/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) LetRed [EQUIVALENT, 11 ms] (8) HASKELL (9) NumRed [SOUND, 0 ms] (10) HASKELL (11) Narrow [SOUND, 0 ms] (12) QDP (13) TransformationProof [EQUIVALENT, 0 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QReductionProof [EQUIVALENT, 0 ms] (24) QDP (25) QDPSizeChangeProof [EQUIVALENT, 0 ms] (26) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\(_,xs'')->xs''" is transformed to "xs''0 (_,xs'') = xs''; " The following Lambda expression "\(xs',_)->xs'" is transformed to "xs'0 (xs',_) = xs'; " ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "splitAt n xs|n <= 0([],xs); splitAt vv [] = ([],[]); splitAt n (x : xs) = (x : xs',xs'') where { vu42 = splitAt (n - 1) xs; ; xs' = xs'0 vu42; ; xs'' = xs''0 vu42; ; xs''0 (vw,xs'') = xs''; ; xs'0 (xs',vx) = xs'; } ; " is transformed to "splitAt n xs = splitAt3 n xs; splitAt vv [] = splitAt1 vv []; splitAt n (x : xs) = splitAt0 n (x : xs); " "splitAt0 n (x : xs) = (x : xs',xs'') where { vu42 = splitAt (n - 1) xs; ; xs' = xs'0 vu42; ; xs'' = xs''0 vu42; ; xs''0 (vw,xs'') = xs''; ; xs'0 (xs',vx) = xs'; } ; " "splitAt1 vv [] = ([],[]); splitAt1 ww wx = splitAt0 ww wx; " "splitAt2 n xs True = ([],xs); splitAt2 n xs False = splitAt1 n xs; " "splitAt3 n xs = splitAt2 n xs (n <= 0); splitAt3 wy wz = splitAt1 wy wz; " The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (7) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "(x : xs',xs'') where { vu42 = splitAt (n - 1) xs; ; xs' = xs'0 vu42; ; xs'' = xs''0 vu42; ; xs''0 (vw,xs'') = xs''; ; xs'0 (xs',vx) = xs'; } " are unpacked to the following functions on top level "splitAt0Xs''0 xu xv (vw,xs'') = xs''; " "splitAt0Xs'' xu xv = splitAt0Xs''0 xu xv (splitAt0Vu42 xu xv); " "splitAt0Vu42 xu xv = splitAt (xu - 1) xv; " "splitAt0Xs'0 xu xv (xs',vx) = xs'; " "splitAt0Xs' xu xv = splitAt0Xs'0 xu xv (splitAt0Vu42 xu xv); " ---------------------------------------- (8) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (9) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (10) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (11) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="splitAt",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="splitAt xw3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="splitAt xw3 xw4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="splitAt3 xw3 xw4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="splitAt2 xw3 xw4 (xw3 <= Pos Zero)",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="splitAt2 xw3 xw4 (compare xw3 (Pos Zero) /= GT)",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 8[label="splitAt2 xw3 xw4 (not (compare xw3 (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="splitAt2 xw3 xw4 (not (primCmpInt xw3 (Pos Zero) == GT))",fontsize=16,color="burlywood",shape="box"];64[label="xw3/Pos xw30",fontsize=10,color="white",style="solid",shape="box"];9 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 10[label="",style="solid", color="burlywood", weight=3]; 65[label="xw3/Neg xw30",fontsize=10,color="white",style="solid",shape="box"];9 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 11[label="",style="solid", color="burlywood", weight=3]; 10[label="splitAt2 (Pos xw30) xw4 (not (primCmpInt (Pos xw30) (Pos Zero) == GT))",fontsize=16,color="burlywood",shape="box"];66[label="xw30/Succ xw300",fontsize=10,color="white",style="solid",shape="box"];10 -> 66[label="",style="solid", color="burlywood", weight=9]; 66 -> 12[label="",style="solid", color="burlywood", weight=3]; 67[label="xw30/Zero",fontsize=10,color="white",style="solid",shape="box"];10 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 13[label="",style="solid", color="burlywood", weight=3]; 11[label="splitAt2 (Neg xw30) xw4 (not (primCmpInt (Neg xw30) (Pos Zero) == GT))",fontsize=16,color="burlywood",shape="box"];68[label="xw30/Succ xw300",fontsize=10,color="white",style="solid",shape="box"];11 -> 68[label="",style="solid", color="burlywood", weight=9]; 68 -> 14[label="",style="solid", color="burlywood", weight=3]; 69[label="xw30/Zero",fontsize=10,color="white",style="solid",shape="box"];11 -> 69[label="",style="solid", color="burlywood", weight=9]; 69 -> 15[label="",style="solid", color="burlywood", weight=3]; 12[label="splitAt2 (Pos (Succ xw300)) xw4 (not (primCmpInt (Pos (Succ xw300)) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];12 -> 16[label="",style="solid", color="black", weight=3]; 13[label="splitAt2 (Pos Zero) xw4 (not (primCmpInt (Pos Zero) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];13 -> 17[label="",style="solid", color="black", weight=3]; 