/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could not be shown: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) AND (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) QDPOrderProof [EQUIVALENT, 38 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) QDP (17) MNOCProof [EQUIVALENT, 0 ms] (18) QDP (19) NonTerminationLoopProof [COMPLETE, 5 ms] (20) NO (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) Narrow [COMPLETE, 0 ms] (25) TRUE ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; zipWithM :: Monad b => (a -> d -> b c) -> [a] -> [d] -> b [c]; zipWithM f xs ys = sequence (zipWith f xs ys); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\xs->return (x : xs)" is transformed to "sequence0 x xs = return (x : xs); " The following Lambda expression "\x->sequence cs >>= sequence0 x" is transformed to "sequence1 cs x = sequence cs >>= sequence0 x; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; zipWithM :: Monad a => (c -> d -> a b) -> [c] -> [d] -> a [b]; zipWithM f xs ys = sequence (zipWith f xs ys); } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; zipWithM :: Monad c => (d -> b -> c a) -> [d] -> [b] -> c [a]; zipWithM f xs ys = sequence (zipWith f xs ys); } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; zipWithM :: Monad d => (b -> c -> d a) -> [b] -> [c] -> d [a]; zipWithM f xs ys = sequence (zipWith f xs ys); } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.zipWithM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.zipWithM wv3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.zipWithM wv3 wv4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="Monad.zipWithM wv3 wv4 wv5",fontsize=16,color="black",shape="triangle"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="sequence (zipWith wv3 wv4 wv5)",fontsize=16,color="burlywood",shape="triangle"];63[label="wv4/wv40 : wv41",fontsize=10,color="white",style="solid",shape="box"];6 -> 63[label="",style="solid", color="burlywood", weight=9]; 63 -> 7[label="",style="solid", color="burlywood", weight=3]; 64[label="wv4/[]",fontsize=10,color="white",style="solid",shape="box"];6 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 8[label="",style="solid", color="burlywood", weight=3]; 7[label="sequence (zipWith wv3 (wv40 : wv41) wv5)",fontsize=16,color="burlywood",shape="box"];65[label="wv5/wv50 : wv51",fontsize=10,color="white",style="solid",shape="box"];7 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 9[label="",style="solid", color="burlywood", weight=3]; 66[label="wv5/[]",fontsize=10,color="white",style="solid",shape="box"];7 -> 66[label="",style="solid", color="burlywood", weight=9]; 66 -> 10[label="",style="solid", color="burlywood", weight=3]; 8[label="sequence (zipWith wv3 [] wv5)",fontsize=16,color="black",shape="box"];8 -> 11[label="",style="solid", color="black", weight=3]; 9[label="sequence (zipWith wv3 (wv40 : wv41) (wv50 : wv51))",fontsize=16,color="black",shape="box"];9 -> 12[label="",style="solid", color="black", weight=3]; 10[label="sequence (zipWith wv3 (wv40 : wv41) [])",fontsize=16,color="black",shape="box"];10 -> 13[label="",style="solid", color="black", weight=3]; 11[label="sequence []",fontsize=16,color="black",shape="triangle"];11 -> 14[label="",style="solid", color="black", weight=3]; 12[label="sequence (wv3 wv40 wv50 : zipWith wv3 wv41 wv51)",fontsize=16,color="black",shape="box"];12 -> 