd](X1,X2) = 0 [0] = 0 [fSNonEmpty] = 0 [false] = 0 [leq](X1,X2) = 0 [s](X) = 0 [ADD](X1,X2) = 0 [GCD](X1,X2) = 2.X1 + 2.X2 Problem 1.1.1: SCC Processor: -> Pairs: GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse GCD(y:S,add(x:S,y:S)) -> GCD(x:S,y:S) -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse GCD(y:S,add(x:S,y:S)) -> GCD(x:S,y:S) -> QPairs: Empty ->->-> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) Problem 1.1.1: Reduction Triple Processor: -> Pairs: GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse GCD(y:S,add(x:S,y:S)) -> GCD(x:S,y:S) -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [add](X1,X2) = X1 + 1 [gcd](X1,X2) = 0 [0] = 0 [fSNonEmpty] = 0 [false] = 0 [leq](X1,X2) = 0 [s](X) = 0 [ADD](X1,X2) = 0 [GCD](X1,X2) = 2.X1 + 2.X2 Problem 1.1.1: SCC Processor: -> Pairs: GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse -> QPairs: Empty ->->-> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) Problem 1.1.1: Reduction Pair Processor: -> Pairs: GCD(x:S,y:S) -> GCD(y:S,x:S) | leq(y:S,x:S) ->* ffalse -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) -> Needed rules: Empty -> Usable rules: Empty ->Mace4 Output: ============================== Mace4 ================================= Mace4 (64) version 2009-11A, November 2009. Process 50009 was started by sandbox2 on n138.star.cs.uiowa.edu, Tue Jun 30 22:01:19 2020 The command was "./mace4 -c -f /tmp/mace45965166491189641421.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file /tmp/mace45965166491189641421.in assign(max_seconds,20). formulas(assumptions). arrowStar_s0(x,x) # label(reflexivity). arrow_s0(x,y) & arrowStar_s0(y,z) -> arrowStar_s0(x,z) # label(compatibility). gtrsim_s0(x,y) & sqsupset_s0(y,z) -> sqsupset_s0(x,z) # label(compatibility). succeq_s0(x,y) & sqsupset_s0(y,z) -> sqsupset_s0(x,z) # label(compatibility). gtrsim_s0(x,y) & succeq_s0(y,z) -> gtrsim_s0(x,z) # label(compatibility). arrow_s0(x1,y) -> arrow_s0(f2(x1,x2),f2(y,x2)) # label(congruence). arrow_s0(x2,y) -> arrow_s0(f2(x1,x2),f2(x1,y)) # label(congruence). arrow_s0(x1,y) -> arrow_s0(f3(x1,x2),f3(y,x2)) # label(congruence). arrow_s0(x2,y) -> arrow_s0(f3(x1,x2),f3(x1,y)) # label(congruence). arrow_s0(x1,y) -> arrow_s0(f7(x1,x2),f7(y,x2)) # label(congruence). arrow_s0(x2,y) -> arrow_s0(f7(x1,x2),f7(x1,y)) # label(congruence). arrow_s0(x1,y) -> arrow_s0(f8(x1),f8(y)) # label(congruence). arrow_s0(x1,y) -> arrow_s0(f13(x1,x2),f13(y,x2)) # label(congruence). arrow_s0(x2,y) -> arrow_s0(f13(x1,x2),f13(x1,y)) # label(congruence). arrowN_s0(x1,y) -> arrowN_s0(f2(x1,x2),f2(y,x2)) # label(congruence). arrowN_s0(x2,y) -> arrowN_s0(f2(x1,x2),f2(x1,y)) # label(congruence). arrowN_s0(x1,y) -> arrowN_s0(f3(x1,x2),f3(y,x2)) # label(congruence). arrowN_s0(x2,y) -> arrowN_s0(f3(x1,x2),f3(x1,y)) # label(congruence). arrowN_s0(x1,y) -> arrowN_s0(f7(x1,x2),f7(y,x2)) # label(congruence). arrowN_s0(x2,y) -> arrowN_s0(f7(x1,x2),f7(x1,y)) # label(congruence). arrowN_s0(x1,y) -> arrowN_s0(f8(x1),f8(y)) # label(congruence). arrowN_s0(x1,y) -> arrowN_s0(f11(x1,x2),f11(y,x2)) # label(congruence). arrowN_s0(x2,y) -> arrowN_s0(f11(x1,x2),f11(x1,y)) # label(congruence). arrowN_s0(x1,y) -> arrowN_s0(f12(x1,x2),f12(y,x2)) # label(congruence). arrowN_s0(x2