/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) CR [EQUIVALENT, 0 ms] (4) HASKELL (5) IFR [EQUIVALENT, 0 ms] (6) HASKELL (7) BR [EQUIVALENT, 0 ms] (8) HASKELL (9) COR [EQUIVALENT, 0 ms] (10) HASKELL (11) LetRed [EQUIVALENT, 0 ms] (12) HASKELL (13) NumRed [SOUND, 0 ms] (14) HASKELL (15) Narrow [SOUND, 0 ms] (16) AND (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 67 ms] (25) YES (26) QDP (27) TransformationProof [EQUIVALENT, 1493 ms] (28) QDP (29) QDPSizeChangeProof [EQUIVALENT, 0 ms] (30) YES (31) QDP (32) QDPSizeChangeProof [EQUIVALENT, 0 ms] (33) YES (34) QDP (35) QDPSizeChangeProof [EQUIVALENT, 0 ms] (36) YES (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) QDPSizeChangeProof [EQUIVALENT, 0 ms] (42) YES (43) QDP (44) QDPSizeChangeProof [EQUIVALENT, 0 ms] (45) YES (46) QDP (47) QDPSizeChangeProof [EQUIVALENT, 0 ms] (48) YES (49) QDP (50) QDPSizeChangeProof [EQUIVALENT, 0 ms] (51) YES (52) QDP (53) QDPSizeChangeProof [EQUIVALENT, 0 ms] (54) YES (55) QDP (56) QDPSizeChangeProof [EQUIVALENT, 0 ms] (57) YES (58) QDP (59) QDPSizeChangeProof [EQUIVALENT, 0 ms] (60) YES (61) QDP (62) QDPSizeChangeProof [EQUIVALENT, 0 ms] (63) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord a => FiniteMap a b -> a -> FiniteMap a b; delFromFM EmptyFM del_key = emptyFM; delFromFM (Branch key elt size fm_l fm_r) del_key | del_key > key = mkBalBranch key elt fm_l (delFromFM fm_r del_key) | del_key < key = mkBalBranch key elt (delFromFM fm_l del_key) fm_r | key == del_key = glueBal fm_l fm_r; delListFromFM :: Ord a => FiniteMap a b -> [a] -> FiniteMap a b; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM (\key elt rest ->(key,elt) : rest) [] fm; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = (\(_,mid_elt1) ->mid_elt1) vv2; mid_elt2 = (\(_,mid_elt2) ->mid_elt2) vv3; mid_key1 = (\(mid_key1,_) ->mid_key1) vv2; mid_key2 = (\(mid_key2,_) ->mid_key2) vv3; vv2 = findMax fm1; vv3 = findMin fm2; }; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\(_,mid_elt2)->mid_elt2" is transformed to "mid_elt20 (_,mid_elt2) = mid_elt2; " The following Lambda expression "\(mid_key2,_)->mid_key2" is transformed to "mid_key20 (mid_key2,_) = mid_key2; " The following Lambda expression "\(mid_key1,_)->mid_key1" is transformed to "mid_key10 (mid_key1,_) = mid_key1; " The following Lambda expression "\(_,mid_elt1)->mid_elt1" is transformed to "mid_elt10 (_,mid_elt1) = mid_elt1; " The following Lambda expression "\keyeltrest->(key,elt) : rest" is transformed to "fmToList0 key elt rest = (key,elt) : rest; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord b => FiniteMap b a -> b -> FiniteMap b a; delFromFM EmptyFM del_key = emptyFM; delFromFM (Branch key elt size fm_l fm_r) del_key | del_key > key = mkBalBranch key elt fm_l (delFromFM fm_r del_key) | del_key < key = mkBalBranch key elt (delFromFM fm_l del_key) fm_r | key == del_key = glueBal fm_l fm_r; delListFromFM :: Ord b => FiniteMap b a -> [b] -> FiniteMap b a; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (_,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (_,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,_) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,_) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) CR (EQUIVALENT) Case Reductions: The following Case expression "case compare x y of { EQ -> o; LT -> LT; GT -> GT} " is transformed to "primCompAux0 o EQ = o; primCompAux0 o LT = LT; primCompAux0 o GT = GT; " The following Case expression "case fm_r of { EmptyFM -> True; Branch right_key _ _ _ _ -> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key} " is transformed to "right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; " The following Case expression "case fm_l of { EmptyFM -> True; Branch left_key _ _ _ _ -> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key} " is transformed to "left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; " The following Case expression "case fm_R of { Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} " is transformed to "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " The following Case expression "case fm_L of { Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} " is transformed to "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord a => FiniteMap a b -> a -> FiniteMap a b; delFromFM EmptyFM del_key = emptyFM; delFromFM (Branch key elt size fm_l fm_r) del_key | del_key > key = mkBalBranch key elt fm_l (delFromFM fm_r del_key) | del_key < key = mkBalBranch key elt (delFromFM fm_l del_key) fm_r | key == del_key = glueBal fm_l fm_r; delListFromFM :: Ord b => FiniteMap b a -> [b] -> FiniteMap b a; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> b -> c -> c) -> c -> FiniteMap a b -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (_,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (_,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,_) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,_) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) IFR (EQUIVALENT) If Reductions: The following If expression "if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero" is transformed to "primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y)); primDivNatS0 x y False = Zero; " The following If expression "if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x" is transformed to "primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y); primModNatS0 x y False = Succ x; " ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord b => FiniteMap b a -> b -> FiniteMap b a; delFromFM EmptyFM del_key = emptyFM; delFromFM (Branch key elt size fm_l fm_r) del_key | del_key > key = mkBalBranch key elt fm_l (delFromFM fm_r del_key) | del_key < key = mkBalBranch key elt (delFromFM fm_l del_key) fm_r | key == del_key = glueBal fm_l fm_r; delListFromFM :: Ord b => FiniteMap b a -> [b] -> FiniteMap b a; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> c -> b -> b) -> b -> FiniteMap a c -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (_,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (_,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,_) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,_) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (8) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord b => FiniteMap b a -> b -> FiniteMap b a; delFromFM EmptyFM del_key = emptyFM; delFromFM (Branch key elt size fm_l fm_r) del_key | del_key > key = mkBalBranch key elt fm_l (delFromFM fm_r del_key) | del_key < key = mkBalBranch key elt (delFromFM fm_l del_key) fm_r | key == del_key = glueBal fm_l fm_r; delListFromFM :: Ord b => FiniteMap b a -> [b] -> FiniteMap b a; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt zz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vuu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt vzy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt vzz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vvx vvy EmptyFM) = (key,elt); findMax (Branch key elt vvz vwu fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wuu EmptyFM wuv) = (key,elt); findMin (Branch key elt wuw fm_l wux) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vyz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (vyw,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (vyv,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,vyx) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,vyy) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vuv vuw vux vuy) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vuz vvu vvv vvw) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vzu vzv size vzw vzx) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (9) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "absReal x|x >= 0x|otherwise`negate` x; " is transformed to "absReal x = absReal2 x; " "absReal0 x True = `negate` x; " "absReal1 x True = x; absReal1 x False = absReal0 x otherwise; " "absReal2 x = absReal1 x (x >= 0); " The following Function with conditions "gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); " is transformed to "gcd' x wuy = gcd'2 x wuy; gcd' x y = gcd'0 x y; " "gcd'0 x y = gcd' y (x `rem` y); " "gcd'1 True x wuy = x; gcd'1 wuz wvu wvv = gcd'0 wvu wvv; " "gcd'2 x wuy = gcd'1 (wuy == 0) x wuy; gcd'2 wvw wvx = gcd'0 wvw wvx; " The following Function with conditions "gcd 0 0 = error []; gcd x y = gcd' (abs x) (abs y) where { gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); } ; " is transformed to "gcd wvy wvz = gcd3 wvy wvz; gcd x y = gcd0 x y; " "gcd0 x y = gcd' (abs x) (abs y) where { gcd' x wuy = gcd'2 x wuy; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x wuy = x; gcd'1 wuz wvu wvv = gcd'0 wvu wvv; ; gcd'2 x wuy = gcd'1 (wuy == 0) x wuy; gcd'2 wvw wvx = gcd'0 wvw wvx; } ; " "gcd1 True wvy wvz = error []; gcd1 wwu wwv www = gcd0 wwv www; " "gcd2 True wvy wvz = gcd1 (wvz == 0) wvy wvz; gcd2 wwx wwy wwz = gcd0 wwy wwz; " "gcd3 wvy wvz = gcd2 (wvy == 0) wvy wvz; gcd3 wxu wxv = gcd0 wxu wxv; " The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "reduce x y|y == 0error []|otherwisex `quot` d :% (y `quot` d) where { d = gcd x y; } ; " is transformed to "reduce x y = reduce2 x y; " "reduce2 x y = reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } ; " The following Function with conditions "compare x y|x == yEQ|x <= yLT|otherwiseGT; " is transformed to "compare x y = compare3 x y; " "compare0 x y True = GT; " "compare1 x y True = LT; compare1 x y False = compare0 x y otherwise; " "compare2 x y True = EQ; compare2 x y False = compare1 x y (x <= y); " "compare3 x y = compare2 x y (x == y); " The following Function with conditions "mkBalBranch1 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " is transformed to "mkBalBranch1 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr); " "mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = double_R fm_L fm_R; " "mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr otherwise; " "mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " The following Function with conditions "mkBalBranch0 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " is transformed to "mkBalBranch0 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr); " "mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = double_L fm_L fm_R; " "mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr otherwise; " "mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " The following Function with conditions "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; ; mkBalBranch1 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; ; single_L fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " is transformed to "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; " "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " The following Function with conditions "glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2|sizeFM fm2 > sizeFM fm1mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2)|otherwisemkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; ; mid_elt10 (vyw,mid_elt1) = mid_elt1; ; mid_elt2 = mid_elt20 vv3; ; mid_elt20 (vyv,mid_elt2) = mid_elt2; ; mid_key1 = mid_key10 vv2; ; mid_key10 (mid_key1,vyx) = mid_key1; ; mid_key2 = mid_key20 vv3; ; mid_key20 (mid_key2,vyy) = mid_key2; ; vv2 = findMax fm1; ; vv3 = findMin fm2; } ; " is transformed to "glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; " "glueBal2 fm1 fm2 = glueBal1 fm1 fm2 (sizeFM fm2 > sizeFM fm1) where { glueBal0 fm1 fm2 True = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2; ; glueBal1 fm1 fm2 True = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2); glueBal1 fm1 fm2 False = glueBal0 fm1 fm2 otherwise; ; mid_elt1 = mid_elt10 vv2; ; mid_elt10 (vyw,mid_elt1) = mid_elt1; ; mid_elt2 = mid_elt20 vv3; ; mid_elt20 (vyv,mid_elt2) = mid_elt2; ; mid_key1 = mid_key10 vv2; ; mid_key10 (mid_key1,vyx) = mid_key1; ; mid_key2 = mid_key20 vv3; ; mid_key20 (mid_key2,vyy) = mid_key2; ; vv2 = findMax fm1; ; vv3 = findMin fm2; } ; " "glueBal3 fm1 EmptyFM = fm1; glueBal3 wxz wyu = glueBal2 wxz wyu; " "glueBal4 EmptyFM fm2 = fm2; glueBal4 wyw wyx = glueBal3 wyw wyx; " The following Function with conditions "delFromFM EmptyFM del_key = emptyFM; delFromFM (Branch key elt size fm_l fm_r) del_key|del_key > keymkBalBranch key elt fm_l (delFromFM fm_r del_key)|del_key < keymkBalBranch key elt (delFromFM fm_l del_key) fm_r|key == del_keyglueBal fm_l fm_r; " is transformed to "delFromFM EmptyFM del_key = delFromFM4 EmptyFM del_key; delFromFM (Branch key elt size fm_l fm_r) del_key = delFromFM3 (Branch key elt size fm_l fm_r) del_key; " "delFromFM1 key elt size fm_l fm_r del_key True = mkBalBranch key elt (delFromFM fm_l del_key) fm_r; delFromFM1 key elt size fm_l fm_r del_key False = delFromFM0 key elt size fm_l fm_r del_key (key == del_key); " "delFromFM0 key elt size fm_l fm_r del_key True = glueBal fm_l fm_r; " "delFromFM2 key elt size fm_l fm_r del_key True = mkBalBranch key elt fm_l (delFromFM fm_r del_key); delFromFM2 key elt size fm_l fm_r del_key False = delFromFM1 key elt size fm_l fm_r del_key (del_key < key); " "delFromFM3 (Branch key elt size fm_l fm_r) del_key = delFromFM2 key elt size fm_l fm_r del_key (del_key > key); " "delFromFM4 EmptyFM del_key = emptyFM; delFromFM4 wzu wzv = delFromFM3 wzu wzv; " ---------------------------------------- (10) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord a => FiniteMap a b -> a -> FiniteMap a b; delFromFM EmptyFM del_key = delFromFM4 EmptyFM del_key; delFromFM (Branch key elt size fm_l fm_r) del_key = delFromFM3 (Branch key elt size fm_l fm_r) del_key; delFromFM0 key elt size fm_l fm_r del_key True = glueBal fm_l fm_r; delFromFM1 key elt size fm_l fm_r del_key True = mkBalBranch key elt (delFromFM fm_l del_key) fm_r; delFromFM1 key elt size fm_l fm_r del_key False = delFromFM0 key elt size fm_l fm_r del_key (key == del_key); delFromFM2 key elt size fm_l fm_r del_key True = mkBalBranch key elt fm_l (delFromFM fm_r del_key); delFromFM2 key elt size fm_l fm_r del_key False = delFromFM1 key elt size fm_l fm_r del_key (del_key < key); delFromFM3 (Branch key elt size fm_l fm_r) del_key = delFromFM2 key elt size fm_l fm_r del_key (del_key > key); delFromFM4 EmptyFM del_key = emptyFM; delFromFM4 wzu wzv = delFromFM3 wzu wzv; delListFromFM :: Ord a => FiniteMap a b -> [a] -> FiniteMap a b; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMax (Branch key elt zz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vuu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMin (Branch key elt vzy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt vzz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vvx vvy EmptyFM) = (key,elt); findMax (Branch key elt vvz vwu fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt wuu EmptyFM wuv) = (key,elt); findMin (Branch key elt wuw fm_l wux) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> b -> a -> a) -> a -> FiniteMap c b -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vyz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; glueBal2 fm1 fm2 = glueBal1 fm1 fm2 (sizeFM fm2 > sizeFM fm1) where { glueBal0 fm1 fm2 True = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2; glueBal1 fm1 fm2 True = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2); glueBal1 fm1 fm2 False = glueBal0 fm1 fm2 otherwise; mid_elt1 = mid_elt10 vv2; mid_elt10 (vyw,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (vyv,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,vyx) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,vyy) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; glueBal3 fm1 EmptyFM = fm1; glueBal3 wxz wyu = glueBal2 wxz wyu; glueBal4 EmptyFM fm2 = fm2; glueBal4 wyw wyx = glueBal3 wyw wyx; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr); mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = double_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr otherwise; mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch1 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr); mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = double_R fm_L fm_R; mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr otherwise; mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); single_L fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vuv vuw vux vuy) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vuz vvu vvv vvw) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vzu vzv size vzw vzx) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (11) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "gcd' (abs x) (abs y) where { gcd' x wuy = gcd'2 x wuy; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x wuy = x; gcd'1 wuz wvu wvv = gcd'0 wvu wvv; ; gcd'2 x wuy = gcd'1 (wuy == 0) x wuy; gcd'2 wvw wvx = gcd'0 wvw wvx; } " are unpacked to the following functions on top level "gcd0Gcd'1 True x wuy = x; gcd0Gcd'1 wuz wvu wvv = gcd0Gcd'0 wvu wvv; " "gcd0Gcd'2 x wuy = gcd0Gcd'1 (wuy == 0) x wuy; gcd0Gcd'2 wvw wvx = gcd0Gcd'0 wvw wvx; " "gcd0Gcd'0 x y = gcd0Gcd' y (x `rem` y); " "gcd0Gcd' x wuy = gcd0Gcd'2 x wuy; gcd0Gcd' x y = gcd0Gcd'0 x y; " The bindings of the following Let/Where expression "reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } " are unpacked to the following functions on top level "reduce2D wzw wzx = gcd wzw wzx; " "reduce2Reduce1 wzw wzx x y True = error []; reduce2Reduce1 wzw wzx x y False = reduce2Reduce0 wzw wzx x y otherwise; " "reduce2Reduce0 wzw wzx x y True = x `quot` reduce2D wzw wzx :% (y `quot` reduce2D wzw wzx); " The bindings of the following Let/Where expression "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vxx vxy vxz fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vxx vxy vxz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vwy vwz vxu fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vwy vwz vxu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } " are unpacked to the following functions on top level "mkBalBranch6MkBalBranch5 wzy wzz xuu xuv key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R (mkBalBranch6Size_r wzy wzz xuu xuv > sIZE_RATIO * mkBalBranch6Size_l wzy wzz xuu xuv); " "mkBalBranch6MkBalBranch00 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr True = mkBalBranch6Double_L wzy wzz xuu xuv fm_L fm_R; " "mkBalBranch6MkBalBranch12 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " "mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr True = mkBalBranch6Single_L wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr otherwise; " "mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 wzy wzz xuu xuv fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 wzy wzz xuu xuv key elt fm_L fm_R otherwise; " "mkBalBranch6MkBalBranch1 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr); " "mkBalBranch6Double_L wzy wzz xuu xuv fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 wzy wzz fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); " "mkBalBranch6Size_l wzy wzz xuu xuv = sizeFM xuu; " "mkBalBranch6Size_r wzy wzz xuu xuv = sizeFM xuv; " "mkBalBranch6MkBalBranch2 wzy wzz xuu xuv key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; " "mkBalBranch6MkBalBranch10 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr True = mkBalBranch6Double_R wzy wzz xuu xuv fm_L fm_R; " "mkBalBranch6Single_R wzy wzz xuu xuv (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 wzy wzz fm_lr fm_r); " "mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr True = mkBalBranch6Single_R wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr otherwise; " "mkBalBranch6MkBalBranch0 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr); " "mkBalBranch6Single_L wzy wzz xuu xuv fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 wzy wzz fm_l fm_rl) fm_rr; " "mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 wzy wzz xuu xuv fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R (mkBalBranch6Size_l wzy wzz xuu xuv > sIZE_RATIO * mkBalBranch6Size_r wzy wzz xuu xuv); " "mkBalBranch6MkBalBranch02 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " "mkBalBranch6Double_R wzy wzz xuu xuv (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 wzy wzz fm_lrr fm_r); " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; ; left_ok = left_ok0 fm_l key fm_l; ; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vuv vuw vux vuy) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; ; left_size = sizeFM fm_l; ; right_ok = right_ok0 fm_r key fm_r; ; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vuz vvu vvv vvw) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; ; right_size = sizeFM fm_r; ; unbox x = x; } " are unpacked to the following functions on top level "mkBranchRight_size xuw xux xuy = sizeFM xuw; " "mkBranchBalance_ok xuw xux xuy = True; " "mkBranchLeft_ok xuw xux xuy = mkBranchLeft_ok0 xuw xux xuy xux xuy xux; " "mkBranchLeft_size xuw xux xuy = sizeFM xux; " "mkBranchLeft_ok0 xuw xux xuy fm_l key EmptyFM = True; mkBranchLeft_ok0 xuw xux xuy fm_l key (Branch left_key vuv vuw vux vuy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; " "mkBranchUnbox xuw xux xuy x = x; " "mkBranchRight_ok0 xuw xux xuy fm_r key EmptyFM = True; mkBranchRight_ok0 xuw xux xuy fm_r key (Branch right_key vuz vvu vvv vvw) = key < mkBranchRight_ok0Smallest_right_key fm_r; " "mkBranchRight_ok xuw xux xuy = mkBranchRight_ok0 xuw xux xuy xuw xuy xuw; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result" are unpacked to the following functions on top level "mkBranchResult xuz xvu xvv xvw = Branch xuz xvu (mkBranchUnbox xvv xvw xuz (1 + mkBranchLeft_size xvv xvw xuz + mkBranchRight_size xvv xvw xuz)) xvw xvv; " The bindings of the following Let/Where expression "glueBal1 fm1 fm2 (sizeFM fm2 > sizeFM fm1) where { glueBal0 fm1 fm2 True = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2; ; glueBal1 fm1 fm2 True = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2); glueBal1 fm1 fm2 False = glueBal0 fm1 fm2 otherwise; ; mid_elt1 = mid_elt10 vv2; ; mid_elt10 (vyw,mid_elt1) = mid_elt1; ; mid_elt2 = mid_elt20 vv3; ; mid_elt20 (vyv,mid_elt2) = mid_elt2; ; mid_key1 = mid_key10 vv2; ; mid_key10 (mid_key1,vyx) = mid_key1; ; mid_key2 = mid_key20 vv3; ; mid_key20 (mid_key2,vyy) = mid_key2; ; vv2 = findMax fm1; ; vv3 = findMin fm2; } " are unpacked to the following functions on top level "glueBal2Vv3 xvx xvy = findMin xvx; " "glueBal2GlueBal0 xvx xvy fm1 fm2 True = mkBalBranch (glueBal2Mid_key1 xvx xvy) (glueBal2Mid_elt1 xvx xvy) (deleteMax fm1) fm2; " "glueBal2Mid_elt10 xvx xvy (vyw,mid_elt1) = mid_elt1; " "glueBal2GlueBal1 xvx xvy fm1 fm2 True = mkBalBranch (glueBal2Mid_key2 xvx xvy) (glueBal2Mid_elt2 xvx xvy) fm1 (deleteMin fm2); glueBal2GlueBal1 xvx xvy fm1 fm2 False = glueBal2GlueBal0 xvx xvy fm1 fm2 otherwise; " "glueBal2Mid_elt2 xvx xvy = glueBal2Mid_elt20 xvx xvy (glueBal2Vv3 xvx xvy); " "glueBal2Vv2 xvx xvy = findMax xvy; " "glueBal2Mid_elt1 xvx xvy = glueBal2Mid_elt10 xvx xvy (glueBal2Vv2 xvx xvy); " "glueBal2Mid_key1 xvx xvy = glueBal2Mid_key10 xvx xvy (glueBal2Vv2 xvx xvy); " "glueBal2Mid_key2 xvx xvy = glueBal2Mid_key20 xvx xvy (glueBal2Vv3 xvx xvy); " "glueBal2Mid_key10 xvx xvy (mid_key1,vyx) = mid_key1; " "glueBal2Mid_key20 xvx xvy (mid_key2,vyy) = mid_key2; " "glueBal2Mid_elt20 xvx xvy (vyv,mid_elt2) = mid_elt2; " The bindings of the following Let/Where expression "let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key" are unpacked to the following functions on top level "mkBranchLeft_ok0Biggest_left_key xvz = fst (findMax xvz); " The bindings of the following Let/Where expression "let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key" are unpacked to the following functions on top level "mkBranchRight_ok0Smallest_right_key xwu = fst (findMin xwu); " ---------------------------------------- (12) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord b => FiniteMap b a -> b -> FiniteMap b a; delFromFM EmptyFM del_key = delFromFM4 EmptyFM del_key; delFromFM (Branch key elt size fm_l fm_r) del_key = delFromFM3 (Branch key elt size fm_l fm_r) del_key; delFromFM0 key elt size fm_l fm_r del_key True = glueBal fm_l fm_r; delFromFM1 key elt size fm_l fm_r del_key True = mkBalBranch key elt (delFromFM fm_l del_key) fm_r; delFromFM1 key elt size fm_l fm_r del_key False = delFromFM0 key elt size fm_l fm_r del_key (key == del_key); delFromFM2 key elt size fm_l fm_r del_key True = mkBalBranch key elt fm_l (delFromFM fm_r del_key); delFromFM2 key elt size fm_l fm_r del_key False = delFromFM1 key elt size fm_l fm_r del_key (del_key < key); delFromFM3 (Branch key elt size fm_l fm_r) del_key = delFromFM2 key elt size fm_l fm_r del_key (del_key > key); delFromFM4 EmptyFM del_key = emptyFM; delFromFM4 wzu wzv = delFromFM3 wzu wzv; delListFromFM :: Ord b => FiniteMap b a -> [b] -> FiniteMap b a; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt zz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vuu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt vzy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt vzz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt vvx vvy EmptyFM) = (key,elt); findMax (Branch key elt vvz vwu fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wuu EmptyFM wuv) = (key,elt); findMin (Branch key elt wuw fm_l wux) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> b -> a -> a) -> a -> FiniteMap c b -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vyz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; glueBal2 fm1 fm2 = glueBal2GlueBal1 fm2 fm1 fm1 fm2 (sizeFM fm2 > sizeFM fm1); glueBal2GlueBal0 xvx xvy fm1 fm2 True = mkBalBranch (glueBal2Mid_key1 xvx xvy) (glueBal2Mid_elt1 xvx xvy) (deleteMax fm1) fm2; glueBal2GlueBal1 xvx xvy fm1 fm2 True = mkBalBranch (glueBal2Mid_key2 xvx xvy) (glueBal2Mid_elt2 xvx xvy) fm1 (deleteMin fm2); glueBal2GlueBal1 xvx xvy fm1 fm2 False = glueBal2GlueBal0 xvx xvy fm1 fm2 otherwise; glueBal2Mid_elt1 xvx xvy = glueBal2Mid_elt10 xvx xvy (glueBal2Vv2 xvx xvy); glueBal2Mid_elt10 xvx xvy (vyw,mid_elt1) = mid_elt1; glueBal2Mid_elt2 xvx xvy = glueBal2Mid_elt20 xvx xvy (glueBal2Vv3 xvx xvy); glueBal2Mid_elt20 xvx xvy (vyv,mid_elt2) = mid_elt2; glueBal2Mid_key1 xvx xvy = glueBal2Mid_key10 xvx xvy (glueBal2Vv2 xvx xvy); glueBal2Mid_key10 xvx xvy (mid_key1,vyx) = mid_key1; glueBal2Mid_key2 xvx xvy = glueBal2Mid_key20 xvx xvy (glueBal2Vv3 xvx xvy); glueBal2Mid_key20 xvx xvy (mid_key2,vyy) = mid_key2; glueBal2Vv2 xvx xvy = findMax xvy; glueBal2Vv3 xvx xvy = findMin xvx; glueBal3 fm1 EmptyFM = fm1; glueBal3 wxz wyu = glueBal2 wxz wyu; glueBal4 EmptyFM fm2 = fm2; glueBal4 wyw wyx = glueBal3 wyw wyx; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < 2); mkBalBranch6Double_L wzy wzz xuu xuv fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 wzy wzz fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R wzy wzz xuu xuv (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 wzy wzz fm_lrr fm_r); mkBalBranch6MkBalBranch0 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr); mkBalBranch6MkBalBranch00 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr True = mkBalBranch6Double_L wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr True = mkBalBranch6Single_L wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch6MkBalBranch1 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr); mkBalBranch6MkBalBranch10 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr True = mkBalBranch6Double_R wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr True = mkBalBranch6Single_R wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch6MkBalBranch2 wzy wzz xuu xuv key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 wzy wzz xuu xuv fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 wzy wzz xuu xuv key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 wzy wzz xuu xuv fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R (mkBalBranch6Size_l wzy wzz xuu xuv > sIZE_RATIO * mkBalBranch6Size_r wzy wzz xuu xuv); mkBalBranch6MkBalBranch5 wzy wzz xuu xuv key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R (mkBalBranch6Size_r wzy wzz xuu xuv > sIZE_RATIO * mkBalBranch6Size_l wzy wzz xuu xuv); mkBalBranch6Single_L wzy wzz xuu xuv fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 wzy wzz fm_l fm_rl) fm_rr; mkBalBranch6Single_R wzy wzz xuu xuv (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 wzy wzz fm_lr fm_r); mkBalBranch6Size_l wzy wzz xuu xuv = sizeFM xuu; mkBalBranch6Size_r wzy wzz xuu xuv = sizeFM xuv; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; mkBranchBalance_ok xuw xux xuy = True; mkBranchLeft_ok xuw xux xuy = mkBranchLeft_ok0 xuw xux xuy xux xuy xux; mkBranchLeft_ok0 xuw xux xuy fm_l key EmptyFM = True; mkBranchLeft_ok0 xuw xux xuy fm_l key (Branch left_key vuv vuw vux vuy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key xvz = fst (findMax xvz); mkBranchLeft_size xuw xux xuy = sizeFM xux; mkBranchResult xuz xvu xvv xvw = Branch xuz xvu (mkBranchUnbox xvv xvw xuz (1 + mkBranchLeft_size xvv xvw xuz + mkBranchRight_size xvv xvw xuz)) xvw xvv; mkBranchRight_ok xuw xux xuy = mkBranchRight_ok0 xuw xux xuy xuw xuy xuw; mkBranchRight_ok0 xuw xux xuy fm_r key EmptyFM = True; mkBranchRight_ok0 xuw xux xuy fm_r key (Branch right_key vuz vvu vvv vvw) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key xwu = fst (findMin xwu); mkBranchRight_size xuw xux xuy = sizeFM xuw; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); mkBranchUnbox xuw xux xuy x = x; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch vzu vzv size vzw vzx) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (13) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (14) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } delFromFM :: Ord a => FiniteMap a b -> a -> FiniteMap a b; delFromFM EmptyFM del_key = delFromFM4 EmptyFM del_key; delFromFM (Branch key elt size fm_l fm_r) del_key = delFromFM3 (Branch key elt size fm_l fm_r) del_key; delFromFM0 key elt size fm_l fm_r del_key True = glueBal fm_l fm_r; delFromFM1 key elt size fm_l fm_r del_key True = mkBalBranch key elt (delFromFM fm_l del_key) fm_r; delFromFM1 key elt size fm_l fm_r del_key False = delFromFM0 key elt size fm_l fm_r del_key (key == del_key); delFromFM2 key elt size fm_l fm_r del_key True = mkBalBranch key elt fm_l (delFromFM fm_r del_key); delFromFM2 key elt size fm_l fm_r del_key False = delFromFM1 key elt size fm_l fm_r del_key (del_key < key); delFromFM3 (Branch key elt size fm_l fm_r) del_key = delFromFM2 key elt size fm_l fm_r del_key (del_key > key); delFromFM4 EmptyFM del_key = emptyFM; delFromFM4 wzu wzv = delFromFM3 wzu wzv; delListFromFM :: Ord b => FiniteMap b a -> [b] -> FiniteMap b a; delListFromFM fm keys = foldl delFromFM fm keys; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt zz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vuu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt vzy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt vzz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vvx vvy EmptyFM) = (key,elt); findMax (Branch key elt vvz vwu fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wuu EmptyFM wuv) = (key,elt); findMin (Branch key elt wuw fm_l wux) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> b -> c -> c) -> c -> FiniteMap a b -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt vyz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; glueBal2 fm1 fm2 = glueBal2GlueBal1 fm2 fm1 fm1 fm2 (sizeFM fm2 > sizeFM fm1); glueBal2GlueBal0 xvx xvy fm1 fm2 True = mkBalBranch (glueBal2Mid_key1 xvx xvy) (glueBal2Mid_elt1 xvx xvy) (deleteMax fm1) fm2; glueBal2GlueBal1 xvx xvy fm1 fm2 True = mkBalBranch (glueBal2Mid_key2 xvx xvy) (glueBal2Mid_elt2 xvx xvy) fm1 (deleteMin fm2); glueBal2GlueBal1 xvx xvy fm1 fm2 False = glueBal2GlueBal0 xvx xvy fm1 fm2 otherwise; glueBal2Mid_elt1 xvx xvy = glueBal2Mid_elt10 xvx xvy (glueBal2Vv2 xvx xvy); glueBal2Mid_elt10 xvx xvy (vyw,mid_elt1) = mid_elt1; glueBal2Mid_elt2 xvx xvy = glueBal2Mid_elt20 xvx xvy (glueBal2Vv3 xvx xvy); glueBal2Mid_elt20 xvx xvy (vyv,mid_elt2) = mid_elt2; glueBal2Mid_key1 xvx xvy = glueBal2Mid_key10 xvx xvy (glueBal2Vv2 xvx xvy); glueBal2Mid_key10 xvx xvy (mid_key1,vyx) = mid_key1; glueBal2Mid_key2 xvx xvy = glueBal2Mid_key20 xvx xvy (glueBal2Vv3 xvx xvy); glueBal2Mid_key20 xvx xvy (mid_key2,vyy) = mid_key2; glueBal2Vv2 xvx xvy = findMax xvy; glueBal2Vv3 xvx xvy = findMin xvx; glueBal3 fm1 EmptyFM = fm1; glueBal3 wxz wyu = glueBal2 wxz wyu; glueBal4 EmptyFM fm2 = fm2; glueBal4 wyw wyx = glueBal3 wyw wyx; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < Pos (Succ (Succ Zero))); mkBalBranch6Double_L wzy wzz xuu xuv fm_l (Branch key_r elt_r vxv (Branch key_rl elt_rl vxw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) wzy wzz fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R wzy wzz xuu xuv (Branch key_l elt_l vww fm_ll (Branch key_lr elt_lr vwx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) wzy wzz fm_lrr fm_r); mkBalBranch6MkBalBranch0 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr); mkBalBranch6MkBalBranch00 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr True = mkBalBranch6Double_L wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr True = mkBalBranch6Single_L wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 wzy wzz xuu xuv fm_L fm_R (Branch vxx vxy vxz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 wzy wzz xuu xuv fm_L fm_R vxx vxy vxz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); mkBalBranch6MkBalBranch1 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr); mkBalBranch6MkBalBranch10 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr True = mkBalBranch6Double_R wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr True = mkBalBranch6Single_R wzy wzz xuu xuv fm_L fm_R; mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 wzy wzz xuu xuv fm_L fm_R (Branch vwy vwz vxu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 wzy wzz xuu xuv fm_L fm_R vwy vwz vxu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); mkBalBranch6MkBalBranch2 wzy wzz xuu xuv key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 wzy wzz xuu xuv fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 wzy wzz xuu xuv key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 wzy wzz xuu xuv fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 wzy wzz xuu xuv key elt fm_L fm_R (mkBalBranch6Size_l wzy wzz xuu xuv > sIZE_RATIO * mkBalBranch6Size_r wzy wzz xuu xuv); mkBalBranch6MkBalBranch5 wzy wzz xuu xuv key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; mkBalBranch6MkBalBranch5 wzy wzz xuu xuv key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 wzy wzz xuu xuv key elt fm_L fm_R (mkBalBranch6Size_r wzy wzz xuu xuv > sIZE_RATIO * mkBalBranch6Size_l wzy wzz xuu xuv); mkBalBranch6Single_L wzy wzz xuu xuv fm_l (Branch key_r elt_r vyu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) wzy wzz fm_l fm_rl) fm_rr; mkBalBranch6Single_R wzy wzz xuu xuv (Branch key_l elt_l vwv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) wzy wzz fm_lr fm_r); mkBalBranch6Size_l wzy wzz xuu xuv = sizeFM xuu; mkBalBranch6Size_r wzy wzz xuu xuv = sizeFM xuv; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; mkBranchBalance_ok xuw xux xuy = True; mkBranchLeft_ok xuw xux xuy = mkBranchLeft_ok0 xuw xux xuy xux xuy xux; mkBranchLeft_ok0 xuw xux xuy fm_l key EmptyFM = True; mkBranchLeft_ok0 xuw xux xuy fm_l key (Branch left_key vuv vuw vux vuy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key xvz = fst (findMax xvz); mkBranchLeft_size xuw xux xuy = sizeFM xux; mkBranchResult xuz xvu xvv xvw = Branch xuz xvu (mkBranchUnbox xvv xvw xuz (Pos (Succ Zero) + mkBranchLeft_size xvv xvw xuz + mkBranchRight_size xvv xvw xuz)) xvw xvv; mkBranchRight_ok xuw xux xuy = mkBranchRight_ok0 xuw xux xuy xuw xuy xuw; mkBranchRight_ok0 xuw xux xuy fm_r key EmptyFM = True; mkBranchRight_ok0 xuw xux xuy fm_r key (Branch right_key vuz vvu vvv vvw) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key xwu = fst (findMin xwu); mkBranchRight_size xuw xux xuy = sizeFM xuw; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); mkBranchUnbox xuw xux xuy x = x; sIZE_RATIO :: Int; sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = Pos Zero; sizeFM (Branch vzu vzv size vzw vzx) = size; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (15) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.delListFromFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.delListFromFM xwv3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="FiniteMap.delListFromFM xwv3 xwv4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="foldl FiniteMap.delFromFM xwv3 xwv4",fontsize=16,color="burlywood",shape="triangle"];3695[label="xwv4/xwv40 : xwv41",fontsize=10,color="white",style="solid",shape="box"];5 -> 3695[label="",style="solid", color="burlywood", weight=9]; 3695 -> 6[label="",style="solid", color="burlywood", weight=3]; 3696[label="xwv4/[]",fontsize=10,color="white",style="solid",shape="box"];5 -> 3696[label="",style="solid", color="burlywood", weight=9]; 3696 -> 7[label="",style="solid", color="burlywood", weight=3]; 6[label="foldl FiniteMap.delFromFM xwv3 (xwv40 : xwv41)",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7[label="foldl FiniteMap.delFromFM xwv3 []",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8 -> 5[label="",style="dashed", color="red", weight=0]; 8[label="foldl FiniteMap.delFromFM (FiniteMap.delFromFM xwv3 xwv40) xwv41",fontsize=16,color="magenta"];8 -> 10[label="",style="dashed", color="magenta", weight=3]; 8 -> 11[label="",style="dashed", color="magenta", weight=3]; 9[label="xwv3",fontsize=16,color="green",shape="box"];10[label="xwv41",fontsize=16,color="green",shape="box"];11[label="FiniteMap.delFromFM xwv3 xwv40",fontsize=16,color="burlywood",shape="triangle"];3697[label="xwv3/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];11 -> 3697[label="",style="solid", color="burlywood", weight=9]; 3697 -> 12[label="",style="solid", color="burlywood", weight=3]; 3698[label="xwv3/FiniteMap.Branch xwv30 xwv31 xwv32 xwv33 xwv34",fontsize=10,color="white",style="solid",shape="box"];11 -> 3698[label="",style="solid", color="burlywood", weight=9]; 3698 -> 13[label="",style="solid", color="burlywood", weight=3]; 12[label="FiniteMap.delFromFM FiniteMap.EmptyFM xwv40",fontsize=16,color="black",shape="box"];12 -> 14[label="",style="solid", color="black", weight=3]; 13[label="FiniteMap.delFromFM (FiniteMap.Branch xwv30 xwv31 xwv32 xwv33 xwv34) xwv40",fontsize=16,color="black",shape="box"];13 -> 15[label="",style="solid", color="black", weight=3]; 14[label="FiniteMap.delFromFM4 FiniteMap.EmptyFM xwv40",fontsize=16,color="black",shape="box"];14 -> 16[label="",style="solid", color="black", weight=3]; 15[label="FiniteMap.delFromFM3 (FiniteMap.Branch xwv30 xwv31 xwv32 xwv33 xwv34) xwv40",fontsize=16,color="black",shape="box"];15 -> 17[label="",style="solid", color="black", weight=3]; 16[label="FiniteMap.emptyFM",fontsize=16,color="black",shape="box"];16 -> 18[label="",style="solid", color="black", weight=3]; 17[label="FiniteMap.delFromFM2 xwv30 xwv31 xwv32 xwv33 xwv34 xwv40 (xwv40 > xwv30)",fontsize=16,color="black",shape="box"];17 -> 19[label="",style="solid", color="black", weight=3]; 18[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];19[label="FiniteMap.delFromFM2 xwv30 xwv31 xwv32 xwv33 xwv34 xwv40 (compare xwv40 xwv30 == GT)",fontsize=16,color="black",shape="box"];19 -> 20[label="",style="solid", color="black", weight=3]; 20[label="FiniteMap.delFromFM2 xwv30 xwv31 xwv32 xwv33 xwv34 xwv40 (compare3 xwv40 xwv30 == GT)",fontsize=16,color="black",shape="box"];20 -> 21[label="",style="solid", color="black", weight=3]; 21[label="FiniteMap.delFromFM2 xwv30 xwv31 xwv32 xwv33 xwv34 xwv40 (compare2 xwv40 xwv30 (xwv40 == xwv30) == GT)",fontsize=16,color="burlywood",shape="box"];3699[label="xwv40/(xwv400,xwv401)",fontsize=10,color="white",style="solid",shape="box"];21 -> 3699[label="",style="solid", color="burlywood", weight=9]; 3699 -> 22[label="",style="solid", color="burlywood", weight=3]; 22[label="FiniteMap.delFromFM2 xwv30 xwv31 xwv32 xwv33 xwv34 (xwv400,xwv401) (compare2 (xwv400,xwv401) xwv30 ((xwv400,xwv401) == xwv30) == GT)",fontsize=16,color="burlywood",shape="box"];3700[label="xwv30/(xwv300,xwv301)",fontsize=10,color="white",style="solid",shape="box"];22 -> 3700[label="",style="solid", color="burlywood", weight=9]; 3700 -> 23[label="",style="solid", color="burlywood", weight=3]; 23[label="FiniteMap.delFromFM2 (xwv300,xwv301) xwv31 xwv32 xwv33 xwv34 (xwv400,xwv401) (compare2 (xwv400,xwv401) (xwv300,xwv301) ((xwv400,xwv401) == (xwv300,xwv301)) == GT)",fontsize=16,color="black",shape="box"];23 -> 24[label="",style="solid", color="black", weight=3]; 24 -> 108[label="",style="dashed", color="red", weight=0]; 24[label="FiniteMap.delFromFM2 (xwv300,xwv301) xwv31 xwv32 xwv33 xwv34 (xwv400,xwv401) (compare2 (xwv400,xwv401) (xwv300,xwv301) (xwv400 == xwv300 && xwv401 == xwv301) == GT)",fontsize=16,color="magenta"];24 -> 109[label="",style="dashed", color="magenta", weight=3]; 24 -> 110[label="",style="dashed", color="magenta", weight=3]; 24 -> 111[label="",style="dashed", color="magenta", weight=3]; 24 -> 112[label="",style="dashed", color="magenta", weight=3]; 24 -> 113[label="",style="dashed", color="magenta", weight=3]; 24 -> 114[label="",style="dashed", color="magenta", weight=3]; 24 -> 115[label="",style="dashed", color="magenta", weight=3]; 24 -> 116[label="",style="dashed", color="magenta", weight=3]; 24 -> 117[label="",style="dashed", color="magenta", weight=3]; 109[label="xwv400",fontsize=16,color="green",shape="box"];110 -> 121[label="",style="dashed", color="red", weight=0]; 110[label="compare2 (xwv400,xwv401) (xwv300,xwv301) (xwv400 == xwv300 && xwv401 == xwv301) == GT",fontsize=16,color="magenta"];110 -> 122[label="",style="dashed", color="magenta", weight=3]; 110 -> 123[label="",style="dashed", color="magenta", weight=3]; 110 -> 124[label="",style="dashed", color="magenta", weight=3]; 110 -> 125[label="",style="dashed", color="magenta", weight=3]; 110 -> 126[label="",style="dashed", color="magenta", weight=3]; 111[label="xwv34",fontsize=16,color="green",shape="box"];112[label="xwv401",fontsize=16,color="green",shape="box"];113[label="xwv31",fontsize=16,color="green",shape="box"];114[label="xwv33",fontsize=16,color="green",shape="box"];115[label="xwv300",fontsize=16,color="green",shape="box"];116[label="xwv32",fontsize=16,color="green",shape="box"];117[label="xwv301",fontsize=16,color="green",shape="box"];108[label="FiniteMap.delFromFM2 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) xwv24",fontsize=16,color="burlywood",shape="triangle"];3701[label="xwv24/False",fontsize=10,color="white",style="solid",shape="box"];108 -> 3701[label="",style="solid", color="burlywood", weight=9]; 3701 -> 127[label="",style="solid", color="burlywood", weight=3]; 3702[label="xwv24/True",fontsize=10,color="white",style="solid",shape="box"];108 -> 3702[label="",style="solid", color="burlywood", weight=9]; 3702 -> 128[label="",style="solid", color="burlywood", weight=3]; 122[label="xwv301",fontsize=16,color="green",shape="box"];123[label="xwv400 == xwv300",fontsize=16,color="blue",shape="box"];3703[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3703[label="",style="solid", color="blue", weight=9]; 3703 -> 129[label="",style="solid", color="blue", weight=3]; 3704[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3704[label="",style="solid", color="blue", weight=9]; 3704 -> 130[label="",style="solid", color="blue", weight=3]; 3705[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3705[label="",style="solid", color="blue", weight=9]; 3705 -> 131[label="",style="solid", color="blue", weight=3]; 3706[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3706[label="",style="solid", color="blue", weight=9]; 3706 -> 132[label="",style="solid", color="blue", weight=3]; 3707[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3707[label="",style="solid", color="blue", weight=9]; 3707 -> 133[label="",style="solid", color="blue", weight=3]; 3708[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3708[label="",style="solid", color="blue", weight=9]; 3708 -> 134[label="",style="solid", color="blue", weight=3]; 3709[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3709[label="",style="solid", color="blue", weight=9]; 3709 -> 135[label="",style="solid", color="blue", weight=3]; 3710[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3710[label="",style="solid", color="blue", weight=9]; 3710 -> 136[label="",style="solid", color="blue", weight=3]; 3711[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3711[label="",style="solid", color="blue", weight=9]; 3711 -> 137[label="",style="solid", color="blue", weight=3]; 3712[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3712[label="",style="solid", color="blue", weight=9]; 3712 -> 138[label="",style="solid", color="blue", weight=3]; 3713[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3713[label="",style="solid", color="blue", weight=9]; 3713 -> 139[label="",style="solid", color="blue", weight=3]; 3714[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3714[label="",style="solid", color="blue", weight=9]; 3714 -> 140[label="",style="solid", color="blue", weight=3]; 3715[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3715[label="",style="solid", color="blue", weight=9]; 3715 -> 141[label="",style="solid", color="blue", weight=3]; 3716[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];123 -> 3716[label="",style="solid", color="blue", weight=9]; 3716 -> 142[label="",style="solid", color="blue", weight=3]; 124[label="xwv400",fontsize=16,color="green",shape="box"];125[label="xwv401",fontsize=16,color="green",shape="box"];126[label="xwv300",fontsize=16,color="green",shape="box"];121[label="compare2 (xwv31,xwv32) (xwv33,xwv34) (xwv35 && xwv32 == xwv34) == GT",fontsize=16,color="burlywood",shape="triangle"];3717[label="xwv35/False",fontsize=10,color="white",style="solid",shape="box"];121 -> 3717[label="",style="solid", color="burlywood", weight=9]; 3717 -> 143[label="",style="solid", color="burlywood", weight=3]; 3718[label="xwv35/True",fontsize=10,color="white",style="solid",shape="box"];121 -> 3718[label="",style="solid", color="burlywood", weight=9]; 3718 -> 144[label="",style="solid", color="burlywood", weight=3]; 127[label="FiniteMap.delFromFM2 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) False",fontsize=16,color="black",shape="box"];127 -> 145[label="",style="solid", color="black", weight=3]; 128[label="FiniteMap.delFromFM2 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) True",fontsize=16,color="black",shape="box"];128 -> 146[label="",style="solid", color="black", weight=3]; 129[label="xwv400 == xwv300",fontsize=16,color="black",shape="triangle"];129 -> 147[label="",style="solid", color="black", weight=3]; 130[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3719[label="xwv400/xwv4000 :% xwv4001",fontsize=10,color="white",style="solid",shape="box"];130 -> 3719[label="",style="solid", color="burlywood", weight=9]; 3719 -> 148[label="",style="solid", color="burlywood", weight=3]; 131[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3720[label="xwv400/Integer xwv4000",fontsize=10,color="white",style="solid",shape="box"];131 -> 3720[label="",style="solid", color="burlywood", weight=9]; 3720 -> 149[label="",style="solid", color="burlywood", weight=3]; 132[label="xwv400 == xwv300",fontsize=16,color="black",shape="triangle"];132 -> 150[label="",style="solid", color="black", weight=3]; 133[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3721[label="xwv400/Left xwv4000",fontsize=10,color="white",style="solid",shape="box"];133 -> 3721[label="",style="solid", color="burlywood", weight=9]; 3721 -> 151[label="",style="solid", color="burlywood", weight=3]; 3722[label="xwv400/Right xwv4000",fontsize=10,color="white",style="solid",shape="box"];133 -> 3722[label="",style="solid", color="burlywood", weight=9]; 3722 -> 152[label="",style="solid", color="burlywood", weight=3]; 134[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3723[label="xwv400/(xwv4000,xwv4001)",fontsize=10,color="white",style="solid",shape="box"];134 -> 3723[label="",style="solid", color="burlywood", weight=9]; 3723 -> 153[label="",style="solid", color="burlywood", weight=3]; 135[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3724[label="xwv400/LT",fontsize=10,color="white",style="solid",shape="box"];135 -> 3724[label="",style="solid", color="burlywood", weight=9]; 3724 -> 154[label="",style="solid", color="burlywood", weight=3]; 3725[label="xwv400/EQ",fontsize=10,color="white",style="solid",shape="box"];135 -> 3725[label="",style="solid", color="burlywood", weight=9]; 3725 -> 155[label="",style="solid", color="burlywood", weight=3]; 3726[label="xwv400/GT",fontsize=10,color="white",style="solid",shape="box"];135 -> 3726[label="",style="solid", color="burlywood", weight=9]; 3726 -> 156[label="",style="solid", color="burlywood", weight=3]; 136[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3727[label="xwv400/Nothing",fontsize=10,color="white",style="solid",shape="box"];136 -> 3727[label="",style="solid", color="burlywood", weight=9]; 3727 -> 157[label="",style="solid", color="burlywood", weight=3]; 3728[label="xwv400/Just xwv4000",fontsize=10,color="white",style="solid",shape="box"];136 -> 3728[label="",style="solid", color="burlywood", weight=9]; 3728 -> 158[label="",style="solid", color="burlywood", weight=3]; 137[label="xwv400 == xwv300",fontsize=16,color="black",shape="triangle"];137 -> 159[label="",style="solid", color="black", weight=3]; 138[label="xwv400 == xwv300",fontsize=16,color="black",shape="triangle"];138 -> 160[label="",style="solid", color="black", weight=3]; 139[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3729[label="xwv400/xwv4000 : xwv4001",fontsize=10,color="white",style="solid",shape="box"];139 -> 3729[label="",style="solid", color="burlywood", weight=9]; 3729 -> 161[label="",style="solid", color="burlywood", weight=3]; 3730[label="xwv400/[]",fontsize=10,color="white",style="solid",shape="box"];139 -> 3730[label="",style="solid", color="burlywood", weight=9]; 3730 -> 162[label="",style="solid", color="burlywood", weight=3]; 140[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3731[label="xwv400/False",fontsize=10,color="white",style="solid",shape="box"];140 -> 3731[label="",style="solid", color="burlywood", weight=9]; 3731 -> 163[label="",style="solid", color="burlywood", weight=3]; 3732[label="xwv400/True",fontsize=10,color="white",style="solid",shape="box"];140 -> 3732[label="",style="solid", color="burlywood", weight=9]; 3732 -> 164[label="",style="solid", color="burlywood", weight=3]; 141[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3733[label="xwv400/()",fontsize=10,color="white",style="solid",shape="box"];141 -> 3733[label="",style="solid", color="burlywood", weight=9]; 3733 -> 165[label="",style="solid", color="burlywood", weight=3]; 142[label="xwv400 == xwv300",fontsize=16,color="burlywood",shape="triangle"];3734[label="xwv400/(xwv4000,xwv4001,xwv4002)",fontsize=10,color="white",style="solid",shape="box"];142 -> 3734[label="",style="solid", color="burlywood", weight=9]; 3734 -> 166[label="",style="solid", color="burlywood", weight=3]; 143[label="compare2 (xwv31,xwv32) (xwv33,xwv34) (False && xwv32 == xwv34) == GT",fontsize=16,color="black",shape="box"];143 -> 167[label="",style="solid", color="black", weight=3]; 144[label="compare2 (xwv31,xwv32) (xwv33,xwv34) (True && xwv32 == xwv34) == GT",fontsize=16,color="black",shape="box"];144 -> 168[label="",style="solid", color="black", weight=3]; 145 -> 211[label="",style="dashed", color="red", weight=0]; 145[label="FiniteMap.delFromFM1 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) ((xwv21,xwv22) < (xwv15,xwv16))",fontsize=16,color="magenta"];145 -> 212[label="",style="dashed", color="magenta", weight=3]; 146 -> 2788[label="",style="dashed", color="red", weight=0]; 146[label="FiniteMap.mkBalBranch (xwv15,xwv16) xwv17 xwv19 (FiniteMap.delFromFM xwv20 (xwv21,xwv22))",fontsize=16,color="magenta"];146 -> 2789[label="",style="dashed", color="magenta", weight=3]; 146 -> 2790[label="",style="dashed", color="magenta", weight=3]; 146 -> 2791[label="",style="dashed", color="magenta", weight=3]; 146 -> 2792[label="",style="dashed", color="magenta", weight=3]; 147[label="primEqFloat xwv400 xwv300",fontsize=16,color="burlywood",shape="box"];3735[label="xwv400/Float xwv4000 xwv4001",fontsize=10,color="white",style="solid",shape="box"];147 -> 3735[label="",style="solid", color="burlywood", weight=9]; 3735 -> 172[label="",style="solid", color="burlywood", weight=3]; 148[label="xwv4000 :% xwv4001 == xwv300",fontsize=16,color="burlywood",shape="box"];3736[label="xwv300/xwv3000 :% xwv3001",fontsize=10,color="white",style="solid",shape="box"];148 -> 3736[label="",style="solid", color="burlywood", weight=9]; 3736 -> 173[label="",style="solid", color="burlywood", weight=3]; 149[label="Integer xwv4000 == xwv300",fontsize=16,color="burlywood",shape="box"];3737[label="xwv300/Integer xwv3000",fontsize=10,color="white",style="solid",shape="box"];149 -> 3737[label="",style="solid", color="burlywood", weight=9]; 3737 -> 174[label="",style="solid", color="burlywood", weight=3]; 150[label="primEqChar xwv400 xwv300",fontsize=16,color="burlywood",shape="box"];3738[label="xwv400/Char xwv4000",fontsize=10,color="white",style="solid",shape="box"];150 -> 3738[label="",style="solid", color="burlywood", weight=9]; 3738 -> 175[label="",style="solid", color="burlywood", weight=3]; 151[label="Left xwv4000 == xwv300",fontsize=16,color="burlywood",shape="box"];3739[label="xwv300/Left xwv3000",fontsize=10,color="white",style="solid",shape="box"];151 -> 3739[label="",style="solid", color="burlywood", weight=9]; 3739 -> 176[label="",style="solid", color="burlywood", weight=3]; 3740[label="xwv300/Right xwv3000",fontsize=10,color="white",style="solid",shape="box"];151 -> 3740[label="",style="solid", color="burlywood", weight=9]; 3740 -> 177[label="",style="solid", color="burlywood", weight=3]; 152[label="Right xwv4000 == xwv300",fontsize=16,color="burlywood",shape="box"];3741[label="xwv300/Left xwv3000",fontsize=10,color="white",style="solid",shape="box"];152 -> 3741[label="",style="solid", color="burlywood", weight=9]; 3741 -> 178[label="",style="solid", color="burlywood", weight=3]; 3742[label="xwv300/Right xwv3000",fontsize=10,color="white",style="solid",shape="box"];152 -> 3742[label="",style="solid", color="burlywood", weight=9]; 3742 -> 179[label="",style="solid", color="burlywood", weight=3]; 153[label="(xwv4000,xwv4001) == xwv300",fontsize=16,color="burlywood",shape="box"];3743[label="xwv300/(xwv3000,xwv3001)",fontsize=10,color="white",style="solid",shape="box"];153 -> 3743[label="",style="solid", color="burlywood", weight=9]; 3743 -> 180[label="",style="solid", color="burlywood", weight=3]; 154[label="LT == xwv300",fontsize=16,color="burlywood",shape="box"];3744[label="xwv300/LT",fontsize=10,color="white",style="solid",shape="box"];154 -> 3744[label="",style="solid", color="burlywood", weight=9]; 3744 -> 181[label="",style="solid", color="burlywood", weight=3]; 3745[label="xwv300/EQ",fontsize=10,color="white",style="solid",shape="box"];154 -> 3745[label="",style="solid", color="burlywood", weight=9]; 3745 -> 182[label="",style="solid", color="burlywood", weight=3]; 3746[label="xwv300/GT",fontsize=10,color="white",style="solid",shape="box"];154 -> 3746[label="",style="solid", color="burlywood", weight=9]; 3746 -> 183[label="",style="solid", color="burlywood", weight=3]; 155[label="EQ == xwv300",fontsize=16,color="burlywood",shape="box"];3747[label="xwv300/LT",fontsize=10,color="white",style="solid",shape="box"];155 -> 3747[label="",style="solid", color="burlywood", weight=9]; 3747 -> 184[label="",style="solid", color="burlywood", weight=3]; 3748[label="xwv300/EQ",fontsize=10,color="white",style="solid",shape="box"];155 -> 3748[label="",style="solid", color="burlywood", weight=9]; 3748 -> 185[label="",style="solid", color="burlywood", weight=3]; 3749[label="xwv300/GT",fontsize=10,color="white",style="solid",shape="box"];155 -> 3749[label="",style="solid", color="burlywood", weight=9]; 3749 -> 186[label="",style="solid", color="burlywood", weight=3]; 156[label="GT == xwv300",fontsize=16,color="burlywood",shape="box"];3750[label="xwv300/LT",fontsize=10,color="white",style="solid",shape="box"];156 -> 3750[label="",style="solid", color="burlywood", weight=9]; 3750 -> 187[label="",style="solid", color="burlywood", weight=3]; 3751[label="xwv300/EQ",fontsize=10,color="white",style="solid",shape="box"];156 -> 3751[label="",style="solid", color="burlywood", weight=9]; 3751 -> 188[label="",style="solid", color="burlywood", weight=3]; 3752[label="xwv300/GT",fontsize=10,color="white",style="solid",shape="box"];156 -> 3752[label="",style="solid", color="burlywood", weight=9]; 3752 -> 189[label="",style="solid", color="burlywood", weight=3]; 157[label="Nothing == xwv300",fontsize=16,color="burlywood",shape="box"];3753[label="xwv300/Nothing",fontsize=10,color="white",style="solid",shape="box"];157 -> 3753[label="",style="solid", color="burlywood", weight=9]; 3753 -> 190[label="",style="solid", color="burlywood", weight=3]; 3754[label="xwv300/Just xwv3000",fontsize=10,color="white",style="solid",shape="box"];157 -> 3754[label="",style="solid", color="burlywood", weight=9]; 3754 -> 191[label="",style="solid", color="burlywood", weight=3]; 158[label="Just xwv4000 == xwv300",fontsize=16,color="burlywood",shape="box"];3755[label="xwv300/Nothing",fontsize=10,color="white",style="solid",shape="box"];158 -> 3755[label="",style="solid", color="burlywood", weight=9]; 3755 -> 192[label="",style="solid", color="burlywood", weight=3]; 3756[label="xwv300/Just xwv3000",fontsize=10,color="white",style="solid",shape="box"];158 -> 3756[label="",style="solid", color="burlywood", weight=9]; 3756 -> 193[label="",style="solid", color="burlywood", weight=3]; 159[label="primEqDouble xwv400 xwv300",fontsize=16,color="burlywood",shape="box"];3757[label="xwv400/Double xwv4000 xwv4001",fontsize=10,color="white",style="solid",shape="box"];159 -> 3757[label="",style="solid", color="burlywood", weight=9]; 3757 -> 194[label="",style="solid", color="burlywood", weight=3]; 160[label="primEqInt xwv400 xwv300",fontsize=16,color="burlywood",shape="triangle"];3758[label="xwv400/Pos xwv4000",fontsize=10,color="white",style="solid",shape="box"];160 -> 3758[label="",style="solid", color="burlywood", weight=9]; 3758 -> 195[label="",style="solid", color="burlywood", weight=3]; 3759[label="xwv400/Neg xwv4000",fontsize=10,color="white",style="solid",shape="box"];160 -> 3759[label="",style="solid", color="burlywood", weight=9]; 3759 -> 196[label="",style="solid", color="burlywood", weight=3]; 161[label="xwv4000 : xwv4001 == xwv300",fontsize=16,color="burlywood",shape="box"];3760[label="xwv300/xwv3000 : xwv3001",fontsize=10,color="white",style="solid",shape="box"];161 -> 3760[label="",style="solid", color="burlywood", weight=9]; 3760 -> 197[label="",style="solid", color="burlywood", weight=3]; 3761[label="xwv300/[]",fontsize=10,color="white",style="solid",shape="box"];161 -> 3761[label="",style="solid", color="burlywood", weight=9]; 3761 -> 198[label="",style="solid", color="burlywood", weight=3]; 162[label="[] == xwv300",fontsize=16,color="burlywood",shape="box"];3762[label="xwv300/xwv3000 : xwv3001",fontsize=10,color="white",style="solid",shape="box"];162 -> 3762[label="",style="solid", color="burlywood", weight=9]; 3762 -> 199[label="",style="solid", color="burlywood", weight=3]; 3763[label="xwv300/[]",fontsize=10,color="white",style="solid",shape="box"];162 -> 3763[label="",style="solid", color="burlywood", weight=9]; 3763 -> 200[label="",style="solid", color="burlywood", weight=3]; 163[label="False == xwv300",fontsize=16,color="burlywood",shape="box"];3764[label="xwv300/False",fontsize=10,color="white",style="solid",shape="box"];163 -> 3764[label="",style="solid", color="burlywood", weight=9]; 3764 -> 201[label="",style="solid", color="burlywood", weight=3]; 3765[label="xwv300/True",fontsize=10,color="white",style="solid",shape="box"];163 -> 3765[label="",style="solid", color="burlywood", weight=9]; 3765 -> 202[label="",style="solid", color="burlywood", weight=3]; 164[label="True == xwv300",fontsize=16,color="burlywood",shape="box"];3766[label="xwv300/False",fontsize=10,color="white",style="solid",shape="box"];164 -> 3766[label="",style="solid", color="burlywood", weight=9]; 3766 -> 203[label="",style="solid", color="burlywood", weight=3]; 3767[label="xwv300/True",fontsize=10,color="white",style="solid",shape="box"];164 -> 3767[label="",style="solid", color="burlywood", weight=9]; 3767 -> 204[label="",style="solid", color="burlywood", weight=3]; 165[label="() == xwv300",fontsize=16,color="burlywood",shape="box"];3768[label="xwv300/()",fontsize=10,color="white",style="solid",shape="box"];165 -> 3768[label="",style="solid", color="burlywood", weight=9]; 3768 -> 205[label="",style="solid", color="burlywood", weight=3]; 166[label="(xwv4000,xwv4001,xwv4002) == xwv300",fontsize=16,color="burlywood",shape="box"];3769[label="xwv300/(xwv3000,xwv3001,xwv3002)",fontsize=10,color="white",style="solid",shape="box"];166 -> 3769[label="",style="solid", color="burlywood", weight=9]; 3769 -> 206[label="",style="solid", color="burlywood", weight=3]; 167 -> 135[label="",style="dashed", color="red", weight=0]; 167[label="compare2 (xwv31,xwv32) (xwv33,xwv34) False == GT",fontsize=16,color="magenta"];167 -> 207[label="",style="dashed", color="magenta", weight=3]; 167 -> 208[label="",style="dashed", color="magenta", weight=3]; 168 -> 135[label="",style="dashed", color="red", weight=0]; 168[label="compare2 (xwv31,xwv32) (xwv33,xwv34) (xwv32 == xwv34) == GT",fontsize=16,color="magenta"];168 -> 209[label="",style="dashed", color="magenta", weight=3]; 168 -> 210[label="",style="dashed", color="magenta", weight=3]; 212[label="(xwv21,xwv22) < (xwv15,xwv16)",fontsize=16,color="black",shape="box"];212 -> 214[label="",style="solid", color="black", weight=3]; 211[label="FiniteMap.delFromFM1 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) xwv37",fontsize=16,color="burlywood",shape="triangle"];3770[label="xwv37/False",fontsize=10,color="white",style="solid",shape="box"];211 -> 3770[label="",style="solid", color="burlywood", weight=9]; 3770 -> 215[label="",style="solid", color="burlywood", weight=3]; 3771[label="xwv37/True",fontsize=10,color="white",style="solid",shape="box"];211 -> 3771[label="",style="solid", color="burlywood", weight=9]; 3771 -> 216[label="",style="solid", color="burlywood", weight=3]; 2789[label="(xwv15,xwv16)",fontsize=16,color="green",shape="box"];2790 -> 11[label="",style="dashed", color="red", weight=0]; 2790[label="FiniteMap.delFromFM xwv20 (xwv21,xwv22)",fontsize=16,color="magenta"];2790 -> 2810[label="",style="dashed", color="magenta", weight=3]; 2790 -> 2811[label="",style="dashed", color="magenta", weight=3]; 2791[label="xwv17",fontsize=16,color="green",shape="box"];2792[label="xwv19",fontsize=16,color="green",shape="box"];2788[label="FiniteMap.mkBalBranch xwv200 xwv201 xwv240 xwv204",fontsize=16,color="black",shape="triangle"];2788 -> 2812[label="",style="solid", color="black", weight=3]; 172[label="primEqFloat (Float xwv4000 xwv4001) xwv300",fontsize=16,color="burlywood",shape="box"];3772[label="xwv300/Float xwv3000 xwv3001",fontsize=10,color="white",style="solid",shape="box"];172 -> 3772[label="",style="solid", color="burlywood", weight=9]; 3772 -> 220[label="",style="solid", color="burlywood", weight=3]; 173[label="xwv4000 :% xwv4001 == xwv3000 :% xwv3001",fontsize=16,color="black",shape="box"];173 -> 221[label="",style="solid", color="black", weight=3]; 174[label="Integer xwv4000 == Integer xwv3000",fontsize=16,color="black",shape="box"];174 -> 222[label="",style="solid", color="black", weight=3]; 175[label="primEqChar (Char xwv4000) xwv300",fontsize=16,color="burlywood",shape="box"];3773[label="xwv300/Char xwv3000",fontsize=10,color="white",style="solid",shape="box"];175 -> 3773[label="",style="solid", color="burlywood", weight=9]; 3773 -> 223[label="",style="solid", color="burlywood", weight=3]; 176[label="Left xwv4000 == Left xwv3000",fontsize=16,color="black",shape="box"];176 -> 224[label="",style="solid", color="black", weight=3]; 177[label="Left xwv4000 == Right xwv3000",fontsize=16,color="black",shape="box"];177 -> 225[label="",style="solid", color="black", weight=3]; 178[label="Right xwv4000 == Left xwv3000",fontsize=16,color="black",shape="box"];178 -> 226[label="",style="solid", color="black", weight=3]; 179[label="Right xwv4000 == Right xwv3000",fontsize=16,color="black",shape="box"];179 -> 227[label="",style="solid", color="black", weight=3]; 180[label="(xwv4000,xwv4001) == (xwv3000,xwv3001)",fontsize=16,color="black",shape="box"];180 -> 228[label="",style="solid", color="black", weight=3]; 181[label="LT == LT",fontsize=16,color="black",shape="box"];181 -> 229[label="",style="solid", color="black", weight=3]; 182[label="LT == EQ",fontsize=16,color="black",shape="box"];182 -> 230[label="",style="solid", color="black", weight=3]; 183[label="LT == GT",fontsize=16,color="black",shape="box"];183 -> 231[label="",style="solid", color="black", weight=3]; 184[label="EQ == LT",fontsize=16,color="black",shape="box"];184 -> 232[label="",style="solid", color="black", weight=3]; 185[label="EQ == EQ",fontsize=16,color="black",shape="box"];185 -> 233[label="",style="solid", color="black", weight=3]; 186[label="EQ == GT",fontsize=16,color="black",shape="box"];186 -> 234[label="",style="solid", color="black", weight=3]; 187[label="GT == LT",fontsize=16,color="black",shape="box"];187 -> 235[label="",style="solid", color="black", weight=3]; 188[label="GT == EQ",fontsize=16,color="black",shape="box"];188 -> 236[label="",style="solid", color="black", weight=3]; 189[label="GT == GT",fontsize=16,color="black",shape="box"];189 -> 237[label="",style="solid", color="black", weight=3]; 190[label="Nothing == Nothing",fontsize=16,color="black",shape="box"];190 -> 238[label="",style="solid", color="black", weight=3]; 191[label="Nothing == Just xwv3000",fontsize=16,color="black",shape="box"];191 -> 239[label="",style="solid", color="black", weight=3]; 192[label="Just xwv4000 == Nothing",fontsize=16,color="black",shape="box"];192 -> 240[label="",style="solid", color="black", weight=3]; 193[label="Just xwv4000 == Just xwv3000",fontsize=16,color="black",shape="box"];193 -> 241[label="",style="solid", color="black", weight=3]; 194[label="primEqDouble (Double xwv4000 xwv4001) xwv300",fontsize=16,color="burlywood",shape="box"];3774[label="xwv300/Double xwv3000 xwv3001",fontsize=10,color="white",style="solid",shape="box"];194 -> 3774[label="",style="solid", color="burlywood", weight=9]; 3774 -> 242[label="",style="solid", color="burlywood", weight=3]; 195[label="primEqInt (Pos xwv4000) xwv300",fontsize=16,color="burlywood",shape="box"];3775[label="xwv4000/Succ xwv40000",fontsize=10,color="white",style="solid",shape="box"];195 -> 3775[label="",style="solid", color="burlywood", weight=9]; 3775 -> 243[label="",style="solid", color="burlywood", weight=3]; 3776[label="xwv4000/Zero",fontsize=10,color="white",style="solid",shape="box"];195 -> 3776[label="",style="solid", color="burlywood", weight=9]; 3776 -> 244[label="",style="solid", color="burlywood", weight=3]; 196[label="primEqInt (Neg xwv4000) xwv300",fontsize=16,color="burlywood",shape="box"];3777[label="xwv4000/Succ xwv40000",fontsize=10,color="white",style="solid",shape="box"];196 -> 3777[label="",style="solid", color="burlywood", weight=9]; 3777 -> 245[label="",style="solid", color="burlywood", weight=3]; 3778[label="xwv4000/Zero",fontsize=10,color="white",style="solid",shape="box"];196 -> 3778[label="",style="solid", color="burlywood", weight=9]; 3778 -> 246[label="",style="solid", color="burlywood", weight=3]; 197[label="xwv4000 : xwv4001 == xwv3000 : xwv3001",fontsize=16,color="black",shape="box"];197 -> 247[label="",style="solid", color="black", weight=3]; 198[label="xwv4000 : xwv4001 == []",fontsize=16,color="black",shape="box"];198 -> 248[label="",style="solid", color="black", weight=3]; 199[label="[] == xwv3000 : xwv3001",fontsize=16,color="black",shape="box"];199 -> 249[label="",style="solid", color="black", weight=3]; 200[label="[] == []",fontsize=16,color="black",shape="box"];200 -> 250[label="",style="solid", color="black", weight=3]; 201[label="False == False",fontsize=16,color="black",shape="box"];201 -> 251[label="",style="solid", color="black", weight=3]; 202[label="False == True",fontsize=16,color="black",shape="box"];202 -> 252[label="",style="solid", color="black", weight=3]; 203[label="True == False",fontsize=16,color="black",shape="box"];203 -> 253[label="",style="solid", color="black", weight=3]; 204[label="True == True",fontsize=16,color="black",shape="box"];204 -> 254[label="",style="solid", color="black", weight=3]; 205[label="() == ()",fontsize=16,color="black",shape="box"];205 -> 255[label="",style="solid", color="black", weight=3]; 206[label="(xwv4000,xwv4001,xwv4002) == (xwv3000,xwv3001,xwv3002)",fontsize=16,color="black",shape="box"];206 -> 256[label="",style="solid", color="black", weight=3]; 207[label="GT",fontsize=16,color="green",shape="box"];208 -> 1310[label="",style="dashed", color="red", weight=0]; 208[label="compare2 (xwv31,xwv32) (xwv33,xwv34) False",fontsize=16,color="magenta"];208 -> 1311[label="",style="dashed", color="magenta", weight=3]; 208 -> 1312[label="",style="dashed", color="magenta", weight=3]; 208 -> 1313[label="",style="dashed", color="magenta", weight=3]; 209[label="GT",fontsize=16,color="green",shape="box"];210 -> 1310[label="",style="dashed", color="red", weight=0]; 210[label="compare2 (xwv31,xwv32) (xwv33,xwv34) (xwv32 == xwv34)",fontsize=16,color="magenta"];210 -> 1314[label="",style="dashed", color="magenta", weight=3]; 210 -> 1315[label="",style="dashed", color="magenta", weight=3]; 210 -> 1316[label="",style="dashed", color="magenta", weight=3]; 214 -> 135[label="",style="dashed", color="red", weight=0]; 214[label="compare (xwv21,xwv22) (xwv15,xwv16) == LT",fontsize=16,color="magenta"];214 -> 269[label="",style="dashed", color="magenta", weight=3]; 214 -> 270[label="",style="dashed", color="magenta", weight=3]; 215[label="FiniteMap.delFromFM1 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) False",fontsize=16,color="black",shape="box"];215 -> 271[label="",style="solid", color="black", weight=3]; 216[label="FiniteMap.delFromFM1 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) True",fontsize=16,color="black",shape="box"];216 -> 272[label="",style="solid", color="black", weight=3]; 2810[label="xwv20",fontsize=16,color="green",shape="box"];2811[label="(xwv21,xwv22)",fontsize=16,color="green",shape="box"];2812[label="FiniteMap.mkBalBranch6 xwv200 xwv201 xwv240 xwv204",fontsize=16,color="black",shape="box"];2812 -> 2823[label="",style="solid", color="black", weight=3]; 220[label="primEqFloat (Float xwv4000 xwv4001) (Float xwv3000 xwv3001)",fontsize=16,color="black",shape="box"];220 -> 274[label="",style="solid", color="black", weight=3]; 221 -> 376[label="",style="dashed", color="red", weight=0]; 221[label="xwv4000 == xwv3000 && xwv4001 == xwv3001",fontsize=16,color="magenta"];221 -> 377[label="",style="dashed", color="magenta", weight=3]; 221 -> 378[label="",style="dashed", color="magenta", weight=3]; 222 -> 160[label="",style="dashed", color="red", weight=0]; 222[label="primEqInt xwv4000 xwv3000",fontsize=16,color="magenta"];222 -> 285[label="",style="dashed", color="magenta", weight=3]; 222 -> 286[label="",style="dashed", color="magenta", weight=3]; 223[label="primEqChar (Char xwv4000) (Char xwv3000)",fontsize=16,color="black",shape="box"];223 -> 287[label="",style="solid", color="black", weight=3]; 224[label="xwv4000 == xwv3000",fontsize=16,color="blue",shape="box"];3779[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3779[label="",style="solid", color="blue", weight=9]; 3779 -> 288[label="",style="solid", color="blue", weight=3]; 3780[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3780[label="",style="solid", color="blue", weight=9]; 3780 -> 289[label="",style="solid", color="blue", weight=3]; 3781[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3781[label="",style="solid", color="blue", weight=9]; 3781 -> 290[label="",style="solid", color="blue", weight=3]; 3782[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3782[label="",style="solid", color="blue", weight=9]; 3782 -> 291[label="",style="solid", color="blue", weight=3]; 3783[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3783[label="",style="solid", color="blue", weight=9]; 3783 -> 292[label="",style="solid", color="blue", weight=3]; 3784[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3784[label="",style="solid", color="blue", weight=9]; 3784 -> 293[label="",style="solid", color="blue", weight=3]; 3785[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3785[label="",style="solid", color="blue", weight=9]; 3785 -> 294[label="",style="solid", color="blue", weight=3]; 3786[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3786[label="",style="solid", color="blue", weight=9]; 3786 -> 295[label="",style="solid", color="blue", weight=3]; 3787[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3787[label="",style="solid", color="blue", weight=9]; 3787 -> 296[label="",style="solid", color="blue", weight=3]; 3788[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3788[label="",style="solid", color="blue", weight=9]; 3788 -> 297[label="",style="solid", color="blue", weight=3]; 3789[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3789[label="",style="solid", color="blue", weight=9]; 3789 -> 298[label="",style="solid", color="blue", weight=3]; 3790[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3790[label="",style="solid", color="blue", weight=9]; 3790 -> 299[label="",style="solid", color="blue", weight=3]; 3791[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3791[label="",style="solid", color="blue", weight=9]; 3791 -> 300[label="",style="solid", color="blue", weight=3]; 3792[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];224 -> 3792[label="",style="solid", color="blue", weight=9]; 3792 -> 301[label="",style="solid", color="blue", weight=3]; 225[label="False",fontsize=16,color="green",shape="box"];226[label="False",fontsize=16,color="green",shape="box"];227[label="xwv4000 == xwv3000",fontsize=16,color="blue",shape="box"];3793[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3793[label="",style="solid", color="blue", weight=9]; 3793 -> 302[label="",style="solid", color="blue", weight=3]; 3794[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3794[label="",style="solid", color="blue", weight=9]; 3794 -> 303[label="",style="solid", color="blue", weight=3]; 3795[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3795[label="",style="solid", color="blue", weight=9]; 3795 -> 304[label="",style="solid", color="blue", weight=3]; 3796[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3796[label="",style="solid", color="blue", weight=9]; 3796 -> 305[label="",style="solid", color="blue", weight=3]; 3797[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3797[label="",style="solid", color="blue", weight=9]; 3797 -> 306[label="",style="solid", color="blue", weight=3]; 3798[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3798[label="",style="solid", color="blue", weight=9]; 3798 -> 307[label="",style="solid", color="blue", weight=3]; 3799[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3799[label="",style="solid", color="blue", weight=9]; 3799 -> 308[label="",style="solid", color="blue", weight=3]; 3800[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3800[label="",style="solid", color="blue", weight=9]; 3800 -> 309[label="",style="solid", color="blue", weight=3]; 3801[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3801[label="",style="solid", color="blue", weight=9]; 3801 -> 310[label="",style="solid", color="blue", weight=3]; 3802[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3802[label="",style="solid", color="blue", weight=9]; 3802 -> 311[label="",style="solid", color="blue", weight=3]; 3803[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3803[label="",style="solid", color="blue", weight=9]; 3803 -> 312[label="",style="solid", color="blue", weight=3]; 3804[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3804[label="",style="solid", color="blue", weight=9]; 3804 -> 313[label="",style="solid", color="blue", weight=3]; 3805[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3805[label="",style="solid", color="blue", weight=9]; 3805 -> 314[label="",style="solid", color="blue", weight=3]; 3806[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];227 -> 3806[label="",style="solid", color="blue", weight=9]; 3806 -> 315[label="",style="solid", color="blue", weight=3]; 228 -> 376[label="",style="dashed", color="red", weight=0]; 228[label="xwv4000 == xwv3000 && xwv4001 == xwv3001",fontsize=16,color="magenta"];228 -> 379[label="",style="dashed", color="magenta", weight=3]; 228 -> 380[label="",style="dashed", color="magenta", weight=3]; 229[label="True",fontsize=16,color="green",shape="box"];230[label="False",fontsize=16,color="green",shape="box"];231[label="False",fontsize=16,color="green",shape="box"];232[label="False",fontsize=16,color="green",shape="box"];233[label="True",fontsize=16,color="green",shape="box"];234[label="False",fontsize=16,color="green",shape="box"];235[label="False",fontsize=16,color="green",shape="box"];236[label="False",fontsize=16,color="green",shape="box"];237[label="True",fontsize=16,color="green",shape="box"];238[label="True",fontsize=16,color="green",shape="box"];239[label="False",fontsize=16,color="green",shape="box"];240[label="False",fontsize=16,color="green",shape="box"];241[label="xwv4000 == xwv3000",fontsize=16,color="blue",shape="box"];3807[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3807[label="",style="solid", color="blue", weight=9]; 3807 -> 316[label="",style="solid", color="blue", weight=3]; 3808[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3808[label="",style="solid", color="blue", weight=9]; 3808 -> 317[label="",style="solid", color="blue", weight=3]; 3809[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3809[label="",style="solid", color="blue", weight=9]; 3809 -> 318[label="",style="solid", color="blue", weight=3]; 3810[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3810[label="",style="solid", color="blue", weight=9]; 3810 -> 319[label="",style="solid", color="blue", weight=3]; 3811[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3811[label="",style="solid", color="blue", weight=9]; 3811 -> 320[label="",style="solid", color="blue", weight=3]; 3812[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3812[label="",style="solid", color="blue", weight=9]; 3812 -> 321[label="",style="solid", color="blue", weight=3]; 3813[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3813[label="",style="solid", color="blue", weight=9]; 3813 -> 322[label="",style="solid", color="blue", weight=3]; 3814[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3814[label="",style="solid", color="blue", weight=9]; 3814 -> 323[label="",style="solid", color="blue", weight=3]; 3815[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3815[label="",style="solid", color="blue", weight=9]; 3815 -> 324[label="",style="solid", color="blue", weight=3]; 3816[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3816[label="",style="solid", color="blue", weight=9]; 3816 -> 325[label="",style="solid", color="blue", weight=3]; 3817[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3817[label="",style="solid", color="blue", weight=9]; 3817 -> 326[label="",style="solid", color="blue", weight=3]; 3818[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3818[label="",style="solid", color="blue", weight=9]; 3818 -> 327[label="",style="solid", color="blue", weight=3]; 3819[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3819[label="",style="solid", color="blue", weight=9]; 3819 -> 328[label="",style="solid", color="blue", weight=3]; 3820[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];241 -> 3820[label="",style="solid", color="blue", weight=9]; 3820 -> 329[label="",style="solid", color="blue", weight=3]; 242[label="primEqDouble (Double xwv4000 xwv4001) (Double xwv3000 xwv3001)",fontsize=16,color="black",shape="box"];242 -> 330[label="",style="solid", color="black", weight=3]; 243[label="primEqInt (Pos (Succ xwv40000)) xwv300",fontsize=16,color="burlywood",shape="box"];3821[label="xwv300/Pos xwv3000",fontsize=10,color="white",style="solid",shape="box"];243 -> 3821[label="",style="solid", color="burlywood", weight=9]; 3821 -> 331[label="",style="solid", color="burlywood", weight=3]; 3822[label="xwv300/Neg xwv3000",fontsize=10,color="white",style="solid",shape="box"];243 -> 3822[label="",style="solid", color="burlywood", weight=9]; 3822 -> 332[label="",style="solid", color="burlywood", weight=3]; 244[label="primEqInt (Pos Zero) xwv300",fontsize=16,color="burlywood",shape="box"];3823[label="xwv300/Pos xwv3000",fontsize=10,color="white",style="solid",shape="box"];244 -> 3823[label="",style="solid", color="burlywood", weight=9]; 3823 -> 333[label="",style="solid", color="burlywood", weight=3]; 3824[label="xwv300/Neg xwv3000",fontsize=10,color="white",style="solid",shape="box"];244 -> 3824[label="",style="solid", color="burlywood", weight=9]; 3824 -> 334[label="",style="solid", color="burlywood", weight=3]; 245[label="primEqInt (Neg (Succ xwv40000)) xwv300",fontsize=16,color="burlywood",shape="box"];3825[label="xwv300/Pos xwv3000",fontsize=10,color="white",style="solid",shape="box"];245 -> 3825[label="",style="solid", color="burlywood", weight=9]; 3825 -> 335[label="",style="solid", color="burlywood", weight=3]; 3826[label="xwv300/Neg xwv3000",fontsize=10,color="white",style="solid",shape="box"];245 -> 3826[label="",style="solid", color="burlywood", weight=9]; 3826 -> 336[label="",style="solid", color="burlywood", weight=3]; 246[label="primEqInt (Neg Zero) xwv300",fontsize=16,color="burlywood",shape="box"];3827[label="xwv300/Pos xwv3000",fontsize=10,color="white",style="solid",shape="box"];246 -> 3827[label="",style="solid", color="burlywood", weight=9]; 3827 -> 337[label="",style="solid", color="burlywood", weight=3]; 3828[label="xwv300/Neg xwv3000",fontsize=10,color="white",style="solid",shape="box"];246 -> 3828[label="",style="solid", color="burlywood", weight=9]; 3828 -> 338[label="",style="solid", color="burlywood", weight=3]; 247 -> 376[label="",style="dashed", color="red", weight=0]; 247[label="xwv4000 == xwv3000 && xwv4001 == xwv3001",fontsize=16,color="magenta"];247 -> 381[label="",style="dashed", color="magenta", weight=3]; 247 -> 382[label="",style="dashed", color="magenta", weight=3]; 248[label="False",fontsize=16,color="green",shape="box"];249[label="False",fontsize=16,color="green",shape="box"];250[label="True",fontsize=16,color="green",shape="box"];251[label="True",fontsize=16,color="green",shape="box"];252[label="False",fontsize=16,color="green",shape="box"];253[label="False",fontsize=16,color="green",shape="box"];254[label="True",fontsize=16,color="green",shape="box"];255[label="True",fontsize=16,color="green",shape="box"];256 -> 376[label="",style="dashed", color="red", weight=0]; 256[label="xwv4000 == xwv3000 && xwv4001 == xwv3001 && xwv4002 == xwv3002",fontsize=16,color="magenta"];256 -> 383[label="",style="dashed", color="magenta", weight=3]; 256 -> 384[label="",style="dashed", color="magenta", weight=3]; 1311[label="(xwv31,xwv32)",fontsize=16,color="green",shape="box"];1312[label="(xwv33,xwv34)",fontsize=16,color="green",shape="box"];1313[label="False",fontsize=16,color="green",shape="box"];1310[label="compare2 xwv44 xwv46 xwv95",fontsize=16,color="burlywood",shape="triangle"];3829[label="xwv95/False",fontsize=10,color="white",style="solid",shape="box"];1310 -> 3829[label="",style="solid", color="burlywood", weight=9]; 3829 -> 1324[label="",style="solid", color="burlywood", weight=3]; 3830[label="xwv95/True",fontsize=10,color="white",style="solid",shape="box"];1310 -> 3830[label="",style="solid", color="burlywood", weight=9]; 3830 -> 1325[label="",style="solid", color="burlywood", weight=3]; 1314[label="(xwv31,xwv32)",fontsize=16,color="green",shape="box"];1315[label="(xwv33,xwv34)",fontsize=16,color="green",shape="box"];1316[label="xwv32 == xwv34",fontsize=16,color="blue",shape="box"];3831[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3831[label="",style="solid", color="blue", weight=9]; 3831 -> 1326[label="",style="solid", color="blue", weight=3]; 3832[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3832[label="",style="solid", color="blue", weight=9]; 3832 -> 1327[label="",style="solid", color="blue", weight=3]; 3833[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3833[label="",style="solid", color="blue", weight=9]; 3833 -> 1328[label="",style="solid", color="blue", weight=3]; 3834[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3834[label="",style="solid", color="blue", weight=9]; 3834 -> 1329[label="",style="solid", color="blue", weight=3]; 3835[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3835[label="",style="solid", color="blue", weight=9]; 3835 -> 1330[label="",style="solid", color="blue", weight=3]; 