/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) AND (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM4 :: Monad c => (b -> e -> f -> a -> d) -> c b -> c e -> c f -> c a -> c d; liftM4 f m1 m2 m3 m4 = m1 >>= (\x1 ->m2 >>= (\x2 ->m3 >>= (\x3 ->m4 >>= (\x4 ->return (f x1 x2 x3 x4))))); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\x4->return (f x1 x2 x3 x4)" is transformed to "liftM40 f x1 x2 x3 x4 = return (f x1 x2 x3 x4); " The following Lambda expression "\x3->m4 >>= liftM40 f x1 x2 x3" is transformed to "liftM41 m4 f x1 x2 x3 = m4 >>= liftM40 f x1 x2 x3; " The following Lambda expression "\x2->m3 >>= liftM41 m4 f x1 x2" is transformed to "liftM42 m3 m4 f x1 x2 = m3 >>= liftM41 m4 f x1 x2; " The following Lambda expression "\x1->m2 >>= liftM42 m3 m4 f x1" is transformed to "liftM43 m2 m3 m4 f x1 = m2 >>= liftM42 m3 m4 f x1; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM4 :: Monad b => (e -> f -> a -> d -> c) -> b e -> b f -> b a -> b d -> b c; liftM4 f m1 m2 m3 m4 = m1 >>= liftM43 m2 m3 m4 f; liftM40 f x1 x2 x3 x4 = return (f x1 x2 x3 x4); liftM41 m4 f x1 x2 x3 = m4 >>= liftM40 f x1 x2 x3; liftM42 m3 m4 f x1 x2 = m3 >>= liftM41 m4 f x1 x2; liftM43 m2 m3 m4 f x1 = m2 >>= liftM42 m3 m4 f x1; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM4 :: Monad c => (e -> b -> a -> d -> f) -> c e -> c b -> c a -> c d -> c f; liftM4 f m1 m2 m3 m4 = m1 >>= liftM43 m2 m3 m4 f; liftM40 f x1 x2 x3 x4 = return (f x1 x2 x3 x4); liftM41 m4 f x1 x2 x3 = m4 >>= liftM40 f x1 x2 x3; liftM42 m3 m4 f x1 x2 = m3 >>= liftM41 m4 f x1 x2; liftM43 m2 m3 m4 f x1 = m2 >>= liftM42 m3 m4 f x1; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM4 :: Monad f => (b -> c -> a -> d -> e) -> f b -> f c -> f a -> f d -> f e; liftM4 f m1 m2 m3 m4 = m1 >>= liftM43 m2 m3 m4 f; liftM40 f x1 x2 x3 x4 = return (f x1 x2 x3 x4); liftM41 m4 f x1 x2 x3 = m4 >>= liftM40 f x1 x2 x3; liftM42 m3 m4 f x1 x2 = m3 >>= liftM41 m4 f x1 x2; liftM43 m2 m3 m4 f x1 = m2 >>= liftM42 m3 m4 f x1; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.liftM4",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.liftM4 vy3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.liftM4 vy3 vy4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="Monad.liftM4 vy3 vy4 vy5",fontsize=16,color="grey",shape="box"];5 -> 6[label="",style="dashed", color="grey", weight=3]; 6[label="Monad.liftM4 vy3 vy4 vy5 vy6",fontsize=16,color="grey",shape="box"];6 -> 7[label="",style="dashed", color="grey", weight=3]; 7[label="Monad.liftM4 vy3 vy4 vy5 vy6 vy7",fontsize=16,color="black",shape="triangle"];7 -> 8[label="",style="solid", color="black", weight=3]; 8[label="vy4 >>= Monad.liftM43 vy5 vy6 vy7 vy3",fontsize=16,color="burlywood",shape="triangle"];77[label="vy4/vy40 : vy41",fontsize=10,color="white",style="solid",shape="box"];8 -> 77[label="",style="solid", color="burlywood", weight=9]; 77 -> 9[label="",style="solid", color="burlywood", weight=3]; 78[label="vy4/[]",fontsize=10,color="white",style="solid",shape="box"];8 -> 78[label="",style="solid", color="burlywood", weight=9]; 78 -> 