,y) -> arrowN_s0(f12(x1,x2),f12(x1,y)) # label(congruence). arrowN_s0(x1,y) -> arrowN_s0(f13(x1,x2),f13(y,x2)) # label(congruence). arrowN_s0(x2,y) -> arrowN_s0(f13(x1,x2),f13(x1,y)) # label(congruence). arrow_s0(f13(x3,x4),x3) # label(replacement). arrow_s0(f13(x3,x4),x4) # label(replacement). arrowN_s0(f13(x3,x4),x3) # label(replacement). arrowN_s0(f13(x3,x4),x4) # label(replacement). arrowN_s0(x,y) -> gtrsim_s0(x,y) # label(inclusion). arrowStar_s0(f7(x2,x1),f6) -> sqsupset_s0(f12(x1,x2),f12(x2,x1)) # label(replacement). sqsupset_s0(x,y) -> sqsupsetStar_s0(x,y) # label(inclusion). sqsupset_s0(x,y) & sqsupsetStar_s0(y,z) -> sqsupsetStar_s0(x,z) # label(compatibility). end_of_list. formulas(goals). (exists x sqsupsetStar_s0(x,x)) # label(wellfoundedness). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 arrow_s0(x,y) & arrowStar_s0(y,z) -> arrowStar_s0(x,z) # label(compatibility) # label(non_clause). [assumption]. 2 gtrsim_s0(x,y) & sqsupset_s0(y,z) -> sqsupset_s0(x,z) # label(compatibility) # label(non_clause). [assumption]. 3 succeq_s0(x,y) & sqsupset_s0(y,z) -> sqsupset_s0(x,z) # label(compatibility) # label(non_clause). [assumption]. 4 gtrsim_s0(x,y) & succeq_s0(y,z) -> gtrsim_s0(x,z) # label(compatibility) # label(non_clause). [assumption]. 5 arrow_s0(x1,y) -> arrow_s0(f2(x1,x2),f2(y,x2)) # label(congruence) # label(non_clause). [assumption]. 6 arrow_s0(x2,y) -> arrow_s0(f2(x1,x2),f2(x1,y)) # label(congruence) # label(non_clause). [assumption]. 7 arrow_s0(x1,y) -> arrow_s0(f3(x1,x2),f3(y,x2)) # label(congruence) # label(non_clause). [assumption]. 8 arrow_s0(x2,y) -> arrow_s0(f3(x1,x2),f3(x1,y)) # label(congruence) # label(non_clause). [assumption]. 9 arrow_s0(x1,y) -> arrow_s0(f7(x1,x2),f7(y,x2)) # label(congruence) # label(non_clause). [assumption]. 10 arrow_s0(x2,y) -> arrow_s0(f7(x1,x2),f7(x1,y)) # label(congruence) # label(non_clause). [assumption]. 11 arrow_s0(x1,y) -> arrow_s0(f8(x1),f8(y)) # label(congruence) # label(non_clause). [assumption]. 12 arrow_s0(x1,y) -> arrow_s0(f13(x1,x2),f13(y,x2)) # label(congruence) # label(non_clause). [assumption]. 13 arrow_s0(x2,y) -> arrow_s0(f13(x1,x2),f13(x1,y)) # label(congruence) # label(non_clause). [assumption]. 14 arrowN_s0(x1,y) -> arrowN_s0(f2(x1,x2),f2(y,x2)) # label(congruence) # label(non_clause). [assumption]. 15 arrowN_s0(x2,y) -> arrowN_s0(f2(x1,x2),f2(x1,y)) # label(congruence) # label(non_clause). [assumption]. 16 arrowN_s0(x1,y) -> arrowN_s0(f3(x1,x2),f3(y,x2)) # label(congruence) # label(non_clause). [assumption]. 17 arrowN_s0(x2,y) -> arrowN_s0(f3(x1,x2),f3(x1,y)) # label(congruence) # label(non_clause). [assumption]. 18 arrowN_s0(x1,y) -> arrowN_s0(f7(x1,x2),f7(y,x2)) # label(congruence) # label(non_clause). [assumption]. 19 arrowN_s0(x2,y) -> arrowN_s0(f7(x1,x2),f7(x1,y)) # label(congruence) # label(non_clause). [assumption]. 20 arrowN_s0(x1,y) -> arrowN_s0(f8(x1),f8(y)) # label(congruence) # label(non_clause). [assumption]. 21 arrowN_s0(x1,y) -> arrowN_s0(f11(x1,x2),f11(y,x2)) # label(congruence) # label(non_clause). [assumption]. 22 arrowN_s0(x2,y) -> arrowN_s0(f11(x1,x2),f11(x1,y)) # label(congruence) # label(non_clause). [assumption]. 23 arrowN_s0(x1,y) -> arrowN_s0(f12(x1,x2),f12(y,x2)) # label(congruence) # label(non_clause). [assumption]. 