3836[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3836[label="",style="solid", color="blue", weight=9]; 3836 -> 1331[label="",style="solid", color="blue", weight=3]; 3837[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3837[label="",style="solid", color="blue", weight=9]; 3837 -> 1332[label="",style="solid", color="blue", weight=3]; 3838[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3838[label="",style="solid", color="blue", weight=9]; 3838 -> 1333[label="",style="solid", color="blue", weight=3]; 3839[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3839[label="",style="solid", color="blue", weight=9]; 3839 -> 1334[label="",style="solid", color="blue", weight=3]; 3840[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3840[label="",style="solid", color="blue", weight=9]; 3840 -> 1335[label="",style="solid", color="blue", weight=3]; 3841[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3841[label="",style="solid", color="blue", weight=9]; 3841 -> 1336[label="",style="solid", color="blue", weight=3]; 3842[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3842[label="",style="solid", color="blue", weight=9]; 3842 -> 1337[label="",style="solid", color="blue", weight=3]; 3843[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3843[label="",style="solid", color="blue", weight=9]; 3843 -> 1338[label="",style="solid", color="blue", weight=3]; 3844[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1316 -> 3844[label="",style="solid", color="blue", weight=9]; 3844 -> 1339[label="",style="solid", color="blue", weight=3]; 269[label="LT",fontsize=16,color="green",shape="box"];270[label="compare (xwv21,xwv22) (xwv15,xwv16)",fontsize=16,color="black",shape="box"];270 -> 366[label="",style="solid", color="black", weight=3]; 271 -> 367[label="",style="dashed", color="red", weight=0]; 271[label="FiniteMap.delFromFM0 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) ((xwv15,xwv16) == (xwv21,xwv22))",fontsize=16,color="magenta"];271 -> 368[label="",style="dashed", color="magenta", weight=3]; 272 -> 2788[label="",style="dashed", color="red", weight=0]; 272[label="FiniteMap.mkBalBranch (xwv15,xwv16) xwv17 (FiniteMap.delFromFM xwv19 (xwv21,xwv22)) xwv20",fontsize=16,color="magenta"];272 -> 2797[label="",style="dashed", color="magenta", weight=3]; 272 -> 2798[label="",style="dashed", color="magenta", weight=3]; 272 -> 2799[label="",style="dashed", color="magenta", weight=3]; 272 -> 2800[label="",style="dashed", color="magenta", weight=3]; 2823 -> 2832[label="",style="dashed", color="red", weight=0]; 2823[label="FiniteMap.mkBalBranch6MkBalBranch5 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 (FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204 + FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204 < Pos (Succ (Succ Zero)))",fontsize=16,color="magenta"];2823 -> 2833[label="",style="dashed", color="magenta", weight=3]; 274 -> 138[label="",style="dashed", color="red", weight=0]; 274[label="xwv4000 * xwv3001 == xwv4001 * xwv3000",fontsize=16,color="magenta"];274 -> 372[label="",style="dashed", color="magenta", weight=3]; 274 -> 373[label="",style="dashed", color="magenta", weight=3]; 377[label="xwv4001 == xwv3001",fontsize=16,color="blue",shape="box"];3845[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];377 -> 3845[label="",style="solid", color="blue", weight=9]; 3845 -> 389[label="",style="solid", color="blue", weight=3]; 3846[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];377 -> 3846[label="",style="solid", color="blue", weight=9]; 3846 -> 390[label="",style="solid", color="blue", weight=3]; 378[label="xwv4000 == xwv3000",fontsize=16,color="blue",shape="box"];3847[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];378 -> 3847[label="",style="solid", color="blue", weight=9]; 3847 -> 391[label="",style="solid", color="blue", weight=3]; 3848[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];378 -> 3848[label="",style="solid", color="blue", weight=9]; 3848 -> 392[label="",style="solid", color="blue", weight=3]; 376[label="xwv61 && xwv62",fontsize=16,color="burlywood",shape="triangle"];3849[label="xwv61/False",fontsize=10,color="white",style="solid",shape="box"];376 -> 3849[label="",style="solid", color="burlywood", weight=9]; 3849 -> 393[label="",style="solid", color="burlywood", weight=3]; 3850[label="xwv61/True",fontsize=10,color="white",style="solid",shape="box"];376 -> 3850[label="",style="solid", color="burlywood", weight=9]; 3850 -> 394[label="",style="solid", color="burlywood", weight=3]; 285[label="xwv3000",fontsize=16,color="green",shape="box"];286[label="xwv4000",fontsize=16,color="green",shape="box"];287[label="primEqNat xwv4000 xwv3000",fontsize=16,color="burlywood",shape="triangle"];3851[label="xwv4000/Succ xwv40000",fontsize=10,color="white",style="solid",shape="box"];287 -> 3851[label="",style="solid", color="burlywood", weight=9]; 3851 -> 395[label="",style="solid", color="burlywood", weight=3]; 3852[label="xwv4000/Zero",fontsize=10,color="white",style="solid",shape="box"];287 -> 3852[label="",style="solid", color="burlywood", weight=9]; 3852 -> 396[label="",style="solid", color="burlywood", weight=3]; 288 -> 129[label="",style="dashed", color="red", weight=0]; 288[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];288 -> 397[label="",style="dashed", color="magenta", weight=3]; 288 -> 398[label="",style="dashed", color="magenta", weight=3]; 289 -> 130[label="",style="dashed", color="red", weight=0]; 289[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];289 -> 399[label="",style="dashed", color="magenta", weight=3]; 289 -> 400[label="",style="dashed", color="magenta", weight=3]; 290 -> 131[label="",style="dashed", color="red", weight=0]; 290[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];290 -> 401[label="",style="dashed", color="magenta", weight=3]; 290 -> 402[label="",style="dashed", color="magenta", weight=3]; 291 -> 132[label="",style="dashed", color="red", weight=0]; 291[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];291 -> 403[label="",style="dashed", color="magenta", weight=3]; 291 -> 404[label="",style="dashed", color="magenta", weight=3]; 292 -> 133[label="",style="dashed", color="red", weight=0]; 292[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];292 -> 405[label="",style="dashed", color="magenta", weight=3]; 292 -> 406[label="",style="dashed", color="magenta", weight=3]; 293 -> 134[label="",style="dashed", color="red", weight=0]; 293[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];293 -> 407[label="",style="dashed", color="magenta", weight=3]; 293 -> 408[label="",style="dashed", color="magenta", weight=3]; 294 -> 135[label="",style="dashed", color="red", weight=0]; 294[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];294 -> 409[label="",style="dashed", color="magenta", weight=3]; 294 -> 410[label="",style="dashed", color="magenta", weight=3]; 295 -> 136[label="",style="dashed", color="red", weight=0]; 295[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];295 -> 411[label="",style="dashed", color="magenta", weight=3]; 295 -> 412[label="",style="dashed", color="magenta", weight=3]; 296 -> 137[label="",style="dashed", color="red", weight=0]; 296[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];296 -> 413[label="",style="dashed", color="magenta", weight=3]; 296 -> 414[label="",style="dashed", color="magenta", weight=3]; 297 -> 138[label="",style="dashed", color="red", weight=0]; 297[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];297 -> 415[label="",style="dashed", color="magenta", weight=3]; 297 -> 416[label="",style="dashed", color="magenta", weight=3]; 298 -> 139[label="",style="dashed", color="red", weight=0]; 298[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];298 -> 417[label="",style="dashed", color="magenta", weight=3]; 298 -> 418[label="",style="dashed", color="magenta", weight=3]; 299 -> 140[label="",style="dashed", color="red", weight=0]; 299[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];299 -> 419[label="",style="dashed", color="magenta", weight=3]; 299 -> 420[label="",style="dashed", color="magenta", weight=3]; 300 -> 141[label="",style="dashed", color="red", weight=0]; 300[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];300 -> 421[label="",style="dashed", color="magenta", weight=3]; 300 -> 422[label="",style="dashed", color="magenta", weight=3]; 301 -> 142[label="",style="dashed", color="red", weight=0]; 301[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];301 -> 423[label="",style="dashed", color="magenta", weight=3]; 301 -> 424[label="",style="dashed", color="magenta", weight=3]; 302 -> 129[label="",style="dashed", color="red", weight=0]; 302[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];302 -> 425[label="",style="dashed", color="magenta", weight=3]; 302 -> 426[label="",style="dashed", color="magenta", weight=3]; 303 -> 130[label="",style="dashed", color="red", weight=0]; 303[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];303 -> 427[label="",style="dashed", color="magenta", weight=3]; 303 -> 428[label="",style="dashed", color="magenta", weight=3]; 304 -> 131[label="",style="dashed", color="red", weight=0]; 304[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];304 -> 429[label="",style="dashed", color="magenta", weight=3]; 304 -> 430[label="",style="dashed", color="magenta", weight=3]; 305 -> 132[label="",style="dashed", color="red", weight=0]; 305[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];305 -> 431[label="",style="dashed", color="magenta", weight=3]; 305 -> 432[label="",style="dashed", color="magenta", weight=3]; 306 -> 133[label="",style="dashed", color="red", weight=0]; 306[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];306 -> 433[label="",style="dashed", color="magenta", weight=3]; 306 -> 434[label="",style="dashed", color="magenta", weight=3]; 307 -> 134[label="",style="dashed", color="red", weight=0]; 307[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];307 -> 435[label="",style="dashed", color="magenta", weight=3]; 307 -> 436[label="",style="dashed", color="magenta", weight=3]; 308 -> 135[label="",style="dashed", color="red", weight=0]; 308[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];308 -> 437[label="",style="dashed", color="magenta", weight=3]; 308 -> 438[label="",style="dashed", color="magenta", weight=3]; 309 -> 136[label="",style="dashed", color="red", weight=0]; 309[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];309 -> 439[label="",style="dashed", color="magenta", weight=3]; 309 -> 440[label="",style="dashed", color="magenta", weight=3]; 310 -> 137[label="",style="dashed", color="red", weight=0]; 310[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];310 -> 441[label="",style="dashed", color="magenta", weight=3]; 310 -> 442[label="",style="dashed", color="magenta", weight=3]; 311 -> 138[label="",style="dashed", color="red", weight=0]; 311[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];311 -> 443[label="",style="dashed", color="magenta", weight=3]; 311 -> 444[label="",style="dashed", color="magenta", weight=3]; 312 -> 139[label="",style="dashed", color="red", weight=0]; 312[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];312 -> 445[label="",style="dashed", color="magenta", weight=3]; 312 -> 446[label="",style="dashed", color="magenta", weight=3]; 313 -> 140[label="",style="dashed", color="red", weight=0]; 313[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];313 -> 447[label="",style="dashed", color="magenta", weight=3]; 313 -> 448[label="",style="dashed", color="magenta", weight=3]; 314 -> 141[label="",style="dashed", color="red", weight=0]; 314[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];314 -> 449[label="",style="dashed", color="magenta", weight=3]; 314 -> 450[label="",style="dashed", color="magenta", weight=3]; 315 -> 142[label="",style="dashed", color="red", weight=0]; 315[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];315 -> 451[label="",style="dashed", color="magenta", weight=3]; 315 -> 452[label="",style="dashed", color="magenta", weight=3]; 379[label="xwv4001 == xwv3001",fontsize=16,color="blue",shape="box"];3853[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3853[label="",style="solid", color="blue", weight=9]; 3853 -> 453[label="",style="solid", color="blue", weight=3]; 3854[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3854[label="",style="solid", color="blue", weight=9]; 3854 -> 454[label="",style="solid", color="blue", weight=3]; 3855[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3855[label="",style="solid", color="blue", weight=9]; 3855 -> 455[label="",style="solid", color="blue", weight=3]; 3856[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3856[label="",style="solid", color="blue", weight=9]; 3856 -> 456[label="",style="solid", color="blue", weight=3]; 3857[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3857[label="",style="solid", color="blue", weight=9]; 3857 -> 457[label="",style="solid", color="blue", weight=3]; 3858[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3858[label="",style="solid", color="blue", weight=9]; 3858 -> 458[label="",style="solid", color="blue", weight=3]; 3859[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3859[label="",style="solid", color="blue", weight=9]; 3859 -> 459[label="",style="solid", color="blue", weight=3]; 3860[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3860[label="",style="solid", color="blue", weight=9]; 3860 -> 460[label="",style="solid", color="blue", weight=3]; 3861[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3861[label="",style="solid", color="blue", weight=9]; 3861 -> 461[label="",style="solid", color="blue", weight=3]; 3862[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3862[label="",style="solid", color="blue", weight=9]; 3862 -> 462[label="",style="solid", color="blue", weight=3]; 3863[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3863[label="",style="solid", color="blue", weight=9]; 3863 -> 463[label="",style="solid", color="blue", weight=3]; 3864[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3864[label="",style="solid", color="blue", weight=9]; 3864 -> 464[label="",style="solid", color="blue", weight=3]; 3865[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3865[label="",style="solid", color="blue", weight=9]; 3865 -> 465[label="",style="solid", color="blue", weight=3]; 3866[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];379 -> 3866[label="",style="solid", color="blue", weight=9]; 3866 -> 466[label="",style="solid", color="blue", weight=3]; 380[label="xwv4000 == xwv3000",fontsize=16,color="blue",shape="box"];3867[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3867[label="",style="solid", color="blue", weight=9]; 3867 -> 467[label="",style="solid", color="blue", weight=3]; 3868[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3868[label="",style="solid", color="blue", weight=9]; 3868 -> 468[label="",style="solid", color="blue", weight=3]; 3869[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3869[label="",style="solid", color="blue", weight=9]; 3869 -> 469[label="",style="solid", color="blue", weight=3]; 3870[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3870[label="",style="solid", color="blue", weight=9]; 3870 -> 470[label="",style="solid", color="blue", weight=3]; 3871[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3871[label="",style="solid", color="blue", weight=9]; 3871 -> 471[label="",style="solid", color="blue", weight=3]; 3872[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3872[label="",style="solid", color="blue", weight=9]; 3872 -> 472[label="",style="solid", color="blue", weight=3]; 3873[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3873[label="",style="solid", color="blue", weight=9]; 3873 -> 473[label="",style="solid", color="blue", weight=3]; 3874[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3874[label="",style="solid", color="blue", weight=9]; 3874 -> 474[label="",style="solid", color="blue", weight=3]; 3875[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3875[label="",style="solid", color="blue", weight=9]; 3875 -> 475[label="",style="solid", color="blue", weight=3]; 3876[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3876[label="",style="solid", color="blue", weight=9]; 3876 -> 476[label="",style="solid", color="blue", weight=3]; 3877[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3877[label="",style="solid", color="blue", weight=9]; 3877 -> 477[label="",style="solid", color="blue", weight=3]; 3878[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3878[label="",style="solid", color="blue", weight=9]; 3878 -> 478[label="",style="solid", color="blue", weight=3]; 3879[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3879[label="",style="solid", color="blue", weight=9]; 3879 -> 479[label="",style="solid", color="blue", weight=3]; 3880[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];380 -> 3880[label="",style="solid", color="blue", weight=9]; 3880 -> 480[label="",style="solid", color="blue", weight=3]; 316 -> 129[label="",style="dashed", color="red", weight=0]; 316[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];316 -> 481[label="",style="dashed", color="magenta", weight=3]; 316 -> 482[label="",style="dashed", color="magenta", weight=3]; 317 -> 130[label="",style="dashed", color="red", weight=0]; 317[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];317 -> 483[label="",style="dashed", color="magenta", weight=3]; 317 -> 484[label="",style="dashed", color="magenta", weight=3]; 318 -> 131[label="",style="dashed", color="red", weight=0]; 318[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];318 -> 485[label="",style="dashed", color="magenta", weight=3]; 318 -> 486[label="",style="dashed", color="magenta", weight=3]; 319 -> 132[label="",style="dashed", color="red", weight=0]; 319[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];319 -> 487[label="",style="dashed", color="magenta", weight=3]; 319 -> 488[label="",style="dashed", color="magenta", weight=3]; 320 -> 133[label="",style="dashed", color="red", weight=0]; 320[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];320 -> 489[label="",style="dashed", color="magenta", weight=3]; 320 -> 490[label="",style="dashed", color="magenta", weight=3]; 321 -> 134[label="",style="dashed", color="red", weight=0]; 321[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];321 -> 491[label="",style="dashed", color="magenta", weight=3]; 321 -> 492[label="",style="dashed", color="magenta", weight=3]; 322 -> 135[label="",style="dashed", color="red", weight=0]; 322[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];322 -> 493[label="",style="dashed", color="magenta", weight=3]; 322 -> 494[label="",style="dashed", color="magenta", weight=3]; 323 -> 136[label="",style="dashed", color="red", weight=0]; 323[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];323 -> 495[label="",style="dashed", color="magenta", weight=3]; 323 -> 496[label="",style="dashed", color="magenta", weight=3]; 324 -> 137[label="",style="dashed", color="red", weight=0]; 324[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];324 -> 497[label="",style="dashed", color="magenta", weight=3]; 324 -> 498[label="",style="dashed", color="magenta", weight=3]; 325 -> 138[label="",style="dashed", color="red", weight=0]; 325[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];325 -> 499[label="",style="dashed", color="magenta", weight=3]; 325 -> 500[label="",style="dashed", color="magenta", weight=3]; 326 -> 139[label="",style="dashed", color="red", weight=0]; 326[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];326 -> 501[label="",style="dashed", color="magenta", weight=3]; 326 -> 502[label="",style="dashed", color="magenta", weight=3]; 327 -> 140[label="",style="dashed", color="red", weight=0]; 327[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];327 -> 503[label="",style="dashed", color="magenta", weight=3]; 327 -> 504[label="",style="dashed", color="magenta", weight=3]; 328 -> 141[label="",style="dashed", color="red", weight=0]; 328[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];328 -> 505[label="",style="dashed", color="magenta", weight=3]; 328 -> 506[label="",style="dashed", color="magenta", weight=3]; 329 -> 142[label="",style="dashed", color="red", weight=0]; 329[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];329 -> 507[label="",style="dashed", color="magenta", weight=3]; 329 -> 508[label="",style="dashed", color="magenta", weight=3]; 330 -> 138[label="",style="dashed", color="red", weight=0]; 330[label="xwv4000 * xwv3001 == xwv4001 * xwv3000",fontsize=16,color="magenta"];330 -> 509[label="",style="dashed", color="magenta", weight=3]; 330 -> 510[label="",style="dashed", color="magenta", weight=3]; 331[label="primEqInt (Pos (Succ xwv40000)) (Pos xwv3000)",fontsize=16,color="burlywood",shape="box"];3881[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];331 -> 3881[label="",style="solid", color="burlywood", weight=9]; 3881 -> 511[label="",style="solid", color="burlywood", weight=3]; 3882[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];331 -> 3882[label="",style="solid", color="burlywood", weight=9]; 3882 -> 512[label="",style="solid", color="burlywood", weight=3]; 332[label="primEqInt (Pos (Succ xwv40000)) (Neg xwv3000)",fontsize=16,color="black",shape="box"];332 -> 513[label="",style="solid", color="black", weight=3]; 333[label="primEqInt (Pos Zero) (Pos xwv3000)",fontsize=16,color="burlywood",shape="box"];3883[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];333 -> 3883[label="",style="solid", color="burlywood", weight=9]; 3883 -> 514[label="",style="solid", color="burlywood", weight=3]; 3884[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];333 -> 3884[label="",style="solid", color="burlywood", weight=9]; 3884 -> 515[label="",style="solid", color="burlywood", weight=3]; 334[label="primEqInt (Pos Zero) (Neg xwv3000)",fontsize=16,color="burlywood",shape="box"];3885[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];334 -> 3885[label="",style="solid", color="burlywood", weight=9]; 3885 -> 516[label="",style="solid", color="burlywood", weight=3]; 3886[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];334 -> 3886[label="",style="solid", color="burlywood", weight=9]; 3886 -> 517[label="",style="solid", color="burlywood", weight=3]; 335[label="primEqInt (Neg (Succ xwv40000)) (Pos xwv3000)",fontsize=16,color="black",shape="box"];335 -> 518[label="",style="solid", color="black", weight=3]; 336[label="primEqInt (Neg (Succ xwv40000)) (Neg xwv3000)",fontsize=16,color="burlywood",shape="box"];3887[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];336 -> 3887[label="",style="solid", color="burlywood", weight=9]; 3887 -> 519[label="",style="solid", color="burlywood", weight=3]; 3888[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];336 -> 3888[label="",style="solid", color="burlywood", weight=9]; 3888 -> 520[label="",style="solid", color="burlywood", weight=3]; 337[label="primEqInt (Neg Zero) (Pos xwv3000)",fontsize=16,color="burlywood",shape="box"];3889[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];337 -> 3889[label="",style="solid", color="burlywood", weight=9]; 3889 -> 521[label="",style="solid", color="burlywood", weight=3]; 3890[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];337 -> 3890[label="",style="solid", color="burlywood", weight=9]; 3890 -> 522[label="",style="solid", color="burlywood", weight=3]; 338[label="primEqInt (Neg Zero) (Neg xwv3000)",fontsize=16,color="burlywood",shape="box"];3891[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];338 -> 3891[label="",style="solid", color="burlywood", weight=9]; 3891 -> 523[label="",style="solid", color="burlywood", weight=3]; 3892[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];338 -> 3892[label="",style="solid", color="burlywood", weight=9]; 3892 -> 524[label="",style="solid", color="burlywood", weight=3]; 381 -> 139[label="",style="dashed", color="red", weight=0]; 381[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];381 -> 525[label="",style="dashed", color="magenta", weight=3]; 381 -> 526[label="",style="dashed", color="magenta", weight=3]; 382[label="xwv4000 == xwv3000",fontsize=16,color="blue",shape="box"];3893[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3893[label="",style="solid", color="blue", weight=9]; 3893 -> 527[label="",style="solid", color="blue", weight=3]; 3894[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3894[label="",style="solid", color="blue", weight=9]; 3894 -> 528[label="",style="solid", color="blue", weight=3]; 3895[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3895[label="",style="solid", color="blue", weight=9]; 3895 -> 529[label="",style="solid", color="blue", weight=3]; 3896[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3896[label="",style="solid", color="blue", weight=9]; 3896 -> 530[label="",style="solid", color="blue", weight=3]; 3897[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3897[label="",style="solid", color="blue", weight=9]; 3897 -> 531[label="",style="solid", color="blue", weight=3]; 3898[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3898[label="",style="solid", color="blue", weight=9]; 3898 -> 532[label="",style="solid", color="blue", weight=3]; 3899[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3899[label="",style="solid", color="blue", weight=9]; 3899 -> 533[label="",style="solid", color="blue", weight=3]; 3900[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3900[label="",style="solid", color="blue", weight=9]; 3900 -> 534[label="",style="solid", color="blue", weight=3]; 3901[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3901[label="",style="solid", color="blue", weight=9]; 3901 -> 535[label="",style="solid", color="blue", weight=3]; 3902[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3902[label="",style="solid", color="blue", weight=9]; 3902 -> 536[label="",style="solid", color="blue", weight=3]; 3903[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3903[label="",style="solid", color="blue", weight=9]; 3903 -> 537[label="",style="solid", color="blue", weight=3]; 3904[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3904[label="",style="solid", color="blue", weight=9]; 3904 -> 538[label="",style="solid", color="blue", weight=3]; 3905[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3905[label="",style="solid", color="blue", weight=9]; 3905 -> 539[label="",style="solid", color="blue", weight=3]; 3906[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];382 -> 3906[label="",style="solid", color="blue", weight=9]; 3906 -> 540[label="",style="solid", color="blue", weight=3]; 383 -> 376[label="",style="dashed", color="red", weight=0]; 383[label="xwv4001 == xwv3001 && xwv4002 == xwv3002",fontsize=16,color="magenta"];383 -> 541[label="",style="dashed", color="magenta", weight=3]; 383 -> 542[label="",style="dashed", color="magenta", weight=3]; 384[label="xwv4000 == xwv3000",fontsize=16,color="blue",shape="box"];3907[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3907[label="",style="solid", color="blue", weight=9]; 3907 -> 543[label="",style="solid", color="blue", weight=3]; 3908[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3908[label="",style="solid", color="blue", weight=9]; 3908 -> 544[label="",style="solid", color="blue", weight=3]; 3909[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3909[label="",style="solid", color="blue", weight=9]; 3909 -> 545[label="",style="solid", color="blue", weight=3]; 3910[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3910[label="",style="solid", color="blue", weight=9]; 3910 -> 546[label="",style="solid", color="blue", weight=3]; 3911[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3911[label="",style="solid", color="blue", weight=9]; 3911 -> 547[label="",style="solid", color="blue", weight=3]; 3912[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3912[label="",style="solid", color="blue", weight=9]; 3912 -> 548[label="",style="solid", color="blue", weight=3]; 3913[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3913[label="",style="solid", color="blue", weight=9]; 3913 -> 549[label="",style="solid", color="blue", weight=3]; 3914[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3914[label="",style="solid", color="blue", weight=9]; 3914 -> 550[label="",style="solid", color="blue", weight=3]; 3915[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3915[label="",style="solid", color="blue", weight=9]; 