10[label="",style="solid", color="burlywood", weight=3]; 9[label="vy40 : vy41 >>= Monad.liftM43 vy5 vy6 vy7 vy3",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10[label="[] >>= Monad.liftM43 vy5 vy6 vy7 vy3",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 11 -> 28[label="",style="dashed", color="red", weight=0]; 11[label="Monad.liftM43 vy5 vy6 vy7 vy3 vy40 ++ (vy41 >>= Monad.liftM43 vy5 vy6 vy7 vy3)",fontsize=16,color="magenta"];11 -> 29[label="",style="dashed", color="magenta", weight=3]; 11 -> 30[label="",style="dashed", color="magenta", weight=3]; 12[label="[]",fontsize=16,color="green",shape="box"];29[label="Monad.liftM43 vy5 vy6 vy7 vy3 vy40",fontsize=16,color="black",shape="box"];29 -> 39[label="",style="solid", color="black", weight=3]; 30 -> 8[label="",style="dashed", color="red", weight=0]; 30[label="vy41 >>= Monad.liftM43 vy5 vy6 vy7 vy3",fontsize=16,color="magenta"];30 -> 40[label="",style="dashed", color="magenta", weight=3]; 28[label="vy9 ++ vy8",fontsize=16,color="burlywood",shape="triangle"];79[label="vy9/vy90 : vy91",fontsize=10,color="white",style="solid",shape="box"];28 -> 79[label="",style="solid", color="burlywood", weight=9]; 79 -> 41[label="",style="solid", color="burlywood", weight=3]; 80[label="vy9/[]",fontsize=10,color="white",style="solid",shape="box"];28 -> 80[label="",style="solid", color="burlywood", weight=9]; 80 -> 42[label="",style="solid", color="burlywood", weight=3]; 39[label="vy5 >>= Monad.liftM42 vy6 vy7 vy3 vy40",fontsize=16,color="burlywood",shape="triangle"];81[label="vy5/vy50 : vy51",fontsize=10,color="white",style="solid",shape="box"];39 -> 81[label="",style="solid", color="burlywood", weight=9]; 81 -> 43[label="",style="solid", color="burlywood", weight=3]; 82[label="vy5/[]",fontsize=10,color="white",style="solid",shape="box"];39 -> 82[label="",style="solid", color="burlywood", weight=9]; 82 -> 44[label="",style="solid", color="burlywood", weight=3]; 40[label="vy41",fontsize=16,color="green",shape="box"];41[label="(vy90 : vy91) ++ vy8",fontsize=16,color="black",shape="box"];41 -> 45[label="",style="solid", color="black", weight=3]; 42[label="[] ++ vy8",fontsize=16,color="black",shape="box"];42 -> 46[label="",style="solid", color="black", weight=3]; 43[label="vy50 : vy51 >>= Monad.liftM42 vy6 vy7 vy3 vy40",fontsize=16,color="black",shape="box"];43 -> 47[label="",style="solid", color="black", weight=3]; 44[label="[] >>= Monad.liftM42 vy6 vy7 vy3 vy40",fontsize=16,color="black",shape="box"];44 -> 48[label="",style="solid", color="black", weight=3]; 45[label="vy90 : vy91 ++ vy8",fontsize=16,color="green",shape="box"];45 -> 49[label="",style="dashed", color="green", weight=3]; 46[label="vy8",fontsize=16,color="green",shape="box"];47 -> 28[label="",style="dashed", color="red", weight=0]; 47[label="Monad.liftM42 vy6 vy7 vy3 vy40 vy50 ++ (vy51 >>= Monad.liftM42 vy6 vy7 vy3 vy40)",fontsize=16,color="magenta"];47 -> 50[label="",style="dashed", color="magenta", weight=3]; 47 -> 51[label="",style="dashed", color="magenta", weight=3]; 48[label="[]",fontsize=16,color="green",shape="box"];49 -> 