24 arrowN_s0(x2,y) -> arrowN_s0(f12(x1,x2),f12(x1,y)) # label(congruence) # label(non_clause). [assumption]. 25 arrowN_s0(x1,y) -> arrowN_s0(f13(x1,x2),f13(y,x2)) # label(congruence) # label(non_clause). [assumption]. 26 arrowN_s0(x2,y) -> arrowN_s0(f13(x1,x2),f13(x1,y)) # label(congruence) # label(non_clause). [assumption]. 27 arrowN_s0(x,y) -> gtrsim_s0(x,y) # label(inclusion) # label(non_clause). [assumption]. 28 arrowStar_s0(f7(x2,x1),f6) -> sqsupset_s0(f12(x1,x2),f12(x2,x1)) # label(replacement) # label(non_clause). [assumption]. 29 sqsupset_s0(x,y) -> sqsupsetStar_s0(x,y) # label(inclusion) # label(non_clause). [assumption]. 30 sqsupset_s0(x,y) & sqsupsetStar_s0(y,z) -> sqsupsetStar_s0(x,z) # label(compatibility) # label(non_clause). [assumption]. 31 (exists x sqsupsetStar_s0(x,x)) # label(wellfoundedness) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== CLAUSES FOR SEARCH ==================== formulas(mace4_clauses). arrowStar_s0(x,x) # label(reflexivity). -arrow_s0(x,y) | -arrowStar_s0(y,z) | arrowStar_s0(x,z) # label(compatibility). -gtrsim_s0(x,y) | -sqsupset_s0(y,z) | sqsupset_s0(x,z) # label(compatibility). -succeq_s0(x,y) | -sqsupset_s0(y,z) | sqsupset_s0(x,z) # label(compatibility). -gtrsim_s0(x,y) | -succeq_s0(y,z) | gtrsim_s0(x,z) # label(compatibility). -arrow_s0(x,y) | arrow_s0(f2(x,z),f2(y,z)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f2(z,x),f2(z,y)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f3(x,z),f3(y,z)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f3(z,x),f3(z,y)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f7(x,z),f7(y,z)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f7(z,x),f7(z,y)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f8(x),f8(y)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f13(x,z),f13(y,z)) # label(congruence). -arrow_s0(x,y) | arrow_s0(f13(z,x),f13(z,y)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f2(x,z),f2(y,z)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f2(z,x),f2(z,y)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f3(x,z),f3(y,z)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f3(z,x),f3(z,y)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f7(x,z),f7(y,z)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f7(z,x),f7(z,y)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f8(x),f8(y)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f11(x,z),f11(y,z)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f11(z,x),f11(z,y)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f12(x,z),f12(y,z)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f12(z,x),f12(z,y)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f13(x,z),f13(y,z)) # label(congruence). -arrowN_s0(x,y) | arrowN_s0(f13(z,x),f13(z,y)) # label(congruence). arrow_s0(f13(x,y),x) # label(replacement). arrow_s0(f13(x,y),y) # label(replacement). arrowN_s0(f13(x,y),x) # label(replacement). arrowN_s0(f13(x,y),y) # label(replacement). -arrowN_s0(x,y) | gtrsim_s0(x,y) # label(inclusion). -arrowStar_s0(f7(x,y),f6) | sqsupset_s0(f12(y,x),f12(x,y)) # label(replacement). -sqsupset_s0(x,y) | sqsupsetStar_s0(x,y) # label(inclusion). -sqsupset_s0(x,y) | -sqsupsetStar_s0(y,z) | sqsupsetStar_s0(x,z) # label(compatibility). -sqsupsetStar_s0(x,x) # label(wellfoundedness). end_of_list. ============================== end