3915 -> 551[label="",style="solid", color="blue", weight=3]; 3916[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3916[label="",style="solid", color="blue", weight=9]; 3916 -> 552[label="",style="solid", color="blue", weight=3]; 3917[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3917[label="",style="solid", color="blue", weight=9]; 3917 -> 553[label="",style="solid", color="blue", weight=3]; 3918[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3918[label="",style="solid", color="blue", weight=9]; 3918 -> 554[label="",style="solid", color="blue", weight=3]; 3919[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3919[label="",style="solid", color="blue", weight=9]; 3919 -> 555[label="",style="solid", color="blue", weight=3]; 3920[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];384 -> 3920[label="",style="solid", color="blue", weight=9]; 3920 -> 556[label="",style="solid", color="blue", weight=3]; 1324[label="compare2 xwv44 xwv46 False",fontsize=16,color="black",shape="box"];1324 -> 1348[label="",style="solid", color="black", weight=3]; 1325[label="compare2 xwv44 xwv46 True",fontsize=16,color="black",shape="box"];1325 -> 1349[label="",style="solid", color="black", weight=3]; 1326 -> 129[label="",style="dashed", color="red", weight=0]; 1326[label="xwv32 == xwv34",fontsize=16,color="magenta"];1326 -> 1350[label="",style="dashed", color="magenta", weight=3]; 1326 -> 1351[label="",style="dashed", color="magenta", weight=3]; 1327 -> 130[label="",style="dashed", color="red", weight=0]; 1327[label="xwv32 == xwv34",fontsize=16,color="magenta"];1327 -> 1352[label="",style="dashed", color="magenta", weight=3]; 1327 -> 1353[label="",style="dashed", color="magenta", weight=3]; 1328 -> 131[label="",style="dashed", color="red", weight=0]; 1328[label="xwv32 == xwv34",fontsize=16,color="magenta"];1328 -> 1354[label="",style="dashed", color="magenta", weight=3]; 1328 -> 1355[label="",style="dashed", color="magenta", weight=3]; 1329 -> 132[label="",style="dashed", color="red", weight=0]; 1329[label="xwv32 == xwv34",fontsize=16,color="magenta"];1329 -> 1356[label="",style="dashed", color="magenta", weight=3]; 1329 -> 1357[label="",style="dashed", color="magenta", weight=3]; 1330 -> 133[label="",style="dashed", color="red", weight=0]; 1330[label="xwv32 == xwv34",fontsize=16,color="magenta"];1330 -> 1358[label="",style="dashed", color="magenta", weight=3]; 1330 -> 1359[label="",style="dashed", color="magenta", weight=3]; 1331 -> 134[label="",style="dashed", color="red", weight=0]; 1331[label="xwv32 == xwv34",fontsize=16,color="magenta"];1331 -> 1360[label="",style="dashed", color="magenta", weight=3]; 1331 -> 1361[label="",style="dashed", color="magenta", weight=3]; 1332 -> 135[label="",style="dashed", color="red", weight=0]; 1332[label="xwv32 == xwv34",fontsize=16,color="magenta"];1332 -> 1362[label="",style="dashed", color="magenta", weight=3]; 1332 -> 1363[label="",style="dashed", color="magenta", weight=3]; 1333 -> 136[label="",style="dashed", color="red", weight=0]; 1333[label="xwv32 == xwv34",fontsize=16,color="magenta"];1333 -> 1364[label="",style="dashed", color="magenta", weight=3]; 1333 -> 1365[label="",style="dashed", color="magenta", weight=3]; 1334 -> 137[label="",style="dashed", color="red", weight=0]; 1334[label="xwv32 == xwv34",fontsize=16,color="magenta"];1334 -> 1366[label="",style="dashed", color="magenta", weight=3]; 1334 -> 1367[label="",style="dashed", color="magenta", weight=3]; 1335 -> 138[label="",style="dashed", color="red", weight=0]; 1335[label="xwv32 == xwv34",fontsize=16,color="magenta"];1335 -> 1368[label="",style="dashed", color="magenta", weight=3]; 1335 -> 1369[label="",style="dashed", color="magenta", weight=3]; 1336 -> 139[label="",style="dashed", color="red", weight=0]; 1336[label="xwv32 == xwv34",fontsize=16,color="magenta"];1336 -> 1370[label="",style="dashed", color="magenta", weight=3]; 1336 -> 1371[label="",style="dashed", color="magenta", weight=3]; 1337 -> 140[label="",style="dashed", color="red", weight=0]; 1337[label="xwv32 == xwv34",fontsize=16,color="magenta"];1337 -> 1372[label="",style="dashed", color="magenta", weight=3]; 1337 -> 1373[label="",style="dashed", color="magenta", weight=3]; 1338 -> 141[label="",style="dashed", color="red", weight=0]; 1338[label="xwv32 == xwv34",fontsize=16,color="magenta"];1338 -> 1374[label="",style="dashed", color="magenta", weight=3]; 1338 -> 1375[label="",style="dashed", color="magenta", weight=3]; 1339 -> 142[label="",style="dashed", color="red", weight=0]; 1339[label="xwv32 == xwv34",fontsize=16,color="magenta"];1339 -> 1376[label="",style="dashed", color="magenta", weight=3]; 1339 -> 1377[label="",style="dashed", color="magenta", weight=3]; 366[label="compare3 (xwv21,xwv22) (xwv15,xwv16)",fontsize=16,color="black",shape="box"];366 -> 587[label="",style="solid", color="black", weight=3]; 368 -> 134[label="",style="dashed", color="red", weight=0]; 368[label="(xwv15,xwv16) == (xwv21,xwv22)",fontsize=16,color="magenta"];368 -> 588[label="",style="dashed", color="magenta", weight=3]; 368 -> 589[label="",style="dashed", color="magenta", weight=3]; 367[label="FiniteMap.delFromFM0 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) xwv57",fontsize=16,color="burlywood",shape="triangle"];3921[label="xwv57/False",fontsize=10,color="white",style="solid",shape="box"];367 -> 3921[label="",style="solid", color="burlywood", weight=9]; 3921 -> 590[label="",style="solid", color="burlywood", weight=3]; 3922[label="xwv57/True",fontsize=10,color="white",style="solid",shape="box"];367 -> 3922[label="",style="solid", color="burlywood", weight=9]; 3922 -> 591[label="",style="solid", color="burlywood", weight=3]; 2797[label="(xwv15,xwv16)",fontsize=16,color="green",shape="box"];2798[label="xwv20",fontsize=16,color="green",shape="box"];2799[label="xwv17",fontsize=16,color="green",shape="box"];2800 -> 11[label="",style="dashed", color="red", weight=0]; 2800[label="FiniteMap.delFromFM xwv19 (xwv21,xwv22)",fontsize=16,color="magenta"];2800 -> 2813[label="",style="dashed", color="magenta", weight=3]; 2800 -> 2814[label="",style="dashed", color="magenta", weight=3]; 2833 -> 1453[label="",style="dashed", color="red", weight=0]; 2833[label="FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204 + FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204 < Pos (Succ (Succ Zero))",fontsize=16,color="magenta"];2833 -> 2834[label="",style="dashed", color="magenta", weight=3]; 2833 -> 2835[label="",style="dashed", color="magenta", weight=3]; 2832[label="FiniteMap.mkBalBranch6MkBalBranch5 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 xwv241",fontsize=16,color="burlywood",shape="triangle"];3923[label="xwv241/False",fontsize=10,color="white",style="solid",shape="box"];2832 -> 3923[label="",style="solid", color="burlywood", weight=9]; 3923 -> 2836[label="",style="solid", color="burlywood", weight=3]; 3924[label="xwv241/True",fontsize=10,color="white",style="solid",shape="box"];2832 -> 3924[label="",style="solid", color="burlywood", weight=9]; 3924 -> 2837[label="",style="solid", color="burlywood", weight=3]; 372[label="xwv4001 * xwv3000",fontsize=16,color="black",shape="triangle"];372 -> 600[label="",style="solid", color="black", weight=3]; 373 -> 372[label="",style="dashed", color="red", weight=0]; 373[label="xwv4000 * xwv3001",fontsize=16,color="magenta"];373 -> 601[label="",style="dashed", color="magenta", weight=3]; 373 -> 602[label="",style="dashed", color="magenta", weight=3]; 389 -> 131[label="",style="dashed", color="red", weight=0]; 389[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];389 -> 603[label="",style="dashed", color="magenta", weight=3]; 389 -> 604[label="",style="dashed", color="magenta", weight=3]; 390 -> 138[label="",style="dashed", color="red", weight=0]; 390[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];390 -> 605[label="",style="dashed", color="magenta", weight=3]; 390 -> 606[label="",style="dashed", color="magenta", weight=3]; 391 -> 131[label="",style="dashed", color="red", weight=0]; 391[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];391 -> 607[label="",style="dashed", color="magenta", weight=3]; 391 -> 608[label="",style="dashed", color="magenta", weight=3]; 392 -> 138[label="",style="dashed", color="red", weight=0]; 392[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];392 -> 609[label="",style="dashed", color="magenta", weight=3]; 392 -> 610[label="",style="dashed", color="magenta", weight=3]; 393[label="False && xwv62",fontsize=16,color="black",shape="box"];393 -> 611[label="",style="solid", color="black", weight=3]; 394[label="True && xwv62",fontsize=16,color="black",shape="box"];394 -> 612[label="",style="solid", color="black", weight=3]; 395[label="primEqNat (Succ xwv40000) xwv3000",fontsize=16,color="burlywood",shape="box"];3925[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];395 -> 3925[label="",style="solid", color="burlywood", weight=9]; 3925 -> 613[label="",style="solid", color="burlywood", weight=3]; 3926[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];395 -> 3926[label="",style="solid", color="burlywood", weight=9]; 3926 -> 614[label="",style="solid", color="burlywood", weight=3]; 396[label="primEqNat Zero xwv3000",fontsize=16,color="burlywood",shape="box"];3927[label="xwv3000/Succ xwv30000",fontsize=10,color="white",style="solid",shape="box"];396 -> 3927[label="",style="solid", color="burlywood", weight=9]; 3927 -> 615[label="",style="solid", color="burlywood", weight=3]; 3928[label="xwv3000/Zero",fontsize=10,color="white",style="solid",shape="box"];396 -> 3928[label="",style="solid", color="burlywood", weight=9]; 3928 -> 616[label="",style="solid", color="burlywood", weight=3]; 397[label="xwv3000",fontsize=16,color="green",shape="box"];398[label="xwv4000",fontsize=16,color="green",shape="box"];399[label="xwv3000",fontsize=16,color="green",shape="box"];400[label="xwv4000",fontsize=16,color="green",shape="box"];401[label="xwv3000",fontsize=16,color="green",shape="box"];402[label="xwv4000",fontsize=16,color="green",shape="box"];403[label="xwv3000",fontsize=16,color="green",shape="box"];404[label="xwv4000",fontsize=16,color="green",shape="box"];405[label="xwv3000",fontsize=16,color="green",shape="box"];406[label="xwv4000",fontsize=16,color="green",shape="box"];407[label="xwv3000",fontsize=16,color="green",shape="box"];408[label="xwv4000",fontsize=16,color="green",shape="box"];409[label="xwv3000",fontsize=16,color="green",shape="box"];410[label="xwv4000",fontsize=16,color="green",shape="box"];411[label="xwv3000",fontsize=16,color="green",shape="box"];412[label="xwv4000",fontsize=16,color="green",shape="box"];413[label="xwv3000",fontsize=16,color="green",shape="box"];414[label="xwv4000",fontsize=16,color="green",shape="box"];415[label="xwv3000",fontsize=16,color="green",shape="box"];416[label="xwv4000",fontsize=16,color="green",shape="box"];417[label="xwv3000",fontsize=16,color="green",shape="box"];418[label="xwv4000",fontsize=16,color="green",shape="box"];419[label="xwv3000",fontsize=16,color="green",shape="box"];420[label="xwv4000",fontsize=16,color="green",shape="box"];421[label="xwv3000",fontsize=16,color="green",shape="box"];422[label="xwv4000",fontsize=16,color="green",shape="box"];423[label="xwv3000",fontsize=16,color="green",shape="box"];424[label="xwv4000",fontsize=16,color="green",shape="box"];425[label="xwv3000",fontsize=16,color="green",shape="box"];426[label="xwv4000",fontsize=16,color="green",shape="box"];427[label="xwv3000",fontsize=16,color="green",shape="box"];428[label="xwv4000",fontsize=16,color="green",shape="box"];429[label="xwv3000",fontsize=16,color="green",shape="box"];430[label="xwv4000",fontsize=16,color="green",shape="box"];431[label="xwv3000",fontsize=16,color="green",shape="box"];432[label="xwv4000",fontsize=16,color="green",shape="box"];433[label="xwv3000",fontsize=16,color="green",shape="box"];434[label="xwv4000",fontsize=16,color="green",shape="box"];435[label="xwv3000",fontsize=16,color="green",shape="box"];436[label="xwv4000",fontsize=16,color="green",shape="box"];437[label="xwv3000",fontsize=16,color="green",shape="box"];438[label="xwv4000",fontsize=16,color="green",shape="box"];439[label="xwv3000",fontsize=16,color="green",shape="box"];440[label="xwv4000",fontsize=16,color="green",shape="box"];441[label="xwv3000",fontsize=16,color="green",shape="box"];442[label="xwv4000",fontsize=16,color="green",shape="box"];443[label="xwv3000",fontsize=16,color="green",shape="box"];444[label="xwv4000",fontsize=16,color="green",shape="box"];445[label="xwv3000",fontsize=16,color="green",shape="box"];446[label="xwv4000",fontsize=16,color="green",shape="box"];447[label="xwv3000",fontsize=16,color="green",shape="box"];448[label="xwv4000",fontsize=16,color="green",shape="box"];449[label="xwv3000",fontsize=16,color="green",shape="box"];450[label="xwv4000",fontsize=16,color="green",shape="box"];451[label="xwv3000",fontsize=16,color="green",shape="box"];452[label="xwv4000",fontsize=16,color="green",shape="box"];453 -> 129[label="",style="dashed", color="red", weight=0]; 453[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];453 -> 617[label="",style="dashed", color="magenta", weight=3]; 453 -> 618[label="",style="dashed", color="magenta", weight=3]; 454 -> 130[label="",style="dashed", color="red", weight=0]; 454[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];454 -> 619[label="",style="dashed", color="magenta", weight=3]; 454 -> 620[label="",style="dashed", color="magenta", weight=3]; 455 -> 131[label="",style="dashed", color="red", weight=0]; 455[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];455 -> 621[label="",style="dashed", color="magenta", weight=3]; 455 -> 622[label="",style="dashed", color="magenta", weight=3]; 456 -> 132[label="",style="dashed", color="red", weight=0]; 456[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];456 -> 623[label="",style="dashed", color="magenta", weight=3]; 456 -> 624[label="",style="dashed", color="magenta", weight=3]; 457 -> 133[label="",style="dashed", color="red", weight=0]; 457[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];457 -> 625[label="",style="dashed", color="magenta", weight=3]; 457 -> 626[label="",style="dashed", color="magenta", weight=3]; 458 -> 134[label="",style="dashed", color="red", weight=0]; 458[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];458 -> 627[label="",style="dashed", color="magenta", weight=3]; 458 -> 628[label="",style="dashed", color="magenta", weight=3]; 459 -> 135[label="",style="dashed", color="red", weight=0]; 459[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];459 -> 629[label="",style="dashed", color="magenta", weight=3]; 459 -> 630[label="",style="dashed", color="magenta", weight=3]; 460 -> 136[label="",style="dashed", color="red", weight=0]; 460[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];460 -> 631[label="",style="dashed", color="magenta", weight=3]; 460 -> 632[label="",style="dashed", color="magenta", weight=3]; 461 -> 137[label="",style="dashed", color="red", weight=0]; 461[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];461 -> 633[label="",style="dashed", color="magenta", weight=3]; 461 -> 634[label="",style="dashed", color="magenta", weight=3]; 462 -> 138[label="",style="dashed", color="red", weight=0]; 462[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];462 -> 635[label="",style="dashed", color="magenta", weight=3]; 462 -> 636[label="",style="dashed", color="magenta", weight=3]; 463 -> 139[label="",style="dashed", color="red", weight=0]; 463[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];463 -> 637[label="",style="dashed", color="magenta", weight=3]; 463 -> 638[label="",style="dashed", color="magenta", weight=3]; 464 -> 140[label="",style="dashed", color="red", weight=0]; 464[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];464 -> 639[label="",style="dashed", color="magenta", weight=3]; 464 -> 640[label="",style="dashed", color="magenta", weight=3]; 465 -> 141[label="",style="dashed", color="red", weight=0]; 465[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];465 -> 641[label="",style="dashed", color="magenta", weight=3]; 465 -> 642[label="",style="dashed", color="magenta", weight=3]; 466 -> 142[label="",style="dashed", color="red", weight=0]; 466[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];466 -> 643[label="",style="dashed", color="magenta", weight=3]; 466 -> 644[label="",style="dashed", color="magenta", weight=3]; 467 -> 129[label="",style="dashed", color="red", weight=0]; 467[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];467 -> 645[label="",style="dashed", color="magenta", weight=3]; 467 -> 646[label="",style="dashed", color="magenta", weight=3]; 468 -> 130[label="",style="dashed", color="red", weight=0]; 468[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];468 -> 647[label="",style="dashed", color="magenta", weight=3]; 468 -> 648[label="",style="dashed", color="magenta", weight=3]; 469 -> 131[label="",style="dashed", color="red", weight=0]; 469[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];469 -> 649[label="",style="dashed", color="magenta", weight=3]; 469 -> 650[label="",style="dashed", color="magenta", weight=3]; 470 -> 132[label="",style="dashed", color="red", weight=0]; 470[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];470 -> 651[label="",style="dashed", color="magenta", weight=3]; 470 -> 652[label="",style="dashed", color="magenta", weight=3]; 471 -> 133[label="",style="dashed", color="red", weight=0]; 471[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];471 -> 653[label="",style="dashed", color="magenta", weight=3]; 471 -> 654[label="",style="dashed", color="magenta", weight=3]; 472 -> 134[label="",style="dashed", color="red", weight=0]; 472[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];472 -> 655[label="",style="dashed", color="magenta", weight=3]; 472 -> 656[label="",style="dashed", color="magenta", weight=3]; 473 -> 135[label="",style="dashed", color="red", weight=0]; 473[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];473 -> 657[label="",style="dashed", color="magenta", weight=3]; 473 -> 658[label="",style="dashed", color="magenta", weight=3]; 474 -> 136[label="",style="dashed", color="red", weight=0]; 474[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];474 -> 659[label="",style="dashed", color="magenta", weight=3]; 474 -> 660[label="",style="dashed", color="magenta", weight=3]; 475 -> 137[label="",style="dashed", color="red", weight=0]; 475[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];475 -> 661[label="",style="dashed", color="magenta", weight=3]; 475 -> 662[label="",style="dashed", color="magenta", weight=3]; 476 -> 138[label="",style="dashed", color="red", weight=0]; 476[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];476 -> 663[label="",style="dashed", color="magenta", weight=3]; 476 -> 664[label="",style="dashed", color="magenta", weight=3]; 477 -> 139[label="",style="dashed", color="red", weight=0]; 477[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];477 -> 665[label="",style="dashed", color="magenta", weight=3]; 477 -> 666[label="",style="dashed", color="magenta", weight=3]; 478 -> 140[label="",style="dashed", color="red", weight=0]; 478[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];478 -> 667[label="",style="dashed", color="magenta", weight=3]; 478 -> 668[label="",style="dashed", color="magenta", weight=3]; 479 -> 141[label="",style="dashed", color="red", weight=0]; 479[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];479 -> 669[label="",style="dashed", color="magenta", weight=3]; 479 -> 670[label="",style="dashed", color="magenta", weight=3]; 480 -> 142[label="",style="dashed", color="red", weight=0]; 480[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];480 -> 671[label="",style="dashed", color="magenta", weight=3]; 480 -> 672[label="",style="dashed", color="magenta", weight=3]; 481[label="xwv3000",fontsize=16,color="green",shape="box"];482[label="xwv4000",fontsize=16,color="green",shape="box"];483[label="xwv3000",fontsize=16,color="green",shape="box"];484[label="xwv4000",fontsize=16,color="green",shape="box"];485[label="xwv3000",fontsize=16,color="green",shape="box"];486[label="xwv4000",fontsize=16,color="green",shape="box"];487[label="xwv3000",fontsize=16,color="green",shape="box"];488[label="xwv4000",fontsize=16,color="green",shape="box"];489[label="xwv3000",fontsize=16,color="green",shape="box"];490[label="xwv4000",fontsize=16,color="green",shape="box"];491[label="xwv3000",fontsize=16,color="green",shape="box"];492[label="xwv4000",fontsize=16,color="green",shape="box"];493[label="xwv3000",fontsize=16,color="green",shape="box"];494[label="xwv4000",fontsize=16,color="green",shape="box"];495[label="xwv3000",fontsize=16,color="green",shape="box"];496[label="xwv4000",fontsize=16,color="green",shape="box"];497[label="xwv3000",fontsize=16,color="green",shape="box"];498[label="xwv4000",fontsize=16,color="green",shape="box"];499[label="xwv3000",fontsize=16,color="green",shape="box"];500[label="xwv4000",fontsize=16,color="green",shape="box"];501[label="xwv3000",fontsize=16,color="green",shape="box"];502[label="xwv4000",fontsize=16,color="green",shape="box"];503[label="xwv3000",fontsize=16,color="green",shape="box"];504[label="xwv4000",fontsize=16,color="green",shape="box"];505[label="xwv3000",fontsize=16,color="green",shape="box"];506[label="xwv4000",fontsize=16,color="green",shape="box"];507[label="xwv3000",fontsize=16,color="green",shape="box"];508[label="xwv4000",fontsize=16,color="green",shape="box"];509 -> 372[label="",style="dashed", color="red", weight=0]; 509[label="xwv4001 * xwv3000",fontsize=16,color="magenta"];509 -> 673[label="",style="dashed", color="magenta", weight=3]; 509 -> 674[label="",style="dashed", color="magenta", weight=3]; 510 -> 372[label="",style="dashed", color="red", weight=0]; 510[label="xwv4000 * xwv3001",fontsize=16,color="magenta"];510 -> 675[label="",style="dashed", color="magenta", weight=3]; 510 -> 676[label="",style="dashed", color="magenta", weight=3]; 511[label="primEqInt (Pos (Succ xwv40000)) (Pos (Succ xwv30000))",fontsize=16,color="black",shape="box"];511 -> 677[label="",style="solid", color="black", weight=3]; 512[label="primEqInt (Pos (Succ xwv40000)) (Pos Zero)",fontsize=16,color="black",shape="box"];512 -> 678[label="",style="solid", color="black", weight=3]; 513[label="False",fontsize=16,color="green",shape="box"];514[label="primEqInt (Pos Zero) (Pos (Succ xwv30000))",fontsize=16,color="black",shape="box"];514 -> 679[label="",style="solid", color="black", weight=3]; 515[label="primEqInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];515 -> 680[label="",style="solid", color="black", weight=3]; 516[label="primEqInt (Pos Zero) (Neg (Succ xwv30000))",fontsize=16,color="black",shape="box"];516 -> 681[label="",style="solid", color="black", weight=3]; 517[label="primEqInt (Pos Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];517 -> 682[label="",style="solid", color="black", weight=3]; 518[label="False",fontsize=16,color="green",shape="box"];519[label="primEqInt (Neg (Succ xwv40000)) (Neg (Succ xwv30000))",fontsize=16,color="black",shape="box"];519 -> 683[label="",style="solid", color="black", weight=3]; 520[label="primEqInt (Neg (Succ xwv40000)) (Neg Zero)",fontsize=16,color="black",shape="box"];520 -> 684[label="",style="solid", color="black", weight=3]; 521[label="primEqInt (Neg Zero) (Pos (Succ xwv30000))",fontsize=16,color="black",shape="box"];521 -> 685[label="",style="solid", color="black", weight=3]; 522[label="primEqInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];522 -> 686[label="",style="solid", color="black", weight=3]; 523[label="primEqInt (Neg Zero) (Neg (Succ xwv30000))",fontsize=16,color="black",shape="box"];523 -> 687[label="",style="solid", color="black", weight=3]; 524[label="primEqInt (Neg Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];524 -> 688[label="",style="solid", color="black", weight=3]; 525[label="xwv3001",fontsize=16,color="green",shape="box"];526[label="xwv4001",fontsize=16,color="green",shape="box"];527 -> 129[label="",style="dashed", color="red", weight=0]; 527[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];527 -> 689[label="",style="dashed", color="magenta", weight=3]; 527 -> 690[label="",style="dashed", color="magenta", weight=3]; 528 -> 130[label="",style="dashed", color="red", weight=0]; 528[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];528 -> 691[label="",style="dashed", color="magenta", weight=3]; 528 -> 692[label="",style="dashed", color="magenta", weight=3]; 529 -> 131[label="",style="dashed", color="red", weight=0]; 529[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];529 -> 693[label="",style="dashed", color="magenta", weight=3]; 529 -> 694[label="",style="dashed", color="magenta", weight=3]; 530 -> 132[label="",style="dashed", color="red", weight=0]; 530[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];530 -> 695[label="",style="dashed", color="magenta", weight=3]; 530 -> 696[label="",style="dashed", color="magenta", weight=3]; 531 -> 133[label="",style="dashed", color="red", weight=0]; 531[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];531 -> 697[label="",style="dashed", color="magenta", weight=3]; 531 -> 698[label="",style="dashed", color="magenta", weight=3]; 532 -> 134[label="",style="dashed", color="red", weight=0]; 532[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];532 -> 699[label="",style="dashed", color="magenta", weight=3]; 532 -> 700[label="",style="dashed", color="magenta", weight=3]; 533 -> 135[label="",style="dashed", color="red", weight=0]; 533[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];533 -> 701[label="",style="dashed", color="magenta", weight=3]; 533 -> 702[label="",style="dashed", color="magenta", weight=3]; 534 -> 136[label="",style="dashed", color="red", weight=0]; 534[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];534 -> 703[label="",style="dashed", color="magenta", weight=3]; 534 -> 704[label="",style="dashed", color="magenta", weight=3]; 535 -> 137[label="",style="dashed", color="red", weight=0]; 535[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];535 -> 705[label="",style="dashed", color="magenta", weight=3]; 535 -> 706[label="",style="dashed", color="magenta", weight=3]; 536 -> 138[label="",style="dashed", color="red", weight=0]; 536[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];536 -> 707[label="",style="dashed", color="magenta", weight=3]; 536 -> 708[label="",style="dashed", color="magenta", weight=3]; 537 -> 139[label="",style="dashed", color="red", weight=0]; 537[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];537 -> 709[label="",style="dashed", color="magenta", weight=3]; 537 -> 710[label="",style="dashed", color="magenta", weight=3]; 538 -> 140[label="",style="dashed", color="red", weight=0]; 538[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];538 -> 711[label="",style="dashed", color="magenta", weight=3]; 538 -> 712[label="",style="dashed", color="magenta", weight=3]; 539 -> 141[label="",style="dashed", color="red", weight=0]; 539[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];539 -> 713[label="",style="dashed", color="magenta", weight=3]; 539 -> 714[label="",style="dashed", color="magenta", weight=3]; 540 -> 142[label="",style="dashed", color="red", weight=0]; 540[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];540 -> 715[label="",style="dashed", color="magenta", weight=3]; 540 -> 716[label="",style="dashed", color="magenta", weight=3]; 541[label="xwv4002 == xwv3002",fontsize=16,color="blue",shape="box"];3929[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3929[label="",style="solid", color="blue", weight=9]; 3929 -> 717[label="",style="solid", color="blue", weight=3]; 3930[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3930[label="",style="solid", color="blue", weight=9]; 3930 -> 718[label="",style="solid", color="blue", weight=3]; 3931[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3931[label="",style="solid", color="blue", weight=9]; 3931 -> 719[label="",style="solid", color="blue", weight=3]; 3932[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3932[label="",style="solid", color="blue", weight=9]; 3932 -> 720[label="",style="solid", color="blue", weight=3]; 3933[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3933[label="",style="solid", color="blue", weight=9]; 3933 -> 