28[label="",style="dashed", color="red", weight=0]; 49[label="vy91 ++ vy8",fontsize=16,color="magenta"];49 -> 52[label="",style="dashed", color="magenta", weight=3]; 50[label="Monad.liftM42 vy6 vy7 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];50 -> 53[label="",style="solid", color="black", weight=3]; 51 -> 39[label="",style="dashed", color="red", weight=0]; 51[label="vy51 >>= Monad.liftM42 vy6 vy7 vy3 vy40",fontsize=16,color="magenta"];51 -> 54[label="",style="dashed", color="magenta", weight=3]; 52[label="vy91",fontsize=16,color="green",shape="box"];53[label="vy6 >>= Monad.liftM41 vy7 vy3 vy40 vy50",fontsize=16,color="burlywood",shape="triangle"];83[label="vy6/vy60 : vy61",fontsize=10,color="white",style="solid",shape="box"];53 -> 83[label="",style="solid", color="burlywood", weight=9]; 83 -> 55[label="",style="solid", color="burlywood", weight=3]; 84[label="vy6/[]",fontsize=10,color="white",style="solid",shape="box"];53 -> 84[label="",style="solid", color="burlywood", weight=9]; 84 -> 56[label="",style="solid", color="burlywood", weight=3]; 54[label="vy51",fontsize=16,color="green",shape="box"];55[label="vy60 : vy61 >>= Monad.liftM41 vy7 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];55 -> 57[label="",style="solid", color="black", weight=3]; 56[label="[] >>= Monad.liftM41 vy7 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];56 -> 58[label="",style="solid", color="black", weight=3]; 57 -> 28[label="",style="dashed", color="red", weight=0]; 57[label="Monad.liftM41 vy7 vy3 vy40 vy50 vy60 ++ (vy61 >>= Monad.liftM41 vy7 vy3 vy40 vy50)",fontsize=16,color="magenta"];57 -> 59[label="",style="dashed", color="magenta", weight=3]; 57 -> 60[label="",style="dashed", color="magenta", weight=3]; 58[label="[]",fontsize=16,color="green",shape="box"];59[label="Monad.liftM41 vy7 vy3 vy40 vy50 vy60",fontsize=16,color="black",shape="box"];59 -> 61[label="",style="solid", color="black", weight=3]; 60 -> 53[label="",style="dashed", color="red", weight=0]; 60[label="vy61 >>= Monad.liftM41 vy7 vy3 vy40 vy50",fontsize=16,color="magenta"];60 -> 62[label="",style="dashed", color="magenta", weight=3]; 61[label="vy7 >>= Monad.liftM40 vy3 vy40 vy50 vy60",fontsize=16,color="burlywood",shape="triangle"];85[label="vy7/vy70 : vy71",fontsize=10,color="white",style="solid",shape="box"];61 -> 85[label="",style="solid", color="burlywood", weight=9]; 85 -> 63[label="",style="solid", color="burlywood", weight=3]; 86[label="vy7/[]",fontsize=10,color="white",style="solid",shape="box"];61 -> 86[label="",style="solid", color="burlywood", weight=9]; 86 -> 64[label="",style="solid", color="burlywood", weight=3]; 62[label="vy61",fontsize=16,color="green",shape="box"];63[label="vy70 : vy71 >>= Monad.liftM40 vy3 vy40 vy50 vy60",fontsize=16,color="black",shape="box"];63 -> 65[label="",style="solid", color="black", weight=3]; 64[label="[] >>= Monad.liftM40 vy3 vy40 vy50 vy60",fontsize=16,color="black",shape="box"];64 -> 66[label="",style="solid", color="black", weight=3]; 65 -> 28[label="",style="dashed", color="red", weight=0]; 65[label="Monad.liftM40 vy3 vy40 vy50 vy60 vy70 ++ (vy71 >>= Monad.liftM40 vy3 vy40 vy50 vy60)",fontsize=16,color="magenta"];65 -> 67[label="",style="dashed", color="magenta", weight=3]; 65 -> 68[label="",style="dashed", color="magenta", weight=3]; 66[label="[]",fontsize=16,color="green",shape="box"];67[label="Monad.liftM40 vy3 vy40 vy50 vy60 vy70",fontsize=16,color="black",shape="box"];67 -> 69[label="",style="solid", color="black", weight=3]; 68 -> 61[label="",style="dashed", color="red", weight=0]; 68[label="vy71 >>= Monad.liftM40 vy3 vy40 vy50 vy60",fontsize=16,color="magenta"];68 -> 70[label="",style="dashed", color="magenta", weight=3]; 69[label="return (vy3 vy40 vy50 vy60 vy70)",fontsize=16,color="black",shape="box"];69 -> 71[label="",style="solid", color="black", weight=3]; 70[label="vy71",fontsize=16,color="green",shape="box"];71[label="vy3 vy40 vy50 vy60 vy70 : []",fontsize=16,color="green",shape="box"];71 -> 72[label="",style="dashed", color="green", weight=3]; 72[label="vy3 vy40 vy50 vy60 vy70",fontsize=16,color="green",shape="box"];72 -> 73[label="",style="dashed", color="green", weight=3]; 72 -> 74[label="",style="dashed", color="green", weight=3]; 72 -> 75[label="",style="dashed", color="green", weight=3]; 72 -> 76[label="",style="dashed", color="green", weight=3]; 73[label="vy40",fontsize=16,color="green",shape="box"];74[label="vy50",fontsize=16,color="green",shape="box"];75[label="vy60",fontsize=16,color="green",shape="box"];76[label="vy70",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(:(vy60, vy61), vy7, vy3, vy40, vy50, h, ba, bb, bc, bd) -> new_gtGtEs0(vy61, vy7, vy3, vy40, vy50, h, ba, bb, bc, bd) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs0(:(vy60, vy61), vy7, vy3, vy40, vy50, h, ba, bb, bc, bd) -> new_gtGtEs0(vy61, vy7, vy3, vy40, vy50, h, ba, bb, bc, bd) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs1(:(vy50, vy51), vy6, vy7, vy3, vy40, h, ba, bb, bc, bd) -> new_gtGtEs1(vy51, vy6, vy7, vy3, vy40, h, ba, bb, bc, bd) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs1(:(vy50, vy51), vy6, vy7, vy3, vy40, h, ba, bb, bc, bd) -> new_gtGtEs1(vy51, vy6, vy7, vy3, vy40, h, ba, bb, bc, bd) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(:(vy70, vy71), vy3, vy40, vy50, vy60, h, ba, bb, bc, bd) -> new_gtGtEs(vy71, vy3, vy40, vy50, vy60, h, ba, bb, bc, bd) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs(:(vy70, vy71), vy3, vy40, vy50, vy60, h, ba, bb, bc, bd) -> new_gtGtEs(vy71, vy3, vy40, vy50, vy60, h, ba, bb, bc, bd) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(vy90, vy91), vy8, h) -> new_psPs(vy91, vy8, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(vy90, vy91), vy8, h) -> new_psPs(vy91, vy8, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs2(:(vy40, vy41), vy5, vy6, vy7, vy3, h, ba, bb, bc, bd) -> new_gtGtEs2(vy41, vy5, vy6, vy7, vy3, h, ba, bb, bc, bd) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs2(:(vy40, vy41), vy5, vy6, vy7, vy3, h, ba, bb, bc, bd) -> new_gtGtEs2(vy41, vy5, vy6, vy7, vy3, h, ba, bb, bc, bd) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10 ---------------------------------------- (23) YES