of clauses for search ============= % There are no natural numbers in the input. ============================== DOMAIN SIZE 2 ========================= ============================== MODEL ================================= interpretation( 2, [number=1, seconds=0], [ function(f6, [ 0 ]), function(f8(_), [ 0, 0 ]), function(f11(_,_), [ 0, 0, 0, 0 ]), function(f12(_,_), [ 0, 0, 0, 0 ]), function(f13(_,_), [ 0, 0, 0, 0 ]), function(f2(_,_), [ 0, 0, 0, 0 ]), function(f3(_,_), [ 0, 0, 0, 0 ]), function(f7(_,_), [ 1, 1, 1, 1 ]), relation(arrowN_s0(_,_), [ 1, 1, 0, 1 ]), relation(arrowStar_s0(_,_), [ 1, 1, 0, 1 ]), relation(arrow_s0(_,_), [ 1, 1, 0, 1 ]), relation(gtrsim_s0(_,_), [ 1, 1, 0, 1 ]), relation(sqsupsetStar_s0(_,_), [ 0, 0, 0, 0 ]), relation(sqsupset_s0(_,_), [ 0, 0, 0, 0 ]), relation(succeq_s0(_,_), [ 0, 0, 0, 0 ]) ]). ============================== end of model ========================== ============================== STATISTICS ============================ For domain size 2. Current CPU time: 0.00 seconds (total CPU time: 0.01 seconds). Ground clauses: seen=240, kept=236. Selections=27, assignments=27, propagations=28, current_models=1. Rewrite_terms=368, rewrite_bools=376, indexes=29. Rules_from_neg_clauses=7, cross_offs=7. ============================== end of statistics ===================== User_CPU=0.01, System_CPU=0.00, Wall_clock=0. Exiting with 1 model. Process 50009 exit (max_models) Tue Jun 30 22:01:19 2020 The process finished Tue Jun 30 22:01:19 2020 Mace4 cooked interpretation: % number = 1 % seconds = 0 % Interpretation of size 2 f6 = 0. f8(0) = 0. f8(1) = 0. f11(0,0) = 0. f11(0,1) = 0. f11(1,0) = 0. f11(1,1) = 0. f12(0,0) = 0. f12(0,1) = 0. f12(1,0) = 0. f12(1,1) = 0. f13(0,0) = 0. f13(0,1) = 0. f13(1,0) = 0. f13(1,1) = 0. f2(0,0) = 0. f2(0,1) = 0. f2(1,0) = 0. f2(1,1) = 0. f3(0,0) = 0. f3(0,1) = 0. f3(1,0) = 0. f3(1,1) = 0. f7(0,0) = 1. f7(0,1) = 1. f7(1,0) = 1. f7(1,1) = 1. arrowN_s0(0,0). arrowN_s0(0,1). - arrowN_s0(1,0). arrowN_s0(1,1). arrowStar_s0(0,0). arrowStar_s0(0,1). - arrowStar_s0(1,0). arrowStar_s0(1,1). arrow_s0(0,0). arrow_s0(0,1). - arrow_s0(1,0). arrow_s0(1,1). gtrsim_s0(0,0). gtrsim_s0(0,1). - gtrsim_s0(1,0). gtrsim_s0(1,1). - sqsupsetStar_s0(0,0). - sqsupsetStar_s0(0,1). - sqsupsetStar_s0(1,0). - sqsupsetStar_s0(1,1). - sqsupset_s0(0,0). - sqsupset_s0(0,1). - sqsupset_s0(1,0). - sqsupset_s0(1,1). - succeq_s0(0,0). - succeq_s0(0,1). - succeq_s0(1,0). - succeq_s0(1,1). Problem 1.1.1: SCC Processor: -> Pairs: Empty -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.1.2: Conditional Subterm Processor: -> Pairs: ADD(s(x:S),y:S) -> ADD(x:S,y:S) -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->Projection: pi(ADD) = 1 Problem 1.1.2: SCC Processor: -> Pairs: Empty -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: SCC Processor: -> Pairs: Empty -> QPairs: Empty -> Rules: add(0,y:S) -> y:S add(s(x:S),y:S) -> s(add(x:S,y:S)) gcd(add(x:S,y:S),y:S) -> gcd(x:S,y:S) gcd(0,x:S) -> x:S gcd(x:S,0) -> x:S gcd(x:S,y:S) -> gcd(y:S,x:S) | leq(y:S,x:S) ->* ffalse gcd(y:S,add(x:S,y:S)) -> gcd(x:S,y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite.