/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Quasi decreasingness of the given CTRS could be proven: (0) CTRS (1) CTRSToQTRSProof [SOUND, 0 ms] (2) QTRS (3) Overlay + Local Confluence [EQUIVALENT, 0 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 15 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QReductionProof [EQUIVALENT, 0 ms] (13) QDP (14) QDPSizeChangeProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 13 ms] (36) QDP (37) PisEmptyProof [EQUIVALENT, 0 ms] (38) YES ---------------------------------------- (0) Obligation: Conditional term rewrite system: The TRS R consists of the following rules: le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil The conditional TRS C consists of the following conditional rules: split(x, cons(y, ys)) -> pair(xs, cons(y, zs)) <= split(x, ys) -> pairs(xs, zs), le(x, y) -> true split(x, cons(y, ys)) -> pair(cons(y, xs), zs) <= split(x, ys) -> pairs(xs, zs), le(x, y) -> false qsort(cons(x, xs)) -> app(qsort(ys), cons(x, qsort(zs))) <= split(x, xs) -> pair(ys, zs) ---------------------------------------- (1) CTRSToQTRSProof (SOUND) The conditional rules have been transormed into unconditional rules according to [CTRS,AAECCNOC]. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) qsort(cons(x, xs)) -> U3(split(x, xs), x) U3(pair(ys, zs), x) -> app(qsort(ys), cons(x, qsort(zs))) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil Q is empty. ---------------------------------------- (3) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) qsort(cons(x, xs)) -> U3(split(x, xs), x) U3(pair(ys, zs), x) -> app(qsort(ys), cons(x, qsort(zs))) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: SPLIT(x, cons(y, ys)) -> U1^1(split(x, ys), x, y) SPLIT(x, cons(y, ys)) -> SPLIT(x, ys) U1^1(pairs(xs, zs), x, y) -> U2^1(le(x, y), y, xs, zs) U1^1(pairs(xs, zs), x, y) -> LE(x, y) QSORT(cons(x, xs)) -> U3^1(split(x, xs), x) QSORT(cons(x, xs)) -> SPLIT(x, xs) U3^1(pair(ys, zs), x) -> APP(qsort(ys), cons(x, qsort(zs))) U3^1(pair(ys, zs), x) -> QSORT(ys) U3^1(pair(ys, zs), x) -> QSORT(zs) LE(s(x), s(y)) -> LE(x, y) APP(cons(x, xs), ys) -> APP(xs, ys) The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) qsort(cons(x, xs)) -> U3(split(x, xs), x) U3(pair(ys, zs), x) -> app(qsort(ys), cons(x, qsort(zs))) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(x, xs), ys) -> APP(xs, ys) The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) qsort(cons(x, xs)) -> U3(split(x, xs), x) U3(pair(ys, zs), x) -> app(qsort(ys), cons(x, qsort(zs))) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(x, xs), ys) -> APP(xs, ys) R is empty. The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: APP(cons(x, xs), ys) -> APP(xs, ys) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(cons(x, xs), ys) -> APP(xs, ys) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) qsort(cons(x, xs)) -> U3(split(x, xs), x) U3(pair(ys, zs), x) -> app(qsort(ys), cons(x, qsort(zs))) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: SPLIT(x, cons(y, ys)) -> SPLIT(x, ys) The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) qsort(cons(x, xs)) -> U3(split(x, xs), x) U3(pair(ys, zs), x) -> app(qsort(ys), cons(x, qsort(zs))) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: SPLIT(x, cons(y, ys)) -> SPLIT(x, ys) R is empty. The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: SPLIT(x, cons(y, ys)) -> SPLIT(x, ys) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SPLIT(x, cons(y, ys)) -> SPLIT(x, ys) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: QSORT(cons(x, xs)) -> U3^1(split(x, xs), x) U3^1(pair(ys, zs), x) -> QSORT(ys) U3^1(pair(ys, zs), x) -> QSORT(zs) The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) qsort(cons(x, xs)) -> U3(split(x, xs), x) U3(pair(ys, zs), x) -> app(qsort(ys), cons(x, qsort(zs))) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, x) -> x app(cons(x, xs), ys) -> cons(x, app(xs, ys)) split(x, nil) -> pair(nil, nil) qsort(nil) -> nil The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: QSORT(cons(x, xs)) -> U3^1(split(x, xs), x) U3^1(pair(ys, zs), x) -> QSORT(ys) U3^1(pair(ys, zs), x) -> QSORT(zs) The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) split(x, nil) -> pair(nil, nil) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) qsort(cons(x0, x1)) U3(pair(x0, x1), x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(cons(x0, x1), x2) split(x0, nil) qsort(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. qsort(cons(x0, x1)) U3(pair(x0, x1), x2) app(nil, x0) app(cons(x0, x1), x2) qsort(nil) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: QSORT(cons(x, xs)) -> U3^1(split(x, xs), x) U3^1(pair(ys, zs), x) -> QSORT(ys) U3^1(pair(ys, zs), x) -> QSORT(zs) The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) split(x, nil) -> pair(nil, nil) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) split(x0, nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QSORT(cons(x, xs)) -> U3^1(split(x, xs), x) U3^1(pair(ys, zs), x) -> QSORT(ys) U3^1(pair(ys, zs), x) -> QSORT(zs) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( U3^1_2(x_1, x_2) ) = max{0, 2x_1 - 1} POL( split_2(x_1, x_2) ) = x_2 + 2 POL( cons_2(x_1, x_2) ) = x_2 + 2 POL( U1_3(x_1, ..., x_3) ) = x_1 + 2 POL( nil ) = 0 POL( pair_2(x_1, x_2) ) = x_1 + x_2 + 2 POL( pairs_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( U2_4(x_1, ..., x_4) ) = 2x_1 + x_3 + 2x_4 POL( le_2(x_1, x_2) ) = 2 POL( 0 ) = 0 POL( true ) = 2 POL( s_1(x_1) ) = 2x_1 + 2 POL( false ) = 2 POL( QSORT_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) split(x, nil) -> pair(nil, nil) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) ---------------------------------------- (36) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: split(x, cons(y, ys)) -> U1(split(x, ys), x, y) split(x, nil) -> pair(nil, nil) U1(pairs(xs, zs), x, y) -> U2(le(x, y), y, xs, zs) le(0, x) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) U2(false, y, xs, zs) -> pair(cons(y, xs), zs) U2(true, y, xs, zs) -> pair(xs, cons(y, zs)) The set Q consists of the following terms: split(x0, cons(x1, x2)) U1(pairs(x0, x1), x2, x3) U2(false, x0, x1, x2) U2(true, x0, x1, x2) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) split(x0, nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (38) YES