14[label="splitAt2 (Neg (Succ xw300)) xw4 (not (primCmpInt (Neg (Succ xw300)) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];14 -> 18[label="",style="solid", color="black", weight=3]; 15[label="splitAt2 (Neg Zero) xw4 (not (primCmpInt (Neg Zero) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];15 -> 19[label="",style="solid", color="black", weight=3]; 16[label="splitAt2 (Pos (Succ xw300)) xw4 (not (primCmpNat (Succ xw300) Zero == GT))",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 17[label="splitAt2 (Pos Zero) xw4 (not (EQ == GT))",fontsize=16,color="black",shape="box"];17 -> 21[label="",style="solid", color="black", weight=3]; 18[label="splitAt2 (Neg (Succ xw300)) xw4 (not (LT == GT))",fontsize=16,color="black",shape="box"];18 -> 22[label="",style="solid", color="black", weight=3]; 19[label="splitAt2 (Neg Zero) xw4 (not (EQ == GT))",fontsize=16,color="black",shape="box"];19 -> 23[label="",style="solid", color="black", weight=3]; 20[label="splitAt2 (Pos (Succ xw300)) xw4 (not (GT == GT))",fontsize=16,color="black",shape="box"];20 -> 24[label="",style="solid", color="black", weight=3]; 21[label="splitAt2 (Pos Zero) xw4 (not False)",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 22[label="splitAt2 (Neg (Succ xw300)) xw4 (not False)",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 23[label="splitAt2 (Neg Zero) xw4 (not False)",fontsize=16,color="black",shape="box"];23 -> 27[label="",style="solid", color="black", weight=3]; 24[label="splitAt2 (Pos (Succ xw300)) xw4 (not True)",fontsize=16,color="black",shape="box"];24 -> 28[label="",style="solid", color="black", weight=3]; 25[label="splitAt2 (Pos Zero) xw4 True",fontsize=16,color="black",shape="box"];25 -> 29[label="",style="solid", color="black", weight=3]; 26[label="splitAt2 (Neg (Succ xw300)) xw4 True",fontsize=16,color="black",shape="box"];26 -> 30[label="",style="solid", color="black", weight=3]; 27[label="splitAt2 (Neg Zero) xw4 True",fontsize=16,color="black",shape="box"];27 -> 31[label="",style="solid", color="black", weight=3]; 28[label="splitAt2 (Pos (Succ xw300)) xw4 False",fontsize=16,color="black",shape="box"];28 -> 32[label="",style="solid", color="black", weight=3]; 29[label="([],xw4)",fontsize=16,color="green",shape="box"];30[label="([],xw4)",fontsize=16,color="green",shape="box"];31[label="([],xw4)",fontsize=16,color="green",shape="box"];32[label="splitAt1 (Pos (Succ xw300)) xw4",fontsize=16,color="burlywood",shape="box"];70[label="xw4/xw40 : xw41",fontsize=10,color="white",style="solid",shape="box"];32 -> 70[label="",style="solid", color="burlywood", weight=9]; 70 -> 33[label="",style="solid", color="burlywood", weight=3]; 71[label="xw4/[]",fontsize=10,color="white",style="solid",shape="box"];32 -> 71[label="",style="solid", color="burlywood", weight=9]; 71 -> 34[label="",style="solid", color="burlywood", weight=3]; 33[label="splitAt1 (Pos (Succ xw300)) (xw40 : xw41)",fontsize=16,color="black",shape="box"];33 -> 35[label="",style="solid", color="black", weight=3]; 34[label="splitAt1 (Pos (Succ xw300)) []",fontsize=16,color="black",shape="box"];34 -> 36[label="",style="solid", color="black", weight=3]; 35[label="splitAt0 (Pos (Succ xw300)) (xw40 : xw41)",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 36[label="([],[])",fontsize=16,color="green",shape="box"];37[label="(xw40 : splitAt0Xs' (Pos (Succ xw300)) xw41,splitAt0Xs'' (Pos (Succ xw300)) xw41)",fontsize=16,color="green",shape="box"];37 -> 38[label="",style="dashed", color="green", weight=3]; 37 -> 39[label="",style="dashed", color="green", weight=3]; 38[label="splitAt0Xs' (Pos (Succ xw300)) xw41",fontsize=16,color="black",shape="box"];38 -> 40[label="",style="solid", color="black", weight=3]; 39[label="splitAt0Xs'' (Pos (Succ xw300)) xw41",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 40 -> 44[label="",style="dashed", color="red", weight=0]; 40[label="splitAt0Xs'0 (Pos (Succ xw300)) xw41 (splitAt0Vu42 (Pos (Succ xw300)) xw41)",fontsize=16,color="magenta"];40 -> 45[label="",style="dashed", color="magenta", weight=3]; 41 -> 49[label="",style="dashed", color="red", weight=0]; 41[label="splitAt0Xs''0 (Pos (Succ xw300)) xw41 (splitAt0Vu42 (Pos (Succ xw300)) xw41)",fontsize=16,color="magenta"];41 -> 50[label="",style="dashed", color="magenta", weight=3]; 45[label="splitAt0Vu42 (Pos (Succ xw300)) xw41",fontsize=16,color="black",shape="triangle"];45 -> 47[label="",style="solid", color="black", weight=3]; 44[label="splitAt0Xs'0 (Pos (Succ xw300)) xw41 xw5",fontsize=16,color="burlywood",shape="triangle"];72[label="xw5/(xw50,xw51)",fontsize=10,color="white",style="solid",shape="box"];44 -> 72[label="",style="solid", color="burlywood", weight=9]; 72 -> 48[label="",style="solid", color="burlywood", weight=3]; 50 -> 45[label="",style="dashed", color="red", weight=0]; 50[label="splitAt0Vu42 (Pos (Succ xw300)) xw41",fontsize=16,color="magenta"];49[label="splitAt0Xs''0 (Pos (Succ xw300)) xw41 xw6",fontsize=16,color="burlywood",shape="triangle"];73[label="xw6/(xw60,xw61)",fontsize=10,color="white",style="solid",shape="box"];49 -> 73[label="",style="solid", color="burlywood", weight=9]; 73 -> 52[label="",style="solid", color="burlywood", weight=3]; 47 -> 4[label="",style="dashed", color="red", weight=0]; 47[label="splitAt (Pos (Succ xw300) - Pos (Succ Zero)) xw41",fontsize=16,color="magenta"];47 -> 53[label="",style="dashed", color="magenta", weight=3]; 47 -> 54[label="",style="dashed", color="magenta", weight=3]; 48[label="splitAt0Xs'0 (Pos (Succ xw300)) xw41 (xw50,xw51)",fontsize=16,color="black",shape="box"];48 -> 55[label="",style="solid", color="black", weight=3]; 52[label="splitAt0Xs''0 (Pos (Succ xw300)) xw41 (xw60,xw61)",fontsize=16,color="black",shape="box"];52 -> 56[label="",style="solid", color="black", weight=3]; 53[label="Pos (Succ xw300) - Pos (Succ Zero)",fontsize=16,color="black",shape="box"];53 -> 57[label="",style="solid", color="black", weight=3]; 54[label="xw41",fontsize=16,color="green",shape="box"];55[label="xw50",fontsize=16,color="green",shape="box"];56[label="xw61",fontsize=16,color="green",shape="box"];57[label="primMinusInt (Pos (Succ xw300)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];57 -> 58[label="",style="solid", color="black", weight=3]; 58[label="primMinusNat (Succ xw300) (Succ Zero)",fontsize=16,color="black",shape="box"];58 -> 59[label="",style="solid", color="black", weight=3]; 59[label="primMinusNat xw300 Zero",fontsize=16,color="burlywood",shape="box"];74[label="xw300/Succ xw3000",fontsize=10,color="white",style="solid",shape="box"];59 -> 74[label="",style="solid", color="burlywood", weight=9]; 74 -> 60[label="",style="solid", color="burlywood", weight=3]; 75[label="xw300/Zero",fontsize=10,color="white",style="solid",shape="box"];59 -> 75[label="",style="solid", color="burlywood", weight=9]; 75 -> 61[label="",style="solid", color="burlywood", weight=3]; 60[label="primMinusNat (Succ xw3000) Zero",fontsize=16,color="black",shape="box"];60 -> 62[label="",style="solid", color="black", weight=3]; 61[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];61 -> 63[label="",style="solid", color="black", weight=3]; 62[label="Pos (Succ xw3000)",fontsize=16,color="green",shape="box"];63[label="Pos Zero",fontsize=16,color="green",shape="box"];} ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt0Vu42(xw300, xw41, h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) The TRS R consists of the following rules: new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule new_splitAt0Vu42(xw300, xw41, h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) at position [0] we obtained the following new rules [LPAR04]: (new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2),new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2)) (new_splitAt0Vu42(Zero, y1, y2) -> new_splitAt(Pos(Zero), y1, y2),new_splitAt0Vu42(Zero, y1, y2) -> new_splitAt(Pos(Zero), y1, y2)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) new_splitAt0Vu42(Zero, y1, y2) -> new_splitAt(Pos(Zero), y1, y2) The TRS R consists of the following rules: new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) The TRS R consists of the following rules: new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) at position [0] we obtained the following new rules [LPAR04]: (new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3),new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3)) (new_splitAt(Pos(Succ(Zero)), :(y1, y2), y3) -> new_splitAt(Pos(Zero), y2, y3),new_splitAt(Pos(Succ(Zero)), :(y1, y2), y3) -> new_splitAt(Pos(Zero), y2, y3)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) new_splitAt(Pos(Succ(Zero)), :(y1, y2), y3) -> new_splitAt(Pos(Zero), y2, y3) The TRS R consists of the following rules: new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) The TRS R consists of the following rules: new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) R is empty. The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) The graph contains the following edges 2 >= 2, 3 >= 3 *new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) The graph contains the following edges 2 > 2, 3 >= 3 *new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 ---------------------------------------- (26) YES