15[label="",style="solid", color="black", weight=3]; 13 -> 11[label="",style="dashed", color="red", weight=0]; 13[label="sequence []",fontsize=16,color="magenta"];14[label="return []",fontsize=16,color="black",shape="box"];14 -> 16[label="",style="solid", color="black", weight=3]; 15 -> 17[label="",style="dashed", color="red", weight=0]; 15[label="wv3 wv40 wv50 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="magenta"];15 -> 18[label="",style="dashed", color="magenta", weight=3]; 16[label="[] : []",fontsize=16,color="green",shape="box"];18[label="wv3 wv40 wv50",fontsize=16,color="green",shape="box"];18 -> 23[label="",style="dashed", color="green", weight=3]; 18 -> 24[label="",style="dashed", color="green", weight=3]; 17[label="wv6 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="burlywood",shape="triangle"];67[label="wv6/wv60 : wv61",fontsize=10,color="white",style="solid",shape="box"];17 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 21[label="",style="solid", color="burlywood", weight=3]; 68[label="wv6/[]",fontsize=10,color="white",style="solid",shape="box"];17 -> 68[label="",style="solid", color="burlywood", weight=9]; 68 -> 22[label="",style="solid", color="burlywood", weight=3]; 23[label="wv40",fontsize=16,color="green",shape="box"];24[label="wv50",fontsize=16,color="green",shape="box"];21[label="wv60 : wv61 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 22[label="[] >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 25 -> 27[label="",style="dashed", color="red", weight=0]; 25[label="sequence1 (zipWith wv3 wv41 wv51) wv60 ++ (wv61 >>= sequence1 (zipWith wv3 wv41 wv51))",fontsize=16,color="magenta"];25 -> 28[label="",style="dashed", color="magenta", weight=3]; 26[label="[]",fontsize=16,color="green",shape="box"];28 -> 17[label="",style="dashed", color="red", weight=0]; 28[label="wv61 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="magenta"];28 -> 29[label="",style="dashed", color="magenta", weight=3]; 27[label="sequence1 (zipWith wv3 wv41 wv51) wv60 ++ wv7",fontsize=16,color="black",shape="triangle"];27 -> 30[label="",style="solid", color="black", weight=3]; 29[label="wv61",fontsize=16,color="green",shape="box"];30 -> 31[label="",style="dashed", color="red", weight=0]; 30[label="(sequence (zipWith wv3 wv41 wv51) >>= sequence0 wv60) ++ wv7",fontsize=16,color="magenta"];30 -> 32[label="",style="dashed", color="magenta", weight=3]; 32 -> 6[label="",style="dashed", color="red", weight=0]; 32[label="sequence (zipWith wv3 wv41 wv51)",fontsize=16,color="magenta"];32 -> 33[label="",style="dashed", color="magenta", weight=3]; 32 -> 34[label="",style="dashed", color="magenta", weight=3]; 31[label="(wv8 >>= sequence0 wv60) ++ wv7",fontsize=16,color="burlywood",shape="triangle"];69[label="wv8/wv80 : wv81",fontsize=10,color="white",style="solid",shape="box"];31 -> 69[label="",style="solid", color="burlywood", weight=9]; 69 -> 35[label="",style="solid", color="burlywood", weight=3]; 70[label="wv8/[]",fontsize=10,color="white",style="solid",shape="box"];31 -> 70[label="",style="solid", color="burlywood", weight=9]; 70 -> 36[label="",style="solid", color="burlywood", weight=3]; 33[label="wv51",fontsize=16,color="green",shape="box"];34[label="wv41",fontsize=16,color="green",shape="box"];35[label="(wv80 : wv81 >>= sequence0 wv60) ++ wv7",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 36[label="([] >>= sequence0 wv60) ++ wv7",fontsize=16,color="black",shape="box"];36 -> 38[label="",style="solid", color="black", weight=3]; 37[label="(sequence0 wv60 wv80 ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="black",shape="box"];37 -> 39[label="",style="solid", color="black", weight=3]; 38[label="[] ++ wv7",fontsize=16,color="black",shape="triangle"];38 -> 40[label="",style="solid", color="black", weight=3]; 39[label="(return (wv60 : wv80) ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 40[label="wv7",fontsize=16,color="green",shape="box"];41[label="(((wv60 : wv80) : []) ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="black",shape="box"];41 -> 42[label="",style="solid", color="black", weight=3]; 42 -> 43[label="",style="dashed", color="red", weight=0]; 42[label="((wv60 : wv80) : [] ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="magenta"];42 -> 44[label="",style="dashed", color="magenta", weight=3]; 44 -> 38[label="",style="dashed", color="red", weight=0]; 44[label="[] ++ (wv81 >>= sequence0 wv60)",fontsize=16,color="magenta"];44 -> 45[label="",style="dashed", color="magenta", weight=3]; 43[label="((wv60 : wv80) : wv9) ++ wv7",fontsize=16,color="black",shape="triangle"];43 -> 46[label="",style="solid", color="black", weight=3]; 45[label="wv81 >>= sequence0 wv60",fontsize=16,color="burlywood",shape="triangle"];71[label="wv81/wv810 : wv811",fontsize=10,color="white",style="solid",shape="box"];45 -> 71[label="",style="solid", color="burlywood", weight=9]; 71 -> 47[label="",style="solid", color="burlywood", weight=3]; 72[label="wv81/[]",fontsize=10,color="white",style="solid",shape="box"];45 -> 72[label="",style="solid", color="burlywood", weight=9]; 72 -> 48[label="",style="solid", color="burlywood", weight=3]; 46[label="(wv60 : wv80) : wv9 ++ wv7",fontsize=16,color="green",shape="box"];46 -> 49[label="",style="dashed", color="green", weight=3]; 47[label="wv810 : wv811 >>= sequence0 wv60",fontsize=16,color="black",shape="box"];47 -> 50[label="",style="solid", color="black", weight=3]; 48[label="[] >>= sequence0 wv60",fontsize=16,color="black",shape="box"];48 -> 51[label="",style="solid", color="black", weight=3]; 49[label="wv9 ++ wv7",fontsize=16,color="burlywood",shape="triangle"];73[label="wv9/wv90 : wv91",fontsize=10,color="white",style="solid",shape="box"];49 -> 73[label="",style="solid", color="burlywood", weight=9]; 73 -> 52[label="",style="solid", color="burlywood", weight=3]; 74[label="wv9/[]",fontsize=10,color="white",style="solid",shape="box"];49 -> 74[label="",style="solid", color="burlywood", weight=9]; 74 -> 53[label="",style="solid", color="burlywood", weight=3]; 50 -> 49[label="",style="dashed", color="red", weight=0]; 50[label="sequence0 wv60 wv810 ++ (wv811 >>= sequence0 wv60)",fontsize=16,color="magenta"];50 -> 54[label="",style="dashed", color="magenta", weight=3]; 50 -> 55[label="",style="dashed", color="magenta", weight=3]; 51[label="[]",fontsize=16,color="green",shape="box"];52[label="(wv90 : wv91) ++ wv7",fontsize=16,color="black",shape="box"];52 -> 56[label="",style="solid", color="black", weight=3]; 53[label="[] ++ wv7",fontsize=16,color="black",shape="box"];53 -> 57[label="",style="solid", color="black", weight=3]; 54[label="sequence0 wv60 wv810",fontsize=16,color="black",shape="box"];54 -> 58[label="",style="solid", color="black", weight=3]; 55 -> 45[label="",style="dashed", color="red", weight=0]; 55[label="wv811 >>= sequence0 wv60",fontsize=16,color="magenta"];55 -> 59[label="",style="dashed", color="magenta", weight=3]; 56[label="wv90 : wv91 ++ wv7",fontsize=16,color="green",shape="box"];56 -> 60[label="",style="dashed", color="green", weight=3]; 57[label="wv7",fontsize=16,color="green",shape="box"];58[label="return (wv60 : wv810)",fontsize=16,color="black",shape="box"];58 -> 61[label="",style="solid", color="black", weight=3]; 59[label="wv811",fontsize=16,color="green",shape="box"];60 -> 49[label="",style="dashed", color="red", weight=0]; 60[label="wv91 ++ wv7",fontsize=16,color="magenta"];60 -> 62[label="",style="dashed", color="magenta", weight=3]; 61[label="(wv60 : wv810) : []",fontsize=16,color="green",shape="box"];62[label="wv91",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(:(wv810, wv811), wv60, h) -> new_gtGtEs(wv811, wv60, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs(:(wv810, wv811), wv60, h) -> new_gtGtEs(wv811, wv60, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) -> new_psPs0(wv3, wv41, wv51, h, ba, bb) new_psPs0(wv3, wv41, wv51, h, ba, bb) -> new_sequence(wv3, wv41, wv51, h, ba, bb) new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) -> new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), h, ba, bb) -> new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) The TRS R consists of the following rules: new_gtGtEs2(:(wv810, wv811), wv60, h) -> new_psPs1(:(:(wv60, wv810), []), new_gtGtEs2(wv811, wv60, h), h) new_gtGtEs1([], wv3, wv41, wv51, h, ba, bb) -> [] new_psPs2(wv3, wv41, wv51, wv60, wv7, h, ba, bb) -> new_psPs4(new_sequence0(wv3, wv41, wv51, h, ba, bb), wv60, wv7, h) new_psPs1(:(wv90, wv91), wv7, h) -> :(wv90, new_psPs1(wv91, wv7, h)) new_psPs3(wv60, wv80, wv9, wv7, h) -> :(:(wv60, wv80), new_psPs1(wv9, wv7, h)) new_gtGtEs2([], wv60, h) -> [] new_psPs1([], wv7, h) -> wv7 new_gtGtEs1(:(wv60, wv61), wv3, wv41, wv51, h, ba, bb) -> new_psPs2(wv3, wv41, wv51, wv60, new_gtGtEs1(wv61, wv3, wv41, wv51, h, ba, bb), h, ba, bb) new_psPs4(:(wv80, wv81), wv60, wv7, h) -> new_psPs3(wv60, wv80, new_psPs5(new_gtGtEs2(wv81, wv60, h), h), wv7, h) new_psPs4([], wv60, wv7, h) -> new_psPs5(wv7, h) new_psPs5(wv7, h) -> wv7 The set Q consists of the following terms: new_psPs1(:(x0, x1), x2, x3) new_gtGtEs2(:(x0, x1), x2, x3) new_psPs2(x0, x1, x2, x3, x4, x5, x6, x7) new_gtGtEs1(:(x0, x1), x2, x3, x4, x5, x6, x7) new_psPs3(x0, x1, x2, x3, x4) new_psPs4(:(x0, x1), x2, x3, x4) new_psPs4([], x0, x1, x2) new_gtGtEs1([], x0, x1, x2, x3, x4, x5) new_gtGtEs2([], x0, x1) new_psPs1([], x0, x1) new_psPs5(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_sequence(wv3, :(wv40, wv41), :(wv50, wv51), h, ba, bb) -> new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(:(x_1, x_2)) = 1 + x_2 POL(new_gtGtEs0(x_1, x_2, x_3, x_4, x_5, x_6)) = x_2 + x_3 POL(new_psPs0(x_1, x_2, x_3, x_4, x_5, x_6)) = x_2 + x_3 POL(new_sequence(x_1, x_2, x_3, x_4, x_5, x_6)) = x_2 + x_3 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) -> new_psPs0(wv3, wv41, wv51, h, ba, bb) new_psPs0(wv3, wv41, wv51, h, ba, bb) -> new_sequence(wv3, wv41, wv51, h, ba, bb) new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) -> new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) The TRS R consists of the following rules: new_gtGtEs2(:(wv810, wv811), wv60, h) -> new_psPs1(:(:(wv60, wv810), []), new_gtGtEs2(wv811, wv60, h), h) new_gtGtEs1([], wv3, wv41, wv51, h, ba, bb) -> [] new_psPs2(wv3, wv41, wv51, wv60, wv7, h, ba, bb) -> new_psPs4(new_sequence0(wv3, wv41, wv51, h, ba, bb), wv60, wv7, h) new_psPs1(:(wv90, wv91), wv7, h) -> :(wv90, new_psPs1(wv91, wv7, h)) new_psPs3(wv60, wv80, wv9, wv7, h) -> :(:(wv60, wv80), new_psPs1(wv9, wv7, h)) new_gtGtEs2([], wv60, h) -> [] new_psPs1([], wv7, h) -> wv7 new_gtGtEs1(:(wv60, wv61), wv3, wv41, wv51, h, ba, bb) -> new_psPs2(wv3, wv41, wv51, wv60, new_gtGtEs1(wv61, wv3, wv41, wv51, h, ba, bb), h, ba, bb) new_psPs4(:(wv80, wv81), wv60, wv7, h) -> new_psPs3(wv60, wv80, new_psPs5(new_gtGtEs2(wv81, wv60, h), h), wv7, h) new_psPs4([], wv60, wv7, h) -> new_psPs5(wv7, h) new_psPs5(wv7, h) -> wv7 The set Q consists of the following terms: new_psPs1(:(x0, x1), x2, x3) new_gtGtEs2(:(x0, x1), x2, x3) new_psPs2(x0, x1, x2, x3, x4, x5, x6, x7) new_gtGtEs1(:(x0, x1), x2, x3, x4, x5, x6, x7) new_psPs3(x0, x1, x2, x3, x4) new_psPs4(:(x0, x1), x2, x3, x4) new_psPs4([], x0, x1, x2) new_gtGtEs1([], x0, x1, x2, x3, x4, x5) new_gtGtEs2([], x0, x1) new_psPs1([], x0, x1) new_psPs5(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) -> new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) The TRS R consists of the following rules: new_gtGtEs2(:(wv810, wv811), wv60, h) -> new_psPs1(:(:(wv60, wv810), []), new_gtGtEs2(wv811, wv60, h), h) new_gtGtEs1([], wv3, wv41, wv51, h, ba, bb) -> [] new_psPs2(wv3, wv41, wv51, wv60, wv7, h, ba, bb) -> new_psPs4(new_sequence0(wv3, wv41, wv51, h, ba, bb), wv60, wv7, h) new_psPs1(:(wv90, wv91), wv7, h) -> :(wv90, new_psPs1(wv91, wv7, h)) new_psPs3(wv60, wv80, wv9, wv7, h) -> :(:(wv60, wv80), new_psPs1(wv9, wv7, h)) new_gtGtEs2([], wv60, h) -> [] new_psPs1([], wv7, h) -> wv7 new_gtGtEs1(:(wv60, wv61), wv3, wv41, wv51, h, ba, bb) -> new_psPs2(wv3, wv41, wv51, wv60, new_gtGtEs1(wv61, wv3, wv41, wv51, h, ba, bb), h, ba, bb) new_psPs4(:(wv80, wv81), wv60, wv7, h) -> new_psPs3(wv60, wv80, new_psPs5(new_gtGtEs2(wv81, wv60, h), h), wv7, h) new_psPs4([], wv60, wv7, h) -> new_psPs5(wv7, h) new_psPs5(wv7, h) -> wv7 The set Q consists of the following terms: new_psPs1(:(x0, x1), x2, x3) new_gtGtEs2(:(x0, x1), x2, x3) new_psPs2(x0, x1, x2, x3, x4, x5, x6, x7) new_gtGtEs1(:(x0, x1), x2, x3, x4, x5, x6, x7) new_psPs3(x0, x1, x2, x3, x4) new_psPs4(:(x0, x1), x2, x3, x4) new_psPs4([], x0, x1, x2) new_gtGtEs1([], x0, x1, x2, x3, x4, x5) new_gtGtEs2([], x0, x1) new_psPs1([], x0, x1) new_psPs5(x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) -> new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) The TRS R consists of the following rules: new_gtGtEs2(:(wv810, wv811), wv60, h) -> new_psPs1(:(:(wv60, wv810), []), new_gtGtEs2(wv811, wv60, h), h) new_gtGtEs1([], wv3, wv41, wv51, h, ba, bb) -> [] new_psPs2(wv3, wv41, wv51, wv60, wv7, h, ba, bb) -> new_psPs4(new_sequence0(wv3, wv41, wv51, h, ba, bb), wv60, wv7, h) new_psPs1(:(wv90, wv91), wv7, h) -> :(wv90, new_psPs1(wv91, wv7, h)) new_psPs3(wv60, wv80, wv9, wv7, h) -> :(:(wv60, wv80), new_psPs1(wv9, wv7, h)) new_gtGtEs2([], wv60, h) -> [] new_psPs1([], wv7, h) -> wv7 new_gtGtEs1(:(wv60, wv61), wv3, wv41, wv51, h, ba, bb) -> new_psPs2(wv3, wv41, wv51, wv60, new_gtGtEs1(wv61, wv3, wv41, wv51, h, ba, bb), h, ba, bb) new_psPs4(:(wv80, wv81), wv60, wv7, h) -> new_psPs3(wv60, wv80, new_psPs5(new_gtGtEs2(wv81, wv60, h), h), wv7, h) new_psPs4([], wv60, wv7, h) -> new_psPs5(wv7, h) new_psPs5(wv7, h) -> wv7 Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (19) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) evaluates to t =new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from new_gtGtEs0(wv3, wv41, wv51, h, ba, bb) to new_gtGtEs0(wv3, wv41, wv51, h, ba, bb). ---------------------------------------- (20) NO ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(wv90, wv91), wv7, h) -> new_psPs(wv91, wv7, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(wv90, wv91), wv7, h) -> new_psPs(wv91, wv7, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (23) YES ---------------------------------------- (24) Narrow (COMPLETE) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.zipWithM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.zipWithM wv3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.zipWithM wv3 wv4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="Monad.zipWithM wv3 wv4 wv5",fontsize=16,color="black",shape="triangle"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="sequence (zipWith wv3 wv4 wv5)",fontsize=16,color="burlywood",shape="triangle"];63[label="wv4/wv40 : wv41",fontsize=10,color="white",style="solid",shape="box"];6 -> 63[label="",style="solid", color="burlywood", weight=9]; 63 -> 7[label="",style="solid", color="burlywood", weight=3]; 64[label="wv4/[]",fontsize=10,color="white",style="solid",shape="box"];6 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 8[label="",style="solid", color="burlywood", weight=3]; 7[label="sequence (zipWith wv3 (wv40 : wv41) wv5)",fontsize=16,color="burlywood",shape="box"];65[label="wv5/wv50 : wv51",fontsize=10,color="white",style="solid",shape="box"];7 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 9[label="",style="solid", color="burlywood", weight=3]; 66[label="wv5/[]",fontsize=10,color="white",style="solid",shape="box"];7 -> 66[label="",style="solid", color="burlywood", weight=9]; 66 -> 10[label="",style="solid", color="burlywood", weight=3]; 8[label="sequence (zipWith wv3 [] wv5)",fontsize=16,color="black",shape="box"];8 -> 11[label="",style="solid", color="black", weight=3]; 9[label="sequence (zipWith wv3 (wv40 : wv41) (wv50 : wv51))",fontsize=16,color="black",shape="box"];9 -> 12[label="",style="solid", color="black", weight=3]; 10[label="sequence (zipWith wv3 (wv40 : wv41) [])",fontsize=16,color="black",shape="box"];10 -> 13[label="",style="solid", color="black", weight=3]; 11[label="sequence []",fontsize=16,color="black",shape="triangle"];11 -> 14[label="",style="solid", color="black", weight=3]; 12[label="sequence (wv3 wv40 wv50 : zipWith wv3 wv41 wv51)",fontsize=16,color="black",shape="box"];12 -> 15[label="",style="solid", color="black", weight=3]; 13 -> 11[label="",style="dashed", color="red", weight=0]; 13[label="sequence []",fontsize=16,color="magenta"];14[label="return []",fontsize=16,color="black",shape="box"];14 -> 16[label="",style="solid", color="black", weight=3]; 15 -> 17[label="",style="dashed", color="red", weight=0]; 15[label="wv3 wv40 wv50 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="magenta"];15 -> 18[label="",style="dashed", color="magenta", weight=3]; 16[label="[] : []",fontsize=16,color="green",shape="box"];18[label="wv3 wv40 wv50",fontsize=16,color="green",shape="box"];18 -> 23[label="",style="dashed", color="green", weight=3]; 18 -> 24[label="",style="dashed", color="green", weight=3]; 17[label="wv6 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="burlywood",shape="triangle"];67[label="wv6/wv60 : wv61",fontsize=10,color="white",style="solid",shape="box"];17 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 21[label="",style="solid", color="burlywood", weight=3]; 68[label="wv6/[]",fontsize=10,color="white",style="solid",shape="box"];17 -> 68[label="",style="solid", color="burlywood", weight=9]; 68 -> 22[label="",style="solid", color="burlywood", weight=3]; 23[label="wv40",fontsize=16,color="green",shape="box"];24[label="wv50",fontsize=16,color="green",shape="box"];21[label="wv60 : wv61 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 22[label="[] >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 25 -> 27[label="",style="dashed", color="red", weight=0]; 25[label="sequence1 (zipWith wv3 wv41 wv51) wv60 ++ (wv61 >>= sequence1 (zipWith wv3 wv41 wv51))",fontsize=16,color="magenta"];25 -> 28[label="",style="dashed", color="magenta", weight=3]; 26[label="[]",fontsize=16,color="green",shape="box"];28 -> 17[label="",style="dashed", color="red", weight=0]; 28[label="wv61 >>= sequence1 (zipWith wv3 wv41 wv51)",fontsize=16,color="magenta"];28 -> 29[label="",style="dashed", color="magenta", weight=3]; 27[label="sequence1 (zipWith wv3 wv41 wv51) wv60 ++ wv7",fontsize=16,color="black",shape="triangle"];27 -> 30[label="",style="solid", color="black", weight=3]; 29[label="wv61",fontsize=16,color="green",shape="box"];30 -> 31[label="",style="dashed", color="red", weight=0]; 30[label="(sequence (zipWith wv3 wv41 wv51) >>= sequence0 wv60) ++ wv7",fontsize=16,color="magenta"];30 -> 32[label="",style="dashed", color="magenta", weight=3]; 32 -> 6[label="",style="dashed", color="red", weight=0]; 32[label="sequence (zipWith wv3 wv41 wv51)",fontsize=16,color="magenta"];32 -> 33[label="",style="dashed", color="magenta", weight=3]; 32 -> 34[label="",style="dashed", color="magenta", weight=3]; 31[label="(wv8 >>= sequence0 wv60) ++ wv7",fontsize=16,color="burlywood",shape="triangle"];69[label="wv8/wv80 : wv81",fontsize=10,color="white",style="solid",shape="box"];31 -> 69[label="",style="solid", color="burlywood", weight=9]; 69 -> 35[label="",style="solid", color="burlywood", weight=3]; 70[label="wv8/[]",fontsize=10,color="white",style="solid",shape="box"];31 -> 70[label="",style="solid", color="burlywood", weight=9]; 70 -> 36[label="",style="solid", color="burlywood", weight=3]; 33[label="wv51",fontsize=16,color="green",shape="box"];34[label="wv41",fontsize=16,color="green",shape="box"];35[label="(wv80 : wv81 >>= sequence0 wv60) ++ wv7",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 36[label="([] >>= sequence0 wv60) ++ wv7",fontsize=16,color="black",shape="box"];36 -> 38[label="",style="solid", color="black", weight=3]; 37[label="(sequence0 wv60 wv80 ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="black",shape="box"];37 -> 39[label="",style="solid", color="black", weight=3]; 38[label="[] ++ wv7",fontsize=16,color="black",shape="triangle"];38 -> 40[label="",style="solid", color="black", weight=3]; 39[label="(return (wv60 : wv80) ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 40[label="wv7",fontsize=16,color="green",shape="box"];41[label="(((wv60 : wv80) : []) ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="black",shape="box"];41 -> 42[label="",style="solid", color="black", weight=3]; 42 -> 43[label="",style="dashed", color="red", weight=0]; 42[label="((wv60 : wv80) : [] ++ (wv81 >>= sequence0 wv60)) ++ wv7",fontsize=16,color="magenta"];42 -> 44[label="",style="dashed", color="magenta", weight=3]; 44 -> 38[label="",style="dashed", color="red", weight=0]; 44[label="[] ++ (wv81 >>= sequence0 wv60)",fontsize=16,color="magenta"];44 -> 45[label="",style="dashed", color="magenta", weight=3]; 43[label="((wv60 : wv80) : wv9) ++ wv7",fontsize=16,color="black",shape="triangle"];43 -> 46[label="",style="solid", color="black", weight=3]; 45[label="wv81 >>= sequence0 wv60",fontsize=16,color="burlywood",shape="triangle"];71[label="wv81/wv810 : wv811",fontsize=10,color="white",style="solid",shape="box"];45 -> 71[label="",style="solid", color="burlywood", weight=9]; 71 -> 47[label="",style="solid", color="burlywood", weight=3]; 72[label="wv81/[]",fontsize=10,color="white",style="solid",shape="box"];45 -> 72[label="",style="solid", color="burlywood", weight=9]; 72 -> 48[label="",style="solid", color="burlywood", weight=3]; 46[label="(wv60 : wv80) : wv9 ++ wv7",fontsize=16,color="green",shape="box"];46 -> 49[label="",style="dashed", color="green", weight=3]; 47[label="wv810 : wv811 >>= sequence0 wv60",fontsize=16,color="black",shape="box"];47 -> 50[label="",style="solid", color="black", weight=3]; 48[label="[] >>= sequence0 wv60",fontsize=16,color="black",shape="box"];48 -> 51[label="",style="solid", color="black", weight=3]; 49[label="wv9 ++ wv7",fontsize=16,color="burlywood",shape="triangle"];73[label="wv9/wv90 : wv91",fontsize=10,color="white",style="solid",shape="box"];49 -> 73[label="",style="solid", color="burlywood", weight=9]; 73 -> 52[label="",style="solid", color="burlywood", weight=3]; 74[label="wv9/[]",fontsize=10,color="white",style="solid",shape="box"];49 -> 74[label="",style="solid", color="burlywood", weight=9]; 74 -> 53[label="",style="solid", color="burlywood", weight=3]; 50 -> 49[label="",style="dashed", color="red", weight=0]; 50[label="sequence0 wv60 wv810 ++ (wv811 >>= sequence0 wv60)",fontsize=16,color="magenta"];50 -> 54[label="",style="dashed", color="magenta", weight=3]; 50 -> 55[label="",style="dashed", color="magenta", weight=3]; 51[label="[]",fontsize=16,color="green",shape="box"];52[label="(wv90 : wv91) ++ wv7",fontsize=16,color="black",shape="box"];52 -> 56[label="",style="solid", color="black", weight=3]; 53[label="[] ++ wv7",fontsize=16,color="black",shape="box"];53 -> 57[label="",style="solid", color="black", weight=3]; 54[label="sequence0 wv60 wv810",fontsize=16,color="black",shape="box"];54 -> 58[label="",style="solid", color="black", weight=3]; 55 -> 45[label="",style="dashed", color="red", weight=0]; 55[label="wv811 >>= sequence0 wv60",fontsize=16,color="magenta"];55 -> 59[label="",style="dashed", color="magenta", weight=3]; 56[label="wv90 : wv91 ++ wv7",fontsize=16,color="green",shape="box"];56 -> 60[label="",style="dashed", color="green", weight=3]; 57[label="wv7",fontsize=16,color="green",shape="box"];58[label="return (wv60 : wv810)",fontsize=16,color="black",shape="box"];58 -> 61[label="",style="solid", color="black", weight=3]; 59[label="wv811",fontsize=16,color="green",shape="box"];60 -> 49[label="",style="dashed", color="red", weight=0]; 60[label="wv91 ++ wv7",fontsize=16,color="magenta"];60 -> 62[label="",style="dashed", color="magenta", weight=3]; 61[label="(wv60 : wv810) : []",fontsize=16,color="green",shape="box"];62[label="wv91",fontsize=16,color="green",shape="box"];} ---------------------------------------- (25) TRUE