721[label="",style="solid", color="blue", weight=3]; 3934[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3934[label="",style="solid", color="blue", weight=9]; 3934 -> 722[label="",style="solid", color="blue", weight=3]; 3935[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3935[label="",style="solid", color="blue", weight=9]; 3935 -> 723[label="",style="solid", color="blue", weight=3]; 3936[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3936[label="",style="solid", color="blue", weight=9]; 3936 -> 724[label="",style="solid", color="blue", weight=3]; 3937[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3937[label="",style="solid", color="blue", weight=9]; 3937 -> 725[label="",style="solid", color="blue", weight=3]; 3938[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3938[label="",style="solid", color="blue", weight=9]; 3938 -> 726[label="",style="solid", color="blue", weight=3]; 3939[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3939[label="",style="solid", color="blue", weight=9]; 3939 -> 727[label="",style="solid", color="blue", weight=3]; 3940[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3940[label="",style="solid", color="blue", weight=9]; 3940 -> 728[label="",style="solid", color="blue", weight=3]; 3941[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3941[label="",style="solid", color="blue", weight=9]; 3941 -> 729[label="",style="solid", color="blue", weight=3]; 3942[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];541 -> 3942[label="",style="solid", color="blue", weight=9]; 3942 -> 730[label="",style="solid", color="blue", weight=3]; 542[label="xwv4001 == xwv3001",fontsize=16,color="blue",shape="box"];3943[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3943[label="",style="solid", color="blue", weight=9]; 3943 -> 731[label="",style="solid", color="blue", weight=3]; 3944[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3944[label="",style="solid", color="blue", weight=9]; 3944 -> 732[label="",style="solid", color="blue", weight=3]; 3945[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3945[label="",style="solid", color="blue", weight=9]; 3945 -> 733[label="",style="solid", color="blue", weight=3]; 3946[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3946[label="",style="solid", color="blue", weight=9]; 3946 -> 734[label="",style="solid", color="blue", weight=3]; 3947[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3947[label="",style="solid", color="blue", weight=9]; 3947 -> 735[label="",style="solid", color="blue", weight=3]; 3948[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3948[label="",style="solid", color="blue", weight=9]; 3948 -> 736[label="",style="solid", color="blue", weight=3]; 3949[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3949[label="",style="solid", color="blue", weight=9]; 3949 -> 737[label="",style="solid", color="blue", weight=3]; 3950[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3950[label="",style="solid", color="blue", weight=9]; 3950 -> 738[label="",style="solid", color="blue", weight=3]; 3951[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3951[label="",style="solid", color="blue", weight=9]; 3951 -> 739[label="",style="solid", color="blue", weight=3]; 3952[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3952[label="",style="solid", color="blue", weight=9]; 3952 -> 740[label="",style="solid", color="blue", weight=3]; 3953[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3953[label="",style="solid", color="blue", weight=9]; 3953 -> 741[label="",style="solid", color="blue", weight=3]; 3954[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3954[label="",style="solid", color="blue", weight=9]; 3954 -> 742[label="",style="solid", color="blue", weight=3]; 3955[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3955[label="",style="solid", color="blue", weight=9]; 3955 -> 743[label="",style="solid", color="blue", weight=3]; 3956[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];542 -> 3956[label="",style="solid", color="blue", weight=9]; 3956 -> 744[label="",style="solid", color="blue", weight=3]; 543 -> 129[label="",style="dashed", color="red", weight=0]; 543[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];543 -> 745[label="",style="dashed", color="magenta", weight=3]; 543 -> 746[label="",style="dashed", color="magenta", weight=3]; 544 -> 130[label="",style="dashed", color="red", weight=0]; 544[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];544 -> 747[label="",style="dashed", color="magenta", weight=3]; 544 -> 748[label="",style="dashed", color="magenta", weight=3]; 545 -> 131[label="",style="dashed", color="red", weight=0]; 545[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];545 -> 749[label="",style="dashed", color="magenta", weight=3]; 545 -> 750[label="",style="dashed", color="magenta", weight=3]; 546 -> 132[label="",style="dashed", color="red", weight=0]; 546[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];546 -> 751[label="",style="dashed", color="magenta", weight=3]; 546 -> 752[label="",style="dashed", color="magenta", weight=3]; 547 -> 133[label="",style="dashed", color="red", weight=0]; 547[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];547 -> 753[label="",style="dashed", color="magenta", weight=3]; 547 -> 754[label="",style="dashed", color="magenta", weight=3]; 548 -> 134[label="",style="dashed", color="red", weight=0]; 548[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];548 -> 755[label="",style="dashed", color="magenta", weight=3]; 548 -> 756[label="",style="dashed", color="magenta", weight=3]; 549 -> 135[label="",style="dashed", color="red", weight=0]; 549[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];549 -> 757[label="",style="dashed", color="magenta", weight=3]; 549 -> 758[label="",style="dashed", color="magenta", weight=3]; 550 -> 136[label="",style="dashed", color="red", weight=0]; 550[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];550 -> 759[label="",style="dashed", color="magenta", weight=3]; 550 -> 760[label="",style="dashed", color="magenta", weight=3]; 551 -> 137[label="",style="dashed", color="red", weight=0]; 551[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];551 -> 761[label="",style="dashed", color="magenta", weight=3]; 551 -> 762[label="",style="dashed", color="magenta", weight=3]; 552 -> 138[label="",style="dashed", color="red", weight=0]; 552[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];552 -> 763[label="",style="dashed", color="magenta", weight=3]; 552 -> 764[label="",style="dashed", color="magenta", weight=3]; 553 -> 139[label="",style="dashed", color="red", weight=0]; 553[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];553 -> 765[label="",style="dashed", color="magenta", weight=3]; 553 -> 766[label="",style="dashed", color="magenta", weight=3]; 554 -> 140[label="",style="dashed", color="red", weight=0]; 554[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];554 -> 767[label="",style="dashed", color="magenta", weight=3]; 554 -> 768[label="",style="dashed", color="magenta", weight=3]; 555 -> 141[label="",style="dashed", color="red", weight=0]; 555[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];555 -> 769[label="",style="dashed", color="magenta", weight=3]; 555 -> 770[label="",style="dashed", color="magenta", weight=3]; 556 -> 142[label="",style="dashed", color="red", weight=0]; 556[label="xwv4000 == xwv3000",fontsize=16,color="magenta"];556 -> 771[label="",style="dashed", color="magenta", weight=3]; 556 -> 772[label="",style="dashed", color="magenta", weight=3]; 1348[label="compare1 xwv44 xwv46 (xwv44 <= xwv46)",fontsize=16,color="burlywood",shape="box"];3957[label="xwv44/(xwv440,xwv441)",fontsize=10,color="white",style="solid",shape="box"];1348 -> 3957[label="",style="solid", color="burlywood", weight=9]; 3957 -> 1388[label="",style="solid", color="burlywood", weight=3]; 1349[label="EQ",fontsize=16,color="green",shape="box"];1350[label="xwv34",fontsize=16,color="green",shape="box"];1351[label="xwv32",fontsize=16,color="green",shape="box"];1352[label="xwv34",fontsize=16,color="green",shape="box"];1353[label="xwv32",fontsize=16,color="green",shape="box"];1354[label="xwv34",fontsize=16,color="green",shape="box"];1355[label="xwv32",fontsize=16,color="green",shape="box"];1356[label="xwv34",fontsize=16,color="green",shape="box"];1357[label="xwv32",fontsize=16,color="green",shape="box"];1358[label="xwv34",fontsize=16,color="green",shape="box"];1359[label="xwv32",fontsize=16,color="green",shape="box"];1360[label="xwv34",fontsize=16,color="green",shape="box"];1361[label="xwv32",fontsize=16,color="green",shape="box"];1362[label="xwv34",fontsize=16,color="green",shape="box"];1363[label="xwv32",fontsize=16,color="green",shape="box"];1364[label="xwv34",fontsize=16,color="green",shape="box"];1365[label="xwv32",fontsize=16,color="green",shape="box"];1366[label="xwv34",fontsize=16,color="green",shape="box"];1367[label="xwv32",fontsize=16,color="green",shape="box"];1368[label="xwv34",fontsize=16,color="green",shape="box"];1369[label="xwv32",fontsize=16,color="green",shape="box"];1370[label="xwv34",fontsize=16,color="green",shape="box"];1371[label="xwv32",fontsize=16,color="green",shape="box"];1372[label="xwv34",fontsize=16,color="green",shape="box"];1373[label="xwv32",fontsize=16,color="green",shape="box"];1374[label="xwv34",fontsize=16,color="green",shape="box"];1375[label="xwv32",fontsize=16,color="green",shape="box"];1376[label="xwv34",fontsize=16,color="green",shape="box"];1377[label="xwv32",fontsize=16,color="green",shape="box"];587 -> 1310[label="",style="dashed", color="red", weight=0]; 587[label="compare2 (xwv21,xwv22) (xwv15,xwv16) ((xwv21,xwv22) == (xwv15,xwv16))",fontsize=16,color="magenta"];587 -> 1320[label="",style="dashed", color="magenta", weight=3]; 587 -> 1321[label="",style="dashed", color="magenta", weight=3]; 587 -> 1322[label="",style="dashed", color="magenta", weight=3]; 588[label="(xwv21,xwv22)",fontsize=16,color="green",shape="box"];589[label="(xwv15,xwv16)",fontsize=16,color="green",shape="box"];590[label="FiniteMap.delFromFM0 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) False",fontsize=16,color="black",shape="box"];590 -> 779[label="",style="solid", color="black", weight=3]; 591[label="FiniteMap.delFromFM0 (xwv15,xwv16) xwv17 xwv18 xwv19 xwv20 (xwv21,xwv22) True",fontsize=16,color="black",shape="box"];591 -> 780[label="",style="solid", color="black", weight=3]; 2813[label="xwv19",fontsize=16,color="green",shape="box"];2814[label="(xwv21,xwv22)",fontsize=16,color="green",shape="box"];2834[label="FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204 + FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204",fontsize=16,color="black",shape="box"];2834 -> 2851[label="",style="solid", color="black", weight=3]; 2835[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];1453[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1453 -> 1514[label="",style="solid", color="black", weight=3]; 2836[label="FiniteMap.mkBalBranch6MkBalBranch5 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 False",fontsize=16,color="black",shape="box"];2836 -> 2852[label="",style="solid", color="black", weight=3]; 2837[label="FiniteMap.mkBalBranch6MkBalBranch5 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 True",fontsize=16,color="black",shape="box"];2837 -> 2853[label="",style="solid", color="black", weight=3]; 600[label="primMulInt xwv4001 xwv3000",fontsize=16,color="burlywood",shape="triangle"];3958[label="xwv4001/Pos xwv40010",fontsize=10,color="white",style="solid",shape="box"];600 -> 3958[label="",style="solid", color="burlywood", weight=9]; 3958 -> 785[label="",style="solid", color="burlywood", weight=3]; 3959[label="xwv4001/Neg xwv40010",fontsize=10,color="white",style="solid",shape="box"];600 -> 3959[label="",style="solid", color="burlywood", weight=9]; 3959 -> 786[label="",style="solid", color="burlywood", weight=3]; 601[label="xwv4000",fontsize=16,color="green",shape="box"];602[label="xwv3001",fontsize=16,color="green",shape="box"];603[label="xwv3001",fontsize=16,color="green",shape="box"];604[label="xwv4001",fontsize=16,color="green",shape="box"];605[label="xwv3001",fontsize=16,color="green",shape="box"];606[label="xwv4001",fontsize=16,color="green",shape="box"];607[label="xwv3000",fontsize=16,color="green",shape="box"];608[label="xwv4000",fontsize=16,color="green",shape="box"];609[label="xwv3000",fontsize=16,color="green",shape="box"];610[label="xwv4000",fontsize=16,color="green",shape="box"];611[label="False",fontsize=16,color="green",shape="box"];612[label="xwv62",fontsize=16,color="green",shape="box"];613[label="primEqNat (Succ xwv40000) (Succ xwv30000)",fontsize=16,color="black",shape="box"];613 -> 787[label="",style="solid", color="black", weight=3]; 614[label="primEqNat (Succ xwv40000) Zero",fontsize=16,color="black",shape="box"];614 -> 788[label="",style="solid", color="black", weight=3]; 615[label="primEqNat Zero (Succ xwv30000)",fontsize=16,color="black",shape="box"];615 -> 789[label="",style="solid", color="black", weight=3]; 616[label="primEqNat Zero Zero",fontsize=16,color="black",shape="box"];616 -> 790[label="",style="solid", color="black", weight=3]; 617[label="xwv3001",fontsize=16,color="green",shape="box"];618[label="xwv4001",fontsize=16,color="green",shape="box"];619[label="xwv3001",fontsize=16,color="green",shape="box"];620[label="xwv4001",fontsize=16,color="green",shape="box"];621[label="xwv3001",fontsize=16,color="green",shape="box"];622[label="xwv4001",fontsize=16,color="green",shape="box"];623[label="xwv3001",fontsize=16,color="green",shape="box"];624[label="xwv4001",fontsize=16,color="green",shape="box"];625[label="xwv3001",fontsize=16,color="green",shape="box"];626[label="xwv4001",fontsize=16,color="green",shape="box"];627[label="xwv3001",fontsize=16,color="green",shape="box"];628[label="xwv4001",fontsize=16,color="green",shape="box"];629[label="xwv3001",fontsize=16,color="green",shape="box"];630[label="xwv4001",fontsize=16,color="green",shape="box"];631[label="xwv3001",fontsize=16,color="green",shape="box"];632[label="xwv4001",fontsize=16,color="green",shape="box"];633[label="xwv3001",fontsize=16,color="green",shape="box"];634[label="xwv4001",fontsize=16,color="green",shape="box"];635[label="xwv3001",fontsize=16,color="green",shape="box"];636[label="xwv4001",fontsize=16,color="green",shape="box"];637[label="xwv3001",fontsize=16,color="green",shape="box"];638[label="xwv4001",fontsize=16,color="green",shape="box"];639[label="xwv3001",fontsize=16,color="green",shape="box"];640[label="xwv4001",fontsize=16,color="green",shape="box"];641[label="xwv3001",fontsize=16,color="green",shape="box"];642[label="xwv4001",fontsize=16,color="green",shape="box"];643[label="xwv3001",fontsize=16,color="green",shape="box"];644[label="xwv4001",fontsize=16,color="green",shape="box"];645[label="xwv3000",fontsize=16,color="green",shape="box"];646[label="xwv4000",fontsize=16,color="green",shape="box"];647[label="xwv3000",fontsize=16,color="green",shape="box"];648[label="xwv4000",fontsize=16,color="green",shape="box"];649[label="xwv3000",fontsize=16,color="green",shape="box"];650[label="xwv4000",fontsize=16,color="green",shape="box"];651[label="xwv3000",fontsize=16,color="green",shape="box"];652[label="xwv4000",fontsize=16,color="green",shape="box"];653[label="xwv3000",fontsize=16,color="green",shape="box"];654[label="xwv4000",fontsize=16,color="green",shape="box"];655[label="xwv3000",fontsize=16,color="green",shape="box"];656[label="xwv4000",fontsize=16,color="green",shape="box"];657[label="xwv3000",fontsize=16,color="green",shape="box"];658[label="xwv4000",fontsize=16,color="green",shape="box"];659[label="xwv3000",fontsize=16,color="green",shape="box"];660[label="xwv4000",fontsize=16,color="green",shape="box"];661[label="xwv3000",fontsize=16,color="green",shape="box"];662[label="xwv4000",fontsize=16,color="green",shape="box"];663[label="xwv3000",fontsize=16,color="green",shape="box"];664[label="xwv4000",fontsize=16,color="green",shape="box"];665[label="xwv3000",fontsize=16,color="green",shape="box"];666[label="xwv4000",fontsize=16,color="green",shape="box"];667[label="xwv3000",fontsize=16,color="green",shape="box"];668[label="xwv4000",fontsize=16,color="green",shape="box"];669[label="xwv3000",fontsize=16,color="green",shape="box"];670[label="xwv4000",fontsize=16,color="green",shape="box"];671[label="xwv3000",fontsize=16,color="green",shape="box"];672[label="xwv4000",fontsize=16,color="green",shape="box"];673[label="xwv4001",fontsize=16,color="green",shape="box"];674[label="xwv3000",fontsize=16,color="green",shape="box"];675[label="xwv4000",fontsize=16,color="green",shape="box"];676[label="xwv3001",fontsize=16,color="green",shape="box"];677 -> 287[label="",style="dashed", color="red", weight=0]; 677[label="primEqNat xwv40000 xwv30000",fontsize=16,color="magenta"];677 -> 791[label="",style="dashed", color="magenta", weight=3]; 677 -> 792[label="",style="dashed", color="magenta", weight=3]; 678[label="False",fontsize=16,color="green",shape="box"];679[label="False",fontsize=16,color="green",shape="box"];680[label="True",fontsize=16,color="green",shape="box"];681[label="False",fontsize=16,color="green",shape="box"];682[label="True",fontsize=16,color="green",shape="box"];683 -> 287[label="",style="dashed", color="red", weight=0]; 683[label="primEqNat xwv40000 xwv30000",fontsize=16,color="magenta"];683 -> 793[label="",style="dashed", color="magenta", weight=3]; 683 -> 794[label="",style="dashed", color="magenta", weight=3]; 684[label="False",fontsize=16,color="green",shape="box"];685[label="False",fontsize=16,color="green",shape="box"];686[label="True",fontsize=16,color="green",shape="box"];687[label="False",fontsize=16,color="green",shape="box"];688[label="True",fontsize=16,color="green",shape="box"];689[label="xwv3000",fontsize=16,color="green",shape="box"];690[label="xwv4000",fontsize=16,color="green",shape="box"];691[label="xwv3000",fontsize=16,color="green",shape="box"];692[label="xwv4000",fontsize=16,color="green",shape="box"];693[label="xwv3000",fontsize=16,color="green",shape="box"];694[label="xwv4000",fontsize=16,color="green",shape="box"];695[label="xwv3000",fontsize=16,color="green",shape="box"];696[label="xwv4000",fontsize=16,color="green",shape="box"];697[label="xwv3000",fontsize=16,color="green",shape="box"];698[label="xwv4000",fontsize=16,color="green",shape="box"];699[label="xwv3000",fontsize=16,color="green",shape="box"];700[label="xwv4000",fontsize=16,color="green",shape="box"];701[label="xwv3000",fontsize=16,color="green",shape="box"];702[label="xwv4000",fontsize=16,color="green",shape="box"];703[label="xwv3000",fontsize=16,color="green",shape="box"];704[label="xwv4000",fontsize=16,color="green",shape="box"];705[label="xwv3000",fontsize=16,color="green",shape="box"];706[label="xwv4000",fontsize=16,color="green",shape="box"];707[label="xwv3000",fontsize=16,color="green",shape="box"];708[label="xwv4000",fontsize=16,color="green",shape="box"];709[label="xwv3000",fontsize=16,color="green",shape="box"];710[label="xwv4000",fontsize=16,color="green",shape="box"];711[label="xwv3000",fontsize=16,color="green",shape="box"];712[label="xwv4000",fontsize=16,color="green",shape="box"];713[label="xwv3000",fontsize=16,color="green",shape="box"];714[label="xwv4000",fontsize=16,color="green",shape="box"];715[label="xwv3000",fontsize=16,color="green",shape="box"];716[label="xwv4000",fontsize=16,color="green",shape="box"];717 -> 129[label="",style="dashed", color="red", weight=0]; 717[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];717 -> 795[label="",style="dashed", color="magenta", weight=3]; 717 -> 796[label="",style="dashed", color="magenta", weight=3]; 718 -> 130[label="",style="dashed", color="red", weight=0]; 718[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];718 -> 797[label="",style="dashed", color="magenta", weight=3]; 718 -> 798[label="",style="dashed", color="magenta", weight=3]; 719 -> 131[label="",style="dashed", color="red", weight=0]; 719[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];719 -> 799[label="",style="dashed", color="magenta", weight=3]; 719 -> 800[label="",style="dashed", color="magenta", weight=3]; 720 -> 132[label="",style="dashed", color="red", weight=0]; 720[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];720 -> 801[label="",style="dashed", color="magenta", weight=3]; 720 -> 802[label="",style="dashed", color="magenta", weight=3]; 721 -> 133[label="",style="dashed", color="red", weight=0]; 721[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];721 -> 803[label="",style="dashed", color="magenta", weight=3]; 721 -> 804[label="",style="dashed", color="magenta", weight=3]; 722 -> 134[label="",style="dashed", color="red", weight=0]; 722[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];722 -> 805[label="",style="dashed", color="magenta", weight=3]; 722 -> 806[label="",style="dashed", color="magenta", weight=3]; 723 -> 135[label="",style="dashed", color="red", weight=0]; 723[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];723 -> 807[label="",style="dashed", color="magenta", weight=3]; 723 -> 808[label="",style="dashed", color="magenta", weight=3]; 724 -> 136[label="",style="dashed", color="red", weight=0]; 724[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];724 -> 809[label="",style="dashed", color="magenta", weight=3]; 724 -> 810[label="",style="dashed", color="magenta", weight=3]; 725 -> 137[label="",style="dashed", color="red", weight=0]; 725[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];725 -> 811[label="",style="dashed", color="magenta", weight=3]; 725 -> 812[label="",style="dashed", color="magenta", weight=3]; 726 -> 138[label="",style="dashed", color="red", weight=0]; 726[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];726 -> 813[label="",style="dashed", color="magenta", weight=3]; 726 -> 814[label="",style="dashed", color="magenta", weight=3]; 727 -> 139[label="",style="dashed", color="red", weight=0]; 727[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];727 -> 815[label="",style="dashed", color="magenta", weight=3]; 727 -> 816[label="",style="dashed", color="magenta", weight=3]; 728 -> 140[label="",style="dashed", color="red", weight=0]; 728[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];728 -> 817[label="",style="dashed", color="magenta", weight=3]; 728 -> 818[label="",style="dashed", color="magenta", weight=3]; 729 -> 141[label="",style="dashed", color="red", weight=0]; 729[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];729 -> 819[label="",style="dashed", color="magenta", weight=3]; 729 -> 820[label="",style="dashed", color="magenta", weight=3]; 730 -> 142[label="",style="dashed", color="red", weight=0]; 730[label="xwv4002 == xwv3002",fontsize=16,color="magenta"];730 -> 821[label="",style="dashed", color="magenta", weight=3]; 730 -> 822[label="",style="dashed", color="magenta", weight=3]; 731 -> 129[label="",style="dashed", color="red", weight=0]; 731[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];731 -> 823[label="",style="dashed", color="magenta", weight=3]; 731 -> 824[label="",style="dashed", color="magenta", weight=3]; 732 -> 130[label="",style="dashed", color="red", weight=0]; 732[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];732 -> 825[label="",style="dashed", color="magenta", weight=3]; 732 -> 826[label="",style="dashed", color="magenta", weight=3]; 733 -> 131[label="",style="dashed", color="red", weight=0]; 733[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];733 -> 827[label="",style="dashed", color="magenta", weight=3]; 733 -> 828[label="",style="dashed", color="magenta", weight=3]; 734 -> 132[label="",style="dashed", color="red", weight=0]; 734[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];734 -> 829[label="",style="dashed", color="magenta", weight=3]; 734 -> 830[label="",style="dashed", color="magenta", weight=3]; 735 -> 133[label="",style="dashed", color="red", weight=0]; 735[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];735 -> 831[label="",style="dashed", color="magenta", weight=3]; 735 -> 832[label="",style="dashed", color="magenta", weight=3]; 736 -> 134[label="",style="dashed", color="red", weight=0]; 736[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];736 -> 833[label="",style="dashed", color="magenta", weight=3]; 736 -> 834[label="",style="dashed", color="magenta", weight=3]; 737 -> 135[label="",style="dashed", color="red", weight=0]; 737[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];737 -> 835[label="",style="dashed", color="magenta", weight=3]; 737 -> 836[label="",style="dashed", color="magenta", weight=3]; 738 -> 136[label="",style="dashed", color="red", weight=0]; 738[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];738 -> 837[label="",style="dashed", color="magenta", weight=3]; 738 -> 838[label="",style="dashed", color="magenta", weight=3]; 739 -> 137[label="",style="dashed", color="red", weight=0]; 739[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];739 -> 839[label="",style="dashed", color="magenta", weight=3]; 739 -> 840[label="",style="dashed", color="magenta", weight=3]; 740 -> 138[label="",style="dashed", color="red", weight=0]; 740[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];740 -> 841[label="",style="dashed", color="magenta", weight=3]; 740 -> 842[label="",style="dashed", color="magenta", weight=3]; 741 -> 139[label="",style="dashed", color="red", weight=0]; 741[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];741 -> 843[label="",style="dashed", color="magenta", weight=3]; 741 -> 844[label="",style="dashed", color="magenta", weight=3]; 742 -> 140[label="",style="dashed", color="red", weight=0]; 742[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];742 -> 845[label="",style="dashed", color="magenta", weight=3]; 742 -> 846[label="",style="dashed", color="magenta", weight=3]; 743 -> 141[label="",style="dashed", color="red", weight=0]; 743[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];743 -> 847[label="",style="dashed", color="magenta", weight=3]; 743 -> 848[label="",style="dashed", color="magenta", weight=3]; 744 -> 142[label="",style="dashed", color="red", weight=0]; 744[label="xwv4001 == xwv3001",fontsize=16,color="magenta"];744 -> 849[label="",style="dashed", color="magenta", weight=3]; 744 -> 850[label="",style="dashed", color="magenta", weight=3]; 745[label="xwv3000",fontsize=16,color="green",shape="box"];746[label="xwv4000",fontsize=16,color="green",shape="box"];747[label="xwv3000",fontsize=16,color="green",shape="box"];748[label="xwv4000",fontsize=16,color="green",shape="box"];749[label="xwv3000",fontsize=16,color="green",shape="box"];750[label="xwv4000",fontsize=16,color="green",shape="box"];751[label="xwv3000",fontsize=16,color="green",shape="box"];752[label="xwv4000",fontsize=16,color="green",shape="box"];753[label="xwv3000",fontsize=16,color="green",shape="box"];754[label="xwv4000",fontsize=16,color="green",shape="box"];755[label="xwv3000",fontsize=16,color="green",shape="box"];756[label="xwv4000",fontsize=16,color="green",shape="box"];757[label="xwv3000",fontsize=16,color="green",shape="box"];758[label="xwv4000",fontsize=16,color="green",shape="box"];759[label="xwv3000",fontsize=16,color="green",shape="box"];760[label="xwv4000",fontsize=16,color="green",shape="box"];761[label="xwv3000",fontsize=16,color="green",shape="box"];762[label="xwv4000",fontsize=16,color="green",shape="box"];763[label="xwv3000",fontsize=16,color="green",shape="box"];764[label="xwv4000",fontsize=16,color="green",shape="box"];765[label="xwv3000",fontsize=16,color="green",shape="box"];766[label="xwv4000",fontsize=16,color="green",shape="box"];767[label="xwv3000",fontsize=16,color="green",shape="box"];768[label="xwv4000",fontsize=16,color="green",shape="box"];769[label="xwv3000",fontsize=16,color="green",shape="box"];770[label="xwv4000",fontsize=16,color="green",shape="box"];771[label="xwv3000",fontsize=16,color="green",shape="box"];772[label="xwv4000",fontsize=16,color="green",shape="box"];1388[label="compare1 (xwv440,xwv441) xwv46 ((xwv440,xwv441) <= xwv46)",fontsize=16,color="burlywood",shape="box"];3960[label="xwv46/(xwv460,xwv461)",fontsize=10,color="white",style="solid",shape="box"];1388 -> 3960[label="",style="solid", color="burlywood", weight=9]; 3960 -> 1395[label="",style="solid", color="burlywood", weight=3]; 1320[label="(xwv21,xwv22)",fontsize=16,color="green",shape="box"];1321[label="(xwv15,xwv16)",fontsize=16,color="green",shape="box"];1322 -> 134[label="",style="dashed", color="red", weight=0]; 1322[label="(xwv21,xwv22) == (xwv15,xwv16)",fontsize=16,color="magenta"];1322 -> 1340[label="",style="dashed", color="magenta", weight=3]; 1322 -> 1341[label="",style="dashed", color="magenta", weight=3]; 779[label="error []",fontsize=16,color="red",shape="box"];780[label="FiniteMap.glueBal xwv19 xwv20",fontsize=16,color="burlywood",shape="box"];3961[label="xwv19/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];780 -> 3961[label="",style="solid", color="burlywood", weight=9]; 3961 -> 855[label="",style="solid", color="burlywood", weight=3]; 3962[label="xwv19/FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194",fontsize=10,color="white",style="solid",shape="box"];780 -> 3962[label="",style="solid", color="burlywood", weight=9]; 3962 -> 856[label="",style="solid", color="burlywood", weight=3]; 2851 -> 2876[label="",style="dashed", color="red", weight=0]; 2851[label="primPlusInt (FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204) (FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204)",fontsize=16,color="magenta"];2851 -> 2877[label="",style="dashed", color="magenta", weight=3]; 1514 -> 135[label="",style="dashed", color="red", weight=0]; 1514[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1514 -> 1597[label="",style="dashed", color="magenta", weight=3]; 1514 -> 1598[label="",style="dashed", color="magenta", weight=3]; 2852 -> 2873[label="",style="dashed", color="red", weight=0]; 2852[label="FiniteMap.mkBalBranch6MkBalBranch4 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 (FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204)",fontsize=16,color="magenta"];2852 -> 2874[label="",style="dashed", color="magenta", weight=3]; 2853 -> 3568[label="",style="dashed", color="red", weight=0]; 2853[label="FiniteMap.mkBranch (Pos (Succ Zero)) xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2853 -> 3569[label="",style="dashed", color="magenta", weight=3]; 2853 -> 3570[label="",style="dashed", color="magenta", weight=3]; 2853 -> 3571[label="",style="dashed", color="magenta", weight=3]; 2853 -> 3572[label="",style="dashed", color="magenta", weight=3]; 2853 -> 3573[label="",style="dashed", color="magenta", weight=3]; 785[label="primMulInt (Pos xwv40010) xwv3000",fontsize=16,color="burlywood",shape="box"];3963[label="xwv3000/Pos xwv30000",fontsize=10,color="white",style="solid",shape="box"];785 -> 3963[label="",style="solid", color="burlywood", weight=9]; 3963 -> 861[label="",style="solid", color="burlywood", weight=3]; 3964[label="xwv3000/Neg xwv30000",fontsize=10,color="white",style="solid",shape="box"];785 -> 3964[label="",style="solid", color="burlywood", weight=9]; 3964 -> 862[label="",style="solid", color="burlywood", weight=3]; 786[label="primMulInt (Neg xwv40010) xwv3000",fontsize=16,color="burlywood",shape="box"];3965[label="xwv3000/Pos xwv30000",fontsize=10,color="white",style="solid",shape="box"];786 -> 3965[label="",style="solid", color="burlywood", weight=9]; 3965 -> 863[label="",style="solid", color="burlywood", weight=3]; 3966[label="xwv3000/Neg xwv30000",fontsize=10,color="white",style="solid",shape="box"];786 -> 3966[label="",style="solid", color="burlywood", weight=9]; 3966 -> 864[label="",style="solid", color="burlywood", weight=3]; 787 -> 287[label="",style="dashed", color="red", weight=0]; 787[label="primEqNat xwv40000 xwv30000",fontsize=16,color="magenta"];787 -> 865[label="",style="dashed", color="magenta", weight=3]; 787 -> 866[label="",style="dashed", color="magenta", weight=3]; 788[label="False",fontsize=16,color="green",shape="box"];789[label="False",fontsize=16,color="green",shape="box"];790[label="True",fontsize=16,color="green",shape="box"];791[label="xwv40000",fontsize=16,color="green",shape="box"];792[label="xwv30000",fontsize=16,color="green",shape="box"];793[label="xwv40000",fontsize=16,color="green",shape="box"];794[label="xwv30000",fontsize=16,color="green",shape="box"];795[label="xwv3002",fontsize=16,color="green",shape="box"];796[label="xwv4002",fontsize=16,color="green",shape="box"];797[label="xwv3002",fontsize=16,color="green",shape="box"];798[label="xwv4002",fontsize=16,color="green",shape="box"];799[label="xwv3002",fontsize=16,color="green",shape="box"];800[label="xwv4002",fontsize=16,color="green",shape="box"];801[label="xwv3002",fontsize=16,color="green",shape="box"];802[label="xwv4002",fontsize=16,color="green",shape="box"];803[label="xwv3002",fontsize=16,color="green",shape="box"];804[label="xwv4002",fontsize=16,color="green",shape="box"];805[label="xwv3002",fontsize=16,color="green",shape="box"];806[label="xwv4002",fontsize=16,color="green",shape="box"];807[label="xwv3002",fontsize=16,color="green",shape="box"];808[label="xwv4002",fontsize=16,color="green",shape="box"];809[label="xwv3002",fontsize=16,color="green",shape="box"];810[label="xwv4002",fontsize=16,color="green",shape="box"];811[label="xwv3002",fontsize=16,color="green",shape="box"];812[label="xwv4002",fontsize=16,color="green",shape="box"];813[label="xwv3002",fontsize=16,color="green",shape="box"];814[label="xwv4002",fontsize=16,color="green",shape="box"];815[label="xwv3002",fontsize=16,color="green",shape="box"];816[label="xwv4002",fontsize=16,color="green",shape="box"];817[label="xwv3002",fontsize=16,color="green",shape="box"];818[label="xwv4002",fontsize=16,color="green",shape="box"];819[label="xwv3002",fontsize=16,color="green",shape="box"];820[label="xwv4002",fontsize=16,color="green",shape="box"];821[label="xwv3002",fontsize=16,color="green",shape="box"];822[label="xwv4002",fontsize=16,color="green",shape="box"];823[label="xwv3001",fontsize=16,color="green",shape="box"];824[label="xwv4001",fontsize=16,color="green",shape="box"];825[label="xwv3001",fontsize=16,color="green",shape="box"];826[label="xwv4001",fontsize=16,color="green",shape="box"];827[label="xwv3001",fontsize=16,color="green",shape="box"];828[label="xwv4001",fontsize=16,color="green",shape="box"];829[label="xwv3001",fontsize=16,color="green",shape="box"];830[label="xwv4001",fontsize=16,color="green",shape="box"];831[label="xwv3001",fontsize=16,color="green",shape="box"];832[label="xwv4001",fontsize=16,color="green",shape="box"];833[label="xwv3001",fontsize=16,color="green",shape="box"];834[label="xwv4001",fontsize=16,color="green",shape="box"];835[label="xwv3001",fontsize=16,color="green",shape="box"];836[label="xwv4001",fontsize=16,color="green",shape="box"];837[label="xwv3001",fontsize=16,color="green",shape="box"];838[label="xwv4001",fontsize=16,color="green",shape="box"];839[label="xwv3001",fontsize=16,color="green",shape="box"];840[label="xwv4001",fontsize=16,color="green",shape="box"];841[label="xwv3001",fontsize=16,color="green",shape="box"];842[label="xwv4001",fontsize=16,color="green",shape="box"];843[label="xwv3001",fontsize=16,color="green",shape="box"];844[label="xwv4001",fontsize=16,color="green",shape="box"];845[label="xwv3001",fontsize=16,color="green",shape="box"];846[label="xwv4001",fontsize=16,color="green",shape="box"];847[label="xwv3001",fontsize=16,color="green",shape="box"];848[label="xwv4001",fontsize=16,color="green",shape="box"];849[label="xwv3001",fontsize=16,color="green",shape="box"];850[label="xwv4001",fontsize=16,color="green",shape="box"];1395[label="compare1 (xwv440,xwv441) (xwv460,xwv461) ((xwv440,xwv441) <= (xwv460,xwv461))",fontsize=16,color="black",shape="box"];1395 -> 1402[label="",style="solid", color="black", weight=3]; 1340[label="(xwv15,xwv16)",fontsize=16,color="green",shape="box"];1341[label="(xwv21,xwv22)",fontsize=16,color="green",shape="box"];855[label="FiniteMap.glueBal FiniteMap.EmptyFM xwv20",fontsize=16,color="black",shape="box"];855 -> 900[label="",style="solid", color="black", weight=3]; 856[label="FiniteMap.glueBal (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) xwv20",fontsize=16,color="burlywood",shape="box"];3967[label="xwv20/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];856 -> 3967[label="",style="solid", color="burlywood", weight=9]; 3967 -> 901[label="",style="solid", color="burlywood", weight=3]; 3968[label="xwv20/FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204",fontsize=10,color="white",style="solid",shape="box"];856 -> 3968[label="",style="solid", color="burlywood", weight=9]; 3968 -> 902[label="",style="solid", color="burlywood", weight=3]; 2877[label="FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204",fontsize=16,color="black",shape="triangle"];2877 -> 2879[label="",style="solid", color="black", weight=3]; 2876[label="primPlusInt xwv244 (FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204)",fontsize=16,color="burlywood",shape="triangle"];3969[label="xwv244/Pos xwv2440",fontsize=10,color="white",style="solid",shape="box"];2876 -> 3969[label="",style="solid", color="burlywood", weight=9]; 3969 -> 2880[label="",style="solid", color="burlywood", weight=3]; 3970[label="xwv244/Neg xwv2440",fontsize=10,color="white",style="solid",shape="box"];2876 -> 3970[label="",style="solid", color="burlywood", weight=9]; 3970 -> 2881[label="",style="solid", color="burlywood", weight=3]; 1597[label="LT",fontsize=16,color="green",shape="box"];1598 -> 1038[label="",style="dashed", color="red", weight=0]; 1598[label="compare xwv440 xwv460",fontsize=16,color="magenta"];1598 -> 1676[label="",style="dashed", color="magenta", weight=3]; 1598 -> 1677[label="",style="dashed", color="magenta", weight=3]; 2874 -> 1197[label="",style="dashed", color="red", weight=0]; 2874[label="FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2874 -> 2882[label="",style="dashed", color="magenta", weight=3]; 2874 -> 2883[label="",style="dashed", color="magenta", weight=3]; 2873[label="FiniteMap.mkBalBranch6MkBalBranch4 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 xwv242",fontsize=16,color="burlywood",shape="triangle"];3971[label="xwv242/False",fontsize=10,color="white",style="solid",shape="box"];2873 -> 3971[label="",style="solid", color="burlywood", weight=9]; 3971 -> 2884[label="",style="solid", color="burlywood", weight=3]; 3972[label="xwv242/True",fontsize=10,color="white",style="solid",shape="box"];2873 -> 3972[label="",style="solid", color="burlywood", weight=9]; 3972 -> 2885[label="",style="solid", color="burlywood", weight=3]; 3569[label="xwv201",fontsize=16,color="green",shape="box"];3570[label="xwv204",fontsize=16,color="green",shape="box"];3571[label="Zero",fontsize=16,color="green",shape="box"];3572[label="xwv200",fontsize=16,color="green",shape="box"];3573[label="xwv240",fontsize=16,color="green",shape="box"];3568[label="FiniteMap.mkBranch (Pos (Succ xwv357)) xwv358 xwv359 xwv360 xwv361",fontsize=16,color="black",shape="triangle"];3568 -> 3624[label="",style="solid", color="black", weight=3]; 861[label="primMulInt (Pos xwv40010) (Pos xwv30000)",fontsize=16,color="black",shape="box"];861 -> 908[label="",style="solid", color="black", weight=3]; 862[label="primMulInt (Pos xwv40010) (Neg xwv30000)",fontsize=16,color="black",shape="box"];862 -> 909[label="",style="solid", color="black", weight=3]; 863[label="primMulInt (Neg xwv40010) (Pos xwv30000)",fontsize=16,color="black",shape="box"];863 -> 910[label="",style="solid", color="black", weight=3]; 864[label="primMulInt (Neg xwv40010) (Neg xwv30000)",fontsize=16,color="black",shape="box"];864 -> 911[label="",style="solid", color="black", weight=3]; 865[label="xwv40000",fontsize=16,color="green",shape="box"];866[label="xwv30000",fontsize=16,color="green",shape="box"];1402 -> 1432[label="",style="dashed", color="red", weight=0]; 1402[label="compare1 (xwv440,xwv441) (xwv460,xwv461) (xwv440 < xwv460 || xwv440 == xwv460 && xwv441 <= xwv461)",fontsize=16,color="magenta"];1402 -> 1433[label="",style="dashed", color="magenta", weight=3]; 1402 -> 1434[label="",style="dashed", color="magenta", weight=3]; 1402 -> 1435[label="",style="dashed", color="magenta", weight=3]; 1402 -> 1436[label="",style="dashed", color="magenta", weight=3]; 1402 -> 1437[label="",style="dashed", color="magenta", weight=3]; 1402 -> 1438[label="",style="dashed", color="magenta", weight=3]; 900[label="FiniteMap.glueBal4 FiniteMap.EmptyFM xwv20",fontsize=16,color="black",shape="box"];900 -> 956[label="",style="solid", color="black", weight=3]; 901[label="FiniteMap.glueBal (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];901 -> 957[label="",style="solid", color="black", weight=3]; 902[label="FiniteMap.glueBal (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204)",fontsize=16,color="black",shape="box"];902 -> 958[label="",style="solid", color="black", weight=3]; 2879 -> 1206[label="",style="dashed", color="red", weight=0]; 2879[label="FiniteMap.sizeFM xwv240",fontsize=16,color="magenta"];2879 -> 2899[label="",style="dashed", color="magenta", weight=3]; 2880[label="primPlusInt (Pos xwv2440) (FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204)",fontsize=16,color="black",shape="box"];2880 -> 2900[label="",style="solid", color="black", weight=3]; 2881[label="primPlusInt (Neg xwv2440) (FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204)",fontsize=16,color="black",shape="box"];2881 -> 2901[label="",style="solid", color="black", weight=3]; 1676[label="xwv440",fontsize=16,color="green",shape="box"];1677[label="xwv460",fontsize=16,color="green",shape="box"];1038[label="compare xwv44 xwv46",fontsize=16,color="black",shape="triangle"];1038 -> 1110[label="",style="solid", color="black", weight=3]; 2882 -> 372[label="",style="dashed", color="red", weight=0]; 2882[label="FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2882 -> 2902[label="",style="dashed", color="magenta", weight=3]; 2882 -> 2903[label="",style="dashed", color="magenta", weight=3]; 2883[label="FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204",fontsize=16,color="black",shape="triangle"];2883 -> 2904[label="",style="solid", color="black", weight=3]; 1197[label="xwv91 > xwv90",fontsize=16,color="black",shape="triangle"];1197 -> 1207[label="",style="solid", color="black", weight=3]; 2884[label="FiniteMap.mkBalBranch6MkBalBranch4 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 False",fontsize=16,color="black",shape="box"];2884 -> 2905[label="",style="solid", color="black", weight=3]; 2885[label="FiniteMap.mkBalBranch6MkBalBranch4 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 True",fontsize=16,color="black",shape="box"];2885 -> 2906[label="",style="solid", color="black", weight=3]; 3624[label="FiniteMap.mkBranchResult xwv358 xwv359 xwv361 xwv360",fontsize=16,color="black",shape="box"];3624 -> 3663[label="",style="solid", color="black", weight=3]; 908[label="Pos (primMulNat xwv40010 xwv30000)",fontsize=16,color="green",shape="box"];908 -> 974[label="",style="dashed", color="green", weight=3]; 909[label="Neg (primMulNat xwv40010 xwv30000)",fontsize=16,color="green",shape="box"];909 -> 975[label="",style="dashed", color="green", weight=3]; 910[label="Neg (primMulNat xwv40010 xwv30000)",fontsize=16,color="green",shape="box"];910 -> 976[label="",style="dashed", color="green", weight=3]; 911[label="Pos (primMulNat xwv40010 xwv30000)",fontsize=16,color="green",shape="box"];911 -> 977[label="",style="dashed", color="green", weight=3]; 1433[label="xwv440",fontsize=16,color="green",shape="box"];1434 -> 376[label="",style="dashed", color="red", weight=0]; 1434[label="xwv440 == xwv460 && xwv441 <= xwv461",fontsize=16,color="magenta"];1434 -> 1445[label="",style="dashed", color="magenta", weight=3]; 1434 -> 1446[label="",style="dashed", color="magenta", weight=3]; 1435[label="xwv460",fontsize=16,color="green",shape="box"];1436[label="xwv461",fontsize=16,color="green",shape="box"];1437[label="xwv440 < xwv460",fontsize=16,color="blue",shape="box"];3973[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3973[label="",style="solid", color="blue", weight=9]; 3973 -> 1447[label="",style="solid", color="blue", weight=3]; 3974[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3974[label="",style="solid", color="blue", weight=9]; 3974 -> 1448[label="",style="solid", color="blue", weight=3]; 3975[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3975[label="",style="solid", color="blue", weight=9]; 3975 -> 1449[label="",style="solid", color="blue", weight=3]; 3976[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3976[label="",style="solid", color="blue", weight=9]; 3976 -> 1450[label="",style="solid", color="blue", weight=3]; 3977[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3977[label="",style="solid", color="blue", weight=9]; 3977 -> 1451[label="",style="solid", color="blue", weight=3]; 3978[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3978[label="",style="solid", color="blue", weight=9]; 3978 -> 1452[label="",style="solid", color="blue", weight=3]; 3979[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3979[label="",style="solid", color="blue", weight=9]; 3979 -> 1453[label="",style="solid", color="blue", weight=3]; 3980[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3980[label="",style="solid", color="blue", weight=9]; 3980 -> 1454[label="",style="solid", color="blue", weight=3]; 3981[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3981[label="",style="solid", color="blue", weight=9]; 3981 -> 1455[label="",style="solid", color="blue", weight=3]; 3982[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3982[label="",style="solid", color="blue", weight=9]; 3982 -> 1456[label="",style="solid", color="blue", weight=3]; 3983[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3983[label="",style="solid", color="blue", weight=9]; 3983 -> 1457[label="",style="solid", color="blue", weight=3]; 3984[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3984[label="",style="solid", color="blue", weight=9]; 3984 -> 1458[label="",style="solid", color="blue", weight=3]; 3985[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3985[label="",style="solid", color="blue", weight=9]; 3985 -> 1459[label="",style="solid", color="blue", weight=3]; 3986[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1437 -> 3986[label="",style="solid", color="blue", weight=9]; 3986 -> 1460[label="",style="solid", color="blue", weight=3]; 1438[label="xwv441",fontsize=16,color="green",shape="box"];1432[label="compare1 (xwv110,xwv111) (xwv112,xwv113) (xwv114 || xwv115)",fontsize=16,color="burlywood",shape="triangle"];3987[label="xwv114/False",fontsize=10,color="white",style="solid",shape="box"];1432 -> 3987[label="",style="solid", color="burlywood", weight=9]; 3987 -> 1461[label="",style="solid", color="burlywood", weight=3]; 3988[label="xwv114/True",fontsize=10,color="white",style="solid",shape="box"];1432 -> 3988[label="",style="solid", color="burlywood", weight=9]; 3988 -> 1462[label="",style="solid", color="burlywood", weight=3]; 956[label="xwv20",fontsize=16,color="green",shape="box"];957[label="FiniteMap.glueBal3 (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];957 -> 1056[label="",style="solid", color="black", weight=3]; 958[label="FiniteMap.glueBal2 (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204)",fontsize=16,color="black",shape="box"];958 -> 1057[label="",style="solid", color="black", weight=3]; 2899[label="xwv240",fontsize=16,color="green",shape="box"];1206[label="FiniteMap.sizeFM xwv36",fontsize=16,color="burlywood",shape="triangle"];3989[label="xwv36/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1206 -> 3989[label="",style="solid", color="burlywood", weight=9]; 3989 -> 1221[label="",style="solid", color="burlywood", weight=3]; 3990[label="xwv36/FiniteMap.Branch xwv360 xwv361 xwv362 xwv363 xwv364",fontsize=10,color="white",style="solid",shape="box"];1206 -> 3990[label="",style="solid", color="burlywood", weight=9]; 3990 -> 1222[label="",style="solid", color="burlywood", weight=3]; 2900 -> 2916[label="",style="dashed", color="red", weight=0]; 2900[label="primPlusInt (Pos xwv2440) (FiniteMap.sizeFM xwv204)",fontsize=16,color="magenta"];2900 -> 2917[label="",style="dashed", color="magenta", weight=3]; 2901 -> 2918[label="",style="dashed", color="red", weight=0]; 2901[label="primPlusInt (Neg xwv2440) (FiniteMap.sizeFM xwv204)",fontsize=16,color="magenta"];2901 -> 2919[label="",style="dashed", color="magenta", weight=3]; 1110[label="primCmpInt xwv44 xwv46",fontsize=16,color="burlywood",shape="triangle"];3991[label="xwv44/Pos xwv440",fontsize=10,color="white",style="solid",shape="box"];1110 -> 3991[label="",style="solid", color="burlywood", weight=9]; 3991 -> 1181[label="",style="solid", color="burlywood", weight=3]; 3992[label="xwv44/Neg xwv440",fontsize=10,color="white",style="solid",shape="box"];1110 -> 3992[label="",style="solid", color="burlywood", weight=9]; 3992 -> 1182[label="",style="solid", color="burlywood", weight=3]; 2902[label="FiniteMap.sIZE_RATIO",fontsize=16,color="black",shape="triangle"];2902 -> 2920[label="",style="solid", color="black", weight=3]; 2903 -> 2877[label="",style="dashed", color="red", weight=0]; 2903[label="FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2904 -> 1206[label="",style="dashed", color="red", weight=0]; 2904[label="FiniteMap.sizeFM xwv204",fontsize=16,color="magenta"];2904 -> 2921[label="",style="dashed", color="magenta", weight=3]; 1207 -> 135[label="",style="dashed", color="red", weight=0]; 1207[label="compare xwv91 xwv90 == GT",fontsize=16,color="magenta"];1207 -> 1223[label="",style="dashed", color="magenta", weight=3]; 1207 -> 1224[label="",style="dashed", color="magenta", weight=3]; 2905 -> 2922[label="",style="dashed", color="red", weight=0]; 2905[label="FiniteMap.mkBalBranch6MkBalBranch3 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 (FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204)",fontsize=16,color="magenta"];2905 -> 2923[label="",style="dashed", color="magenta", weight=3]; 2906[label="FiniteMap.mkBalBranch6MkBalBranch0 xwv200 xwv201 xwv240 xwv204 xwv240 xwv204 xwv204",fontsize=16,color="burlywood",shape="box"];3993[label="xwv204/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2906 -> 3993[label="",style="solid", color="burlywood", weight=9]; 3993 -> 2924[label="",style="solid", color="burlywood", weight=3]; 3994[label="xwv204/FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044",fontsize=10,color="white",style="solid",shape="box"];2906 -> 3994[label="",style="solid", color="burlywood", weight=9]; 3994 -> 2925[label="",style="solid", color="burlywood", weight=3]; 3663[label="FiniteMap.Branch xwv358 xwv359 (FiniteMap.mkBranchUnbox xwv361 xwv360 xwv358 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xwv361 xwv360 xwv358 + FiniteMap.mkBranchRight_size xwv361 xwv360 xwv358)) xwv360 xwv361",fontsize=16,color="green",shape="box"];3663 -> 3670[label="",style="dashed", color="green", weight=3]; 974[label="primMulNat xwv40010 xwv30000",fontsize=16,color="burlywood",shape="triangle"];3995[label="xwv40010/Succ xwv400100",fontsize=10,color="white",style="solid",shape="box"];974 -> 3995[label="",style="solid", color="burlywood", weight=9]; 3995 -> 1067[label="",style="solid", color="burlywood", weight=3]; 3996[label="xwv40010/Zero",fontsize=10,color="white",style="solid",shape="box"];974 -> 3996[label="",style="solid", color="burlywood", weight=9]; 3996 -> 1068[label="",style="solid", color="burlywood", weight=3]; 975 -> 974[label="",style="dashed", color="red", weight=0]; 975[label="primMulNat xwv40010 xwv30000",fontsize=16,color="magenta"];975 -> 1069[label="",style="dashed", color="magenta", weight=3]; 976 -> 974[label="",style="dashed", color="red", weight=0]; 976[label="primMulNat xwv40010 xwv30000",fontsize=16,color="magenta"];976 -> 1070[label="",style="dashed", color="magenta", weight=3]; 977 -> 974[label="",style="dashed", color="red", weight=0]; 977[label="primMulNat xwv40010 xwv30000",fontsize=16,color="magenta"];977 -> 1071[label="",style="dashed", color="magenta", weight=3]; 977 -> 1072[label="",style="dashed", color="magenta", weight=3]; 1445[label="xwv441 <= xwv461",fontsize=16,color="blue",shape="box"];3997[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 3997[label="",style="solid", color="blue", weight=9]; 3997 -> 1480[label="",style="solid", color="blue", weight=3]; 3998[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 3998[label="",style="solid", color="blue", weight=9]; 3998 -> 1481[label="",style="solid", color="blue", weight=3]; 3999[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 3999[label="",style="solid", color="blue", weight=9]; 3999 -> 1482[label="",style="solid", color="blue", weight=3]; 4000[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4000[label="",style="solid", color="blue", weight=9]; 4000 -> 1483[label="",style="solid", color="blue", weight=3]; 4001[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4001[label="",style="solid", color="blue", weight=9]; 4001 -> 1484[label="",style="solid", color="blue", weight=3]; 4002[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4002[label="",style="solid", color="blue", weight=9]; 4002 -> 1485[label="",style="solid", color="blue", weight=3]; 4003[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4003[label="",style="solid", color="blue", weight=9]; 4003 -> 1486[label="",style="solid", color="blue", weight=3]; 4004[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4004[label="",style="solid", color="blue", weight=9]; 4004 -> 1487[label="",style="solid", color="blue", weight=3]; 4005[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4005[label="",style="solid", color="blue", weight=9]; 4005 -> 1488[label="",style="solid", color="blue", weight=3]; 4006[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4006[label="",style="solid", color="blue", weight=9]; 4006 -> 1489[label="",style="solid", color="blue", weight=3]; 4007[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4007[label="",style="solid", color="blue", weight=9]; 4007 -> 1490[label="",style="solid", color="blue", weight=3]; 4008[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4008[label="",style="solid", color="blue", weight=9]; 4008 -> 1491[label="",style="solid", color="blue", weight=3]; 4009[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4009[label="",style="solid", color="blue", weight=9]; 4009 -> 1492[label="",style="solid", color="blue", weight=3]; 4010[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1445 -> 4010[label="",style="solid", color="blue", weight=9]; 4010 -> 1493[label="",style="solid", color="blue", weight=3]; 1446[label="xwv440 == xwv460",fontsize=16,color="blue",shape="box"];4011[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4011[label="",style="solid", color="blue", weight=9]; 4011 -> 1494[label="",style="solid", color="blue", weight=3]; 4012[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4012[label="",style="solid", color="blue", weight=9]; 4012 -> 1495[label="",style="solid", color="blue", weight=3]; 4013[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4013[label="",style="solid", color="blue", weight=9]; 4013 -> 1496[label="",style="solid", color="blue", weight=3]; 4014[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4014[label="",style="solid", color="blue", weight=9]; 4014 -> 1497[label="",style="solid", color="blue", weight=3]; 4015[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4015[label="",style="solid", color="blue", weight=9]; 4015 -> 1498[label="",style="solid", color="blue", weight=3]; 4016[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4016[label="",style="solid", color="blue", weight=9]; 4016 -> 1499[label="",style="solid", color="blue", weight=3]; 4017[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4017[label="",style="solid", color="blue", weight=9]; 4017 -> 1500[label="",style="solid", color="blue", weight=3]; 4018[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4018[label="",style="solid", color="blue", weight=9]; 4018 -> 1501[label="",style="solid", color="blue", weight=3]; 4019[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4019[label="",style="solid", color="blue", weight=9]; 4019 -> 1502[label="",style="solid", color="blue", weight=3]; 4020[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4020[label="",style="solid", color="blue", weight=9]; 4020 -> 1503[label="",style="solid", color="blue", weight=3]; 4021[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4021[label="",style="solid", color="blue", weight=9]; 4021 -> 1504[label="",style="solid", color="blue", weight=3]; 4022[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4022[label="",style="solid", color="blue", weight=9]; 4022 -> 1505[label="",style="solid", color="blue", weight=3]; 