/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) NumRed [SOUND, 0 ms] (6) HASKELL (7) Narrow [EQUIVALENT, 5 ms] (8) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } isEmptyFM :: FiniteMap b a -> Bool; isEmptyFM fm = sizeFM fm == 0; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } isEmptyFM :: FiniteMap b a -> Bool; isEmptyFM fm = sizeFM fm == 0; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wu wv size ww wx) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } isEmptyFM :: FiniteMap b a -> Bool; isEmptyFM fm = sizeFM fm == 0; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wu wv size ww wx) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } isEmptyFM :: FiniteMap a b -> Bool; isEmptyFM fm = sizeFM fm == Pos Zero; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = Pos Zero; sizeFM (Branch wu wv size ww wx) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) Narrow (EQUIVALENT) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.isEmptyFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.isEmptyFM wy3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 4[label="FiniteMap.sizeFM wy3 == Pos Zero",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="primEqInt (FiniteMap.sizeFM wy3) (Pos Zero)",fontsize=16,color="burlywood",shape="box"];21[label="wy3/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5 -> 21[label="",style="solid", color="burlywood", weight=9]; 21 -> 6[label="",style="solid", color="burlywood", weight=3]; 22[label="wy3/FiniteMap.Branch wy30 wy31 wy32 wy33 wy34",fontsize=10,color="white",style="solid",shape="box"];5 -> 22[label="",style="solid", color="burlywood", weight=9]; 22 -> 7[label="",style="solid", color="burlywood", weight=3]; 6[label="primEqInt (FiniteMap.sizeFM FiniteMap.EmptyFM) (Pos Zero)",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7[label="primEqInt (FiniteMap.sizeFM (FiniteMap.Branch wy30 wy31 wy32 wy33 wy34)) (Pos Zero)",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="primEqInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="primEqInt wy32 (Pos Zero)",fontsize=16,color="burlywood",shape="box"];23[label="wy32/Pos wy320",fontsize=10,color="white",style="solid",shape="box"];9 -> 23[label="",style="solid", color="burlywood", weight=9]; 23 -> 11[label="",style="solid", color="burlywood", weight=3]; 24[label="wy32/Neg wy320",fontsize=10,color="white",style="solid",shape="box"];9 -> 24[label="",style="solid", color="burlywood", weight=9]; 24 -> 12[label="",style="solid", color="burlywood", weight=3]; 10[label="True",fontsize=16,color="green",shape="box"];11[label="primEqInt (Pos wy320) (Pos Zero)",fontsize=16,color="burlywood",shape="box"];25[label="wy320/Succ wy3200",fontsize=10,color="white",style="solid",shape="box"];11 -> 25[label="",style="solid", color="burlywood", weight=9]; 25 -> 13[label="",style="solid", color="burlywood", weight=3]; 26[label="wy320/Zero",fontsize=10,color="white",style="solid",shape="box"];11 -> 26[label="",style="solid", color="burlywood", weight=9]; 26 -> 14[label="",style="solid", color="burlywood", weight=3]; 12[label="primEqInt (Neg wy320) (Pos Zero)",fontsize=16,color="burlywood",shape="box"];27[label="wy320/Succ wy3200",fontsize=10,color="white",style="solid",shape="box"];12 -> 27[label="",style="solid", color="burlywood", weight=9]; 27 -> 15[label="",style="solid", color="burlywood", weight=3]; 28[label="wy320/Zero",fontsize=10,color="white",style="solid",shape="box"];12 -> 28[label="",style="solid", color="burlywood", weight=9]; 28 -> 16[label="",style="solid", color="burlywood", weight=3]; 13[label="primEqInt (Pos (Succ wy3200)) (Pos Zero)",fontsize=16,color="black",shape="box"];13 -> 17[label="",style="solid", color="black", weight=3]; 14[label="primEqInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];14 -> 18[label="",style="solid", color="black", weight=3]; 15[label="primEqInt (Neg (Succ wy3200)) (Pos Zero)",fontsize=16,color="black",shape="box"];15 -> 19[label="",style="solid", color="black", weight=3]; 16[label="primEqInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 17[label="False",fontsize=16,color="green",shape="box"];18[label="True",fontsize=16,color="green",shape="box"];19[label="False",fontsize=16,color="green",shape="box"];20[label="True",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) YES