/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ) Problem 1: Valid CTRS Processor: -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue -> The system is a deterministic 3-CTRS. Problem 1: Dependency Pairs Processor: Conditional Termination Problem 1: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) SIZE(push(x:S,y:S)) -> SIZE(x:S) -> QPairs: Empty -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue Conditional Termination Problem 2: -> Pairs: POP(push(x:S,y:S)) -> LE(size(x:S),m) POP(push(x:S,y:S)) -> M POP(push(x:S,y:S)) -> SIZE(x:S) TOP(push(x:S,y:S)) -> LE(size(x:S),m) TOP(push(x:S,y:S)) -> M TOP(push(x:S,y:S)) -> SIZE(x:S) -> QPairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) SIZE(push(x:S,y:S)) -> SIZE(x:S) -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue The problem is decomposed in 2 subproblems. Problem 1.1: SCC Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) SIZE(push(x:S,y:S)) -> SIZE(x:S) -> QPairs: Empty -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: SIZE(push(x:S,y:S)) -> SIZE(x:S) -> QPairs: Empty ->->-> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ->->Cycle: ->->-> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> QPairs: Empty ->->-> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue The problem is decomposed in 2 subproblems. Problem 1.1.1: Conditional Subterm Processor: -> Pairs: SIZE(push(x:S,y:S)) -> SIZE(x:S) -> QPairs: Empty -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ->Projection: pi(SIZE) = 1 Problem 1.1.1: SCC Processor: -> Pairs: Empty -> QPairs: Empty -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.1.2: Conditional Subterm Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> QPairs: Empty -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ->Projection: pi(LE) = 1 Problem 1.1.2: SCC Processor: -> Pairs: Empty -> QPairs: Empty -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: SCC Processor: -> Pairs: POP(push(x:S,y:S)) -> LE(size(x:S),m) POP(push(x:S,y:S)) -> M POP(push(x:S,y:S)) -> SIZE(x:S) TOP(push(x:S,y:S)) -> LE(size(x:S),m) TOP(push(x:S,y:S)) -> M TOP(push(x:S,y:S)) -> SIZE(x:S) -> QPairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) SIZE(push(x:S,y:S)) -> SIZE(x:S) -> Rules: le(0,s(x:S)) -> ttrue le(s(x:S),s(y:S)) -> le(x:S,y:S) le(x:S,0) -> ffalse m -> s(s(s(s(0)))) pop(empty) -> empty pop(push(x:S,y:S)) -> x:S | le(size(x:S),m) ->* ttrue size(empty) -> 0 size(push(x:S,y:S)) -> s(size(x:S)) top(empty) -> eentry top(push(x:S,y:S)) -> y:S | le(size(x:S),m) ->* ttrue ->Strongly Connected Components: There is no strongly connected component The problem is finite.