4023[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4023[label="",style="solid", color="blue", weight=9]; 4023 -> 1506[label="",style="solid", color="blue", weight=3]; 4024[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1446 -> 4024[label="",style="solid", color="blue", weight=9]; 4024 -> 1507[label="",style="solid", color="blue", weight=3]; 1447[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1447 -> 1508[label="",style="solid", color="black", weight=3]; 1448[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1448 -> 1509[label="",style="solid", color="black", weight=3]; 1449[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1449 -> 1510[label="",style="solid", color="black", weight=3]; 1450[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1450 -> 1511[label="",style="solid", color="black", weight=3]; 1451[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1451 -> 1512[label="",style="solid", color="black", weight=3]; 1452[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1452 -> 1513[label="",style="solid", color="black", weight=3]; 1454[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1454 -> 1515[label="",style="solid", color="black", weight=3]; 1455[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1455 -> 1516[label="",style="solid", color="black", weight=3]; 1456[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1456 -> 1517[label="",style="solid", color="black", weight=3]; 1457[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1457 -> 1518[label="",style="solid", color="black", weight=3]; 1458[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1458 -> 1519[label="",style="solid", color="black", weight=3]; 1459[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1459 -> 1520[label="",style="solid", color="black", weight=3]; 1460[label="xwv440 < xwv460",fontsize=16,color="black",shape="triangle"];1460 -> 1521[label="",style="solid", color="black", weight=3]; 1461[label="compare1 (xwv110,xwv111) (xwv112,xwv113) (False || xwv115)",fontsize=16,color="black",shape="box"];1461 -> 1522[label="",style="solid", color="black", weight=3]; 1462[label="compare1 (xwv110,xwv111) (xwv112,xwv113) (True || xwv115)",fontsize=16,color="black",shape="box"];1462 -> 1523[label="",style="solid", color="black", weight=3]; 1056[label="FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194",fontsize=16,color="green",shape="box"];1057 -> 1194[label="",style="dashed", color="red", weight=0]; 1057[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.sizeFM (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) > FiniteMap.sizeFM (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194))",fontsize=16,color="magenta"];1057 -> 1195[label="",style="dashed", color="magenta", weight=3]; 1221[label="FiniteMap.sizeFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];1221 -> 1245[label="",style="solid", color="black", weight=3]; 1222[label="FiniteMap.sizeFM (FiniteMap.Branch xwv360 xwv361 xwv362 xwv363 xwv364)",fontsize=16,color="black",shape="box"];1222 -> 1246[label="",style="solid", color="black", weight=3]; 2917 -> 1206[label="",style="dashed", color="red", weight=0]; 2917[label="FiniteMap.sizeFM xwv204",fontsize=16,color="magenta"];2917 -> 2927[label="",style="dashed", color="magenta", weight=3]; 2916[label="primPlusInt (Pos xwv2440) xwv245",fontsize=16,color="burlywood",shape="triangle"];4025[label="xwv245/Pos xwv2450",fontsize=10,color="white",style="solid",shape="box"];2916 -> 4025[label="",style="solid", color="burlywood", weight=9]; 4025 -> 2928[label="",style="solid", color="burlywood", weight=3]; 4026[label="xwv245/Neg xwv2450",fontsize=10,color="white",style="solid",shape="box"];2916 -> 4026[label="",style="solid", color="burlywood", weight=9]; 4026 -> 2929[label="",style="solid", color="burlywood", weight=3]; 2919 -> 1206[label="",style="dashed", color="red", weight=0]; 2919[label="FiniteMap.sizeFM xwv204",fontsize=16,color="magenta"];2919 -> 2930[label="",style="dashed", color="magenta", weight=3]; 2918[label="primPlusInt (Neg xwv2440) xwv246",fontsize=16,color="burlywood",shape="triangle"];4027[label="xwv246/Pos xwv2460",fontsize=10,color="white",style="solid",shape="box"];2918 -> 4027[label="",style="solid", color="burlywood", weight=9]; 4027 -> 2931[label="",style="solid", color="burlywood", weight=3]; 4028[label="xwv246/Neg xwv2460",fontsize=10,color="white",style="solid",shape="box"];2918 -> 4028[label="",style="solid", color="burlywood", weight=9]; 4028 -> 2932[label="",style="solid", color="burlywood", weight=3]; 1181[label="primCmpInt (Pos xwv440) xwv46",fontsize=16,color="burlywood",shape="box"];4029[label="xwv440/Succ xwv4400",fontsize=10,color="white",style="solid",shape="box"];1181 -> 4029[label="",style="solid", color="burlywood", weight=9]; 4029 -> 1406[label="",style="solid", color="burlywood", weight=3]; 4030[label="xwv440/Zero",fontsize=10,color="white",style="solid",shape="box"];1181 -> 4030[label="",style="solid", color="burlywood", weight=9]; 4030 -> 1407[label="",style="solid", color="burlywood", weight=3]; 1182[label="primCmpInt (Neg xwv440) xwv46",fontsize=16,color="burlywood",shape="box"];4031[label="xwv440/Succ xwv4400",fontsize=10,color="white",style="solid",shape="box"];1182 -> 4031[label="",style="solid", color="burlywood", weight=9]; 4031 -> 1408[label="",style="solid", color="burlywood", weight=3]; 4032[label="xwv440/Zero",fontsize=10,color="white",style="solid",shape="box"];1182 -> 4032[label="",style="solid", color="burlywood", weight=9]; 4032 -> 1409[label="",style="solid", color="burlywood", weight=3]; 2920[label="Pos (Succ (Succ (Succ (Succ (Succ Zero)))))",fontsize=16,color="green",shape="box"];2921[label="xwv204",fontsize=16,color="green",shape="box"];1223[label="GT",fontsize=16,color="green",shape="box"];1224 -> 1038[label="",style="dashed", color="red", weight=0]; 1224[label="compare xwv91 xwv90",fontsize=16,color="magenta"];1224 -> 1247[label="",style="dashed", color="magenta", weight=3]; 1224 -> 1248[label="",style="dashed", color="magenta", weight=3]; 2923 -> 1197[label="",style="dashed", color="red", weight=0]; 2923[label="FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2923 -> 2933[label="",style="dashed", color="magenta", weight=3]; 2923 -> 2934[label="",style="dashed", color="magenta", weight=3]; 2922[label="FiniteMap.mkBalBranch6MkBalBranch3 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 xwv247",fontsize=16,color="burlywood",shape="triangle"];4033[label="xwv247/False",fontsize=10,color="white",style="solid",shape="box"];2922 -> 4033[label="",style="solid", color="burlywood", weight=9]; 4033 -> 2935[label="",style="solid", color="burlywood", weight=3]; 4034[label="xwv247/True",fontsize=10,color="white",style="solid",shape="box"];2922 -> 4034[label="",style="solid", color="burlywood", weight=9]; 4034 -> 2936[label="",style="solid", color="burlywood", weight=3]; 2924[label="FiniteMap.mkBalBranch6MkBalBranch0 xwv200 xwv201 xwv240 FiniteMap.EmptyFM xwv240 FiniteMap.EmptyFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];2924 -> 2949[label="",style="solid", color="black", weight=3]; 2925[label="FiniteMap.mkBalBranch6MkBalBranch0 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044)",fontsize=16,color="black",shape="box"];2925 -> 2950[label="",style="solid", color="black", weight=3]; 3670[label="FiniteMap.mkBranchUnbox xwv361 xwv360 xwv358 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xwv361 xwv360 xwv358 + FiniteMap.mkBranchRight_size xwv361 xwv360 xwv358)",fontsize=16,color="black",shape="box"];3670 -> 3671[label="",style="solid", color="black", weight=3]; 1067[label="primMulNat (Succ xwv400100) xwv30000",fontsize=16,color="burlywood",shape="box"];4035[label="xwv30000/Succ xwv300000",fontsize=10,color="white",style="solid",shape="box"];1067 -> 4035[label="",style="solid", color="burlywood", weight=9]; 4035 -> 1137[label="",style="solid", color="burlywood", weight=3]; 4036[label="xwv30000/Zero",fontsize=10,color="white",style="solid",shape="box"];1067 -> 4036[label="",style="solid", color="burlywood", weight=9]; 4036 -> 1138[label="",style="solid", color="burlywood", weight=3]; 1068[label="primMulNat Zero xwv30000",fontsize=16,color="burlywood",shape="box"];4037[label="xwv30000/Succ xwv300000",fontsize=10,color="white",style="solid",shape="box"];1068 -> 4037[label="",style="solid", color="burlywood", weight=9]; 4037 -> 1139[label="",style="solid", color="burlywood", weight=3]; 4038[label="xwv30000/Zero",fontsize=10,color="white",style="solid",shape="box"];1068 -> 4038[label="",style="solid", color="burlywood", weight=9]; 4038 -> 1140[label="",style="solid", color="burlywood", weight=3]; 1069[label="xwv30000",fontsize=16,color="green",shape="box"];1070[label="xwv40010",fontsize=16,color="green",shape="box"];1071[label="xwv30000",fontsize=16,color="green",shape="box"];1072[label="xwv40010",fontsize=16,color="green",shape="box"];1480[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1480 -> 1538[label="",style="solid", color="black", weight=3]; 1481[label="xwv441 <= xwv461",fontsize=16,color="burlywood",shape="triangle"];4039[label="xwv441/(xwv4410,xwv4411)",fontsize=10,color="white",style="solid",shape="box"];1481 -> 4039[label="",style="solid", color="burlywood", weight=9]; 4039 -> 1539[label="",style="solid", color="burlywood", weight=3]; 1482[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1482 -> 1540[label="",style="solid", color="black", weight=3]; 1483[label="xwv441 <= xwv461",fontsize=16,color="burlywood",shape="triangle"];4040[label="xwv441/False",fontsize=10,color="white",style="solid",shape="box"];1483 -> 4040[label="",style="solid", color="burlywood", weight=9]; 4040 -> 1541[label="",style="solid", color="burlywood", weight=3]; 4041[label="xwv441/True",fontsize=10,color="white",style="solid",shape="box"];1483 -> 4041[label="",style="solid", color="burlywood", weight=9]; 4041 -> 1542[label="",style="solid", color="burlywood", weight=3]; 1484[label="xwv441 <= xwv461",fontsize=16,color="burlywood",shape="triangle"];4042[label="xwv441/Left xwv4410",fontsize=10,color="white",style="solid",shape="box"];1484 -> 4042[label="",style="solid", color="burlywood", weight=9]; 4042 -> 1543[label="",style="solid", color="burlywood", weight=3]; 4043[label="xwv441/Right xwv4410",fontsize=10,color="white",style="solid",shape="box"];1484 -> 4043[label="",style="solid", color="burlywood", weight=9]; 4043 -> 1544[label="",style="solid", color="burlywood", weight=3]; 1485[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1485 -> 1545[label="",style="solid", color="black", weight=3]; 1486[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1486 -> 1546[label="",style="solid", color="black", weight=3]; 1487[label="xwv441 <= xwv461",fontsize=16,color="burlywood",shape="triangle"];4044[label="xwv441/Nothing",fontsize=10,color="white",style="solid",shape="box"];1487 -> 4044[label="",style="solid", color="burlywood", weight=9]; 4044 -> 1547[label="",style="solid", color="burlywood", weight=3]; 4045[label="xwv441/Just xwv4410",fontsize=10,color="white",style="solid",shape="box"];1487 -> 4045[label="",style="solid", color="burlywood", weight=9]; 4045 -> 1548[label="",style="solid", color="burlywood", weight=3]; 1488[label="xwv441 <= xwv461",fontsize=16,color="burlywood",shape="triangle"];4046[label="xwv441/(xwv4410,xwv4411,xwv4412)",fontsize=10,color="white",style="solid",shape="box"];1488 -> 4046[label="",style="solid", color="burlywood", weight=9]; 4046 -> 1549[label="",style="solid", color="burlywood", weight=3]; 1489[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1489 -> 1550[label="",style="solid", color="black", weight=3]; 1490[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1490 -> 1551[label="",style="solid", color="black", weight=3]; 1491[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1491 -> 1552[label="",style="solid", color="black", weight=3]; 1492[label="xwv441 <= xwv461",fontsize=16,color="burlywood",shape="triangle"];4047[label="xwv441/LT",fontsize=10,color="white",style="solid",shape="box"];1492 -> 4047[label="",style="solid", color="burlywood", weight=9]; 4047 -> 1553[label="",style="solid", color="burlywood", weight=3]; 4048[label="xwv441/EQ",fontsize=10,color="white",style="solid",shape="box"];1492 -> 4048[label="",style="solid", color="burlywood", weight=9]; 4048 -> 1554[label="",style="solid", color="burlywood", weight=3]; 4049[label="xwv441/GT",fontsize=10,color="white",style="solid",shape="box"];1492 -> 4049[label="",style="solid", color="burlywood", weight=9]; 4049 -> 1555[label="",style="solid", color="burlywood", weight=3]; 1493[label="xwv441 <= xwv461",fontsize=16,color="black",shape="triangle"];1493 -> 1556[label="",style="solid", color="black", weight=3]; 1494 -> 132[label="",style="dashed", color="red", weight=0]; 1494[label="xwv440 == xwv460",fontsize=16,color="magenta"];1494 -> 1557[label="",style="dashed", color="magenta", weight=3]; 1494 -> 1558[label="",style="dashed", color="magenta", weight=3]; 1495 -> 134[label="",style="dashed", color="red", weight=0]; 1495[label="xwv440 == xwv460",fontsize=16,color="magenta"];1495 -> 1559[label="",style="dashed", color="magenta", weight=3]; 1495 -> 1560[label="",style="dashed", color="magenta", weight=3]; 1496 -> 130[label="",style="dashed", color="red", weight=0]; 1496[label="xwv440 == xwv460",fontsize=16,color="magenta"];1496 -> 1561[label="",style="dashed", color="magenta", weight=3]; 1496 -> 1562[label="",style="dashed", color="magenta", weight=3]; 1497 -> 140[label="",style="dashed", color="red", weight=0]; 1497[label="xwv440 == xwv460",fontsize=16,color="magenta"];1497 -> 1563[label="",style="dashed", color="magenta", weight=3]; 1497 -> 1564[label="",style="dashed", color="magenta", weight=3]; 1498 -> 133[label="",style="dashed", color="red", weight=0]; 1498[label="xwv440 == xwv460",fontsize=16,color="magenta"];1498 -> 1565[label="",style="dashed", color="magenta", weight=3]; 1498 -> 1566[label="",style="dashed", color="magenta", weight=3]; 1499 -> 129[label="",style="dashed", color="red", weight=0]; 1499[label="xwv440 == xwv460",fontsize=16,color="magenta"];1499 -> 1567[label="",style="dashed", color="magenta", weight=3]; 1499 -> 1568[label="",style="dashed", color="magenta", weight=3]; 1500 -> 138[label="",style="dashed", color="red", weight=0]; 1500[label="xwv440 == xwv460",fontsize=16,color="magenta"];1500 -> 1569[label="",style="dashed", color="magenta", weight=3]; 1500 -> 1570[label="",style="dashed", color="magenta", weight=3]; 1501 -> 136[label="",style="dashed", color="red", weight=0]; 1501[label="xwv440 == xwv460",fontsize=16,color="magenta"];1501 -> 1571[label="",style="dashed", color="magenta", weight=3]; 1501 -> 1572[label="",style="dashed", color="magenta", weight=3]; 1502 -> 142[label="",style="dashed", color="red", weight=0]; 1502[label="xwv440 == xwv460",fontsize=16,color="magenta"];1502 -> 1573[label="",style="dashed", color="magenta", weight=3]; 1502 -> 1574[label="",style="dashed", color="magenta", weight=3]; 1503 -> 131[label="",style="dashed", color="red", weight=0]; 1503[label="xwv440 == xwv460",fontsize=16,color="magenta"];1503 -> 1575[label="",style="dashed", color="magenta", weight=3]; 1503 -> 1576[label="",style="dashed", color="magenta", weight=3]; 1504 -> 141[label="",style="dashed", color="red", weight=0]; 1504[label="xwv440 == xwv460",fontsize=16,color="magenta"];1504 -> 1577[label="",style="dashed", color="magenta", weight=3]; 1504 -> 1578[label="",style="dashed", color="magenta", weight=3]; 1505 -> 137[label="",style="dashed", color="red", weight=0]; 1505[label="xwv440 == xwv460",fontsize=16,color="magenta"];1505 -> 1579[label="",style="dashed", color="magenta", weight=3]; 1505 -> 1580[label="",style="dashed", color="magenta", weight=3]; 1506 -> 135[label="",style="dashed", color="red", weight=0]; 1506[label="xwv440 == xwv460",fontsize=16,color="magenta"];1506 -> 1581[label="",style="dashed", color="magenta", weight=3]; 1506 -> 1582[label="",style="dashed", color="magenta", weight=3]; 1507 -> 139[label="",style="dashed", color="red", weight=0]; 1507[label="xwv440 == xwv460",fontsize=16,color="magenta"];1507 -> 1583[label="",style="dashed", color="magenta", weight=3]; 1507 -> 1584[label="",style="dashed", color="magenta", weight=3]; 1508 -> 135[label="",style="dashed", color="red", weight=0]; 1508[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1508 -> 1585[label="",style="dashed", color="magenta", weight=3]; 1508 -> 1586[label="",style="dashed", color="magenta", weight=3]; 1509 -> 135[label="",style="dashed", color="red", weight=0]; 1509[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1509 -> 1587[label="",style="dashed", color="magenta", weight=3]; 1509 -> 1588[label="",style="dashed", color="magenta", weight=3]; 1510 -> 135[label="",style="dashed", color="red", weight=0]; 1510[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1510 -> 1589[label="",style="dashed", color="magenta", weight=3]; 1510 -> 1590[label="",style="dashed", color="magenta", weight=3]; 1511 -> 135[label="",style="dashed", color="red", weight=0]; 1511[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1511 -> 1591[label="",style="dashed", color="magenta", weight=3]; 1511 -> 1592[label="",style="dashed", color="magenta", weight=3]; 1512 -> 135[label="",style="dashed", color="red", weight=0]; 1512[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1512 -> 1593[label="",style="dashed", color="magenta", weight=3]; 1512 -> 1594[label="",style="dashed", color="magenta", weight=3]; 1513 -> 135[label="",style="dashed", color="red", weight=0]; 1513[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1513 -> 1595[label="",style="dashed", color="magenta", weight=3]; 1513 -> 1596[label="",style="dashed", color="magenta", weight=3]; 1515 -> 135[label="",style="dashed", color="red", weight=0]; 1515[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1515 -> 1599[label="",style="dashed", color="magenta", weight=3]; 1515 -> 1600[label="",style="dashed", color="magenta", weight=3]; 1516 -> 135[label="",style="dashed", color="red", weight=0]; 1516[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1516 -> 1601[label="",style="dashed", color="magenta", weight=3]; 1516 -> 1602[label="",style="dashed", color="magenta", weight=3]; 1517 -> 135[label="",style="dashed", color="red", weight=0]; 1517[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1517 -> 1603[label="",style="dashed", color="magenta", weight=3]; 1517 -> 1604[label="",style="dashed", color="magenta", weight=3]; 1518 -> 135[label="",style="dashed", color="red", weight=0]; 1518[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1518 -> 1605[label="",style="dashed", color="magenta", weight=3]; 1518 -> 1606[label="",style="dashed", color="magenta", weight=3]; 1519 -> 135[label="",style="dashed", color="red", weight=0]; 1519[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1519 -> 1607[label="",style="dashed", color="magenta", weight=3]; 1519 -> 1608[label="",style="dashed", color="magenta", weight=3]; 1520 -> 135[label="",style="dashed", color="red", weight=0]; 1520[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1520 -> 1609[label="",style="dashed", color="magenta", weight=3]; 1520 -> 1610[label="",style="dashed", color="magenta", weight=3]; 1521 -> 135[label="",style="dashed", color="red", weight=0]; 1521[label="compare xwv440 xwv460 == LT",fontsize=16,color="magenta"];1521 -> 1611[label="",style="dashed", color="magenta", weight=3]; 1521 -> 1612[label="",style="dashed", color="magenta", weight=3]; 1522[label="compare1 (xwv110,xwv111) (xwv112,xwv113) xwv115",fontsize=16,color="burlywood",shape="triangle"];4050[label="xwv115/False",fontsize=10,color="white",style="solid",shape="box"];1522 -> 4050[label="",style="solid", color="burlywood", weight=9]; 4050 -> 1613[label="",style="solid", color="burlywood", weight=3]; 4051[label="xwv115/True",fontsize=10,color="white",style="solid",shape="box"];1522 -> 4051[label="",style="solid", color="burlywood", weight=9]; 4051 -> 1614[label="",style="solid", color="burlywood", weight=3]; 1523 -> 1522[label="",style="dashed", color="red", weight=0]; 1523[label="compare1 (xwv110,xwv111) (xwv112,xwv113) True",fontsize=16,color="magenta"];1523 -> 1615[label="",style="dashed", color="magenta", weight=3]; 1195 -> 1197[label="",style="dashed", color="red", weight=0]; 1195[label="FiniteMap.sizeFM (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) > FiniteMap.sizeFM (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)",fontsize=16,color="magenta"];1195 -> 1202[label="",style="dashed", color="magenta", weight=3]; 1195 -> 1203[label="",style="dashed", color="magenta", weight=3]; 1194[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) xwv86",fontsize=16,color="burlywood",shape="triangle"];4052[label="xwv86/False",fontsize=10,color="white",style="solid",shape="box"];1194 -> 4052[label="",style="solid", color="burlywood", weight=9]; 4052 -> 1208[label="",style="solid", color="burlywood", weight=3]; 4053[label="xwv86/True",fontsize=10,color="white",style="solid",shape="box"];1194 -> 4053[label="",style="solid", color="burlywood", weight=9]; 4053 -> 1209[label="",style="solid", color="burlywood", weight=3]; 1245[label="Pos Zero",fontsize=16,color="green",shape="box"];1246[label="xwv362",fontsize=16,color="green",shape="box"];2927[label="xwv204",fontsize=16,color="green",shape="box"];2928[label="primPlusInt (Pos xwv2440) (Pos xwv2450)",fontsize=16,color="black",shape="box"];2928 -> 2952[label="",style="solid", color="black", weight=3]; 2929[label="primPlusInt (Pos xwv2440) (Neg xwv2450)",fontsize=16,color="black",shape="box"];2929 -> 2953[label="",style="solid", color="black", weight=3]; 2930[label="xwv204",fontsize=16,color="green",shape="box"];2931[label="primPlusInt (Neg xwv2440) (Pos xwv2460)",fontsize=16,color="black",shape="box"];2931 -> 2954[label="",style="solid", color="black", weight=3]; 2932[label="primPlusInt (Neg xwv2440) (Neg xwv2460)",fontsize=16,color="black",shape="box"];2932 -> 2955[label="",style="solid", color="black", weight=3]; 1406[label="primCmpInt (Pos (Succ xwv4400)) xwv46",fontsize=16,color="burlywood",shape="box"];4054[label="xwv46/Pos xwv460",fontsize=10,color="white",style="solid",shape="box"];1406 -> 4054[label="",style="solid", color="burlywood", weight=9]; 4054 -> 1465[label="",style="solid", color="burlywood", weight=3]; 4055[label="xwv46/Neg xwv460",fontsize=10,color="white",style="solid",shape="box"];1406 -> 4055[label="",style="solid", color="burlywood", weight=9]; 4055 -> 1466[label="",style="solid", color="burlywood", weight=3]; 1407[label="primCmpInt (Pos Zero) xwv46",fontsize=16,color="burlywood",shape="box"];4056[label="xwv46/Pos xwv460",fontsize=10,color="white",style="solid",shape="box"];1407 -> 4056[label="",style="solid", color="burlywood", weight=9]; 4056 -> 1467[label="",style="solid", color="burlywood", weight=3]; 4057[label="xwv46/Neg xwv460",fontsize=10,color="white",style="solid",shape="box"];1407 -> 4057[label="",style="solid", color="burlywood", weight=9]; 4057 -> 1468[label="",style="solid", color="burlywood", weight=3]; 1408[label="primCmpInt (Neg (Succ xwv4400)) xwv46",fontsize=16,color="burlywood",shape="box"];4058[label="xwv46/Pos xwv460",fontsize=10,color="white",style="solid",shape="box"];1408 -> 4058[label="",style="solid", color="burlywood", weight=9]; 4058 -> 1469[label="",style="solid", color="burlywood", weight=3]; 4059[label="xwv46/Neg xwv460",fontsize=10,color="white",style="solid",shape="box"];1408 -> 4059[label="",style="solid", color="burlywood", weight=9]; 4059 -> 1470[label="",style="solid", color="burlywood", weight=3]; 1409[label="primCmpInt (Neg Zero) xwv46",fontsize=16,color="burlywood",shape="box"];4060[label="xwv46/Pos xwv460",fontsize=10,color="white",style="solid",shape="box"];1409 -> 4060[label="",style="solid", color="burlywood", weight=9]; 4060 -> 1471[label="",style="solid", color="burlywood", weight=3]; 4061[label="xwv46/Neg xwv460",fontsize=10,color="white",style="solid",shape="box"];1409 -> 4061[label="",style="solid", color="burlywood", weight=9]; 4061 -> 1472[label="",style="solid", color="burlywood", weight=3]; 1247[label="xwv91",fontsize=16,color="green",shape="box"];1248[label="xwv90",fontsize=16,color="green",shape="box"];2933 -> 372[label="",style="dashed", color="red", weight=0]; 2933[label="FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2933 -> 2956[label="",style="dashed", color="magenta", weight=3]; 2933 -> 2957[label="",style="dashed", color="magenta", weight=3]; 2934 -> 2877[label="",style="dashed", color="red", weight=0]; 2934[label="FiniteMap.mkBalBranch6Size_l xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2935[label="FiniteMap.mkBalBranch6MkBalBranch3 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 False",fontsize=16,color="black",shape="box"];2935 -> 2958[label="",style="solid", color="black", weight=3]; 2936[label="FiniteMap.mkBalBranch6MkBalBranch3 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 True",fontsize=16,color="black",shape="box"];2936 -> 2959[label="",style="solid", color="black", weight=3]; 2949[label="error []",fontsize=16,color="red",shape="box"];2950[label="FiniteMap.mkBalBranch6MkBalBranch02 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044)",fontsize=16,color="black",shape="box"];2950 -> 2968[label="",style="solid", color="black", weight=3]; 3671[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xwv361 xwv360 xwv358 + FiniteMap.mkBranchRight_size xwv361 xwv360 xwv358",fontsize=16,color="black",shape="box"];3671 -> 3672[label="",style="solid", color="black", weight=3]; 1137[label="primMulNat (Succ xwv400100) (Succ xwv300000)",fontsize=16,color="black",shape="box"];1137 -> 1231[label="",style="solid", color="black", weight=3]; 1138[label="primMulNat (Succ xwv400100) Zero",fontsize=16,color="black",shape="box"];1138 -> 1232[label="",style="solid", color="black", weight=3]; 1139[label="primMulNat Zero (Succ xwv300000)",fontsize=16,color="black",shape="box"];1139 -> 1233[label="",style="solid", color="black", weight=3]; 1140[label="primMulNat Zero Zero",fontsize=16,color="black",shape="box"];1140 -> 1234[label="",style="solid", color="black", weight=3]; 1538 -> 1647[label="",style="dashed", color="red", weight=0]; 1538[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1538 -> 1648[label="",style="dashed", color="magenta", weight=3]; 1539[label="(xwv4410,xwv4411) <= xwv461",fontsize=16,color="burlywood",shape="box"];4062[label="xwv461/(xwv4610,xwv4611)",fontsize=10,color="white",style="solid",shape="box"];1539 -> 4062[label="",style="solid", color="burlywood", weight=9]; 4062 -> 1636[label="",style="solid", color="burlywood", weight=3]; 1540 -> 1647[label="",style="dashed", color="red", weight=0]; 1540[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1540 -> 1649[label="",style="dashed", color="magenta", weight=3]; 1541[label="False <= xwv461",fontsize=16,color="burlywood",shape="box"];4063[label="xwv461/False",fontsize=10,color="white",style="solid",shape="box"];1541 -> 4063[label="",style="solid", color="burlywood", weight=9]; 4063 -> 1638[label="",style="solid", color="burlywood", weight=3]; 4064[label="xwv461/True",fontsize=10,color="white",style="solid",shape="box"];1541 -> 4064[label="",style="solid", color="burlywood", weight=9]; 4064 -> 1639[label="",style="solid", color="burlywood", weight=3]; 1542[label="True <= xwv461",fontsize=16,color="burlywood",shape="box"];4065[label="xwv461/False",fontsize=10,color="white",style="solid",shape="box"];1542 -> 4065[label="",style="solid", color="burlywood", weight=9]; 4065 -> 1640[label="",style="solid", color="burlywood", weight=3]; 4066[label="xwv461/True",fontsize=10,color="white",style="solid",shape="box"];1542 -> 4066[label="",style="solid", color="burlywood", weight=9]; 4066 -> 1641[label="",style="solid", color="burlywood", weight=3]; 1543[label="Left xwv4410 <= xwv461",fontsize=16,color="burlywood",shape="box"];4067[label="xwv461/Left xwv4610",fontsize=10,color="white",style="solid",shape="box"];1543 -> 4067[label="",style="solid", color="burlywood", weight=9]; 4067 -> 1642[label="",style="solid", color="burlywood", weight=3]; 4068[label="xwv461/Right xwv4610",fontsize=10,color="white",style="solid",shape="box"];1543 -> 4068[label="",style="solid", color="burlywood", weight=9]; 4068 -> 1643[label="",style="solid", color="burlywood", weight=3]; 1544[label="Right xwv4410 <= xwv461",fontsize=16,color="burlywood",shape="box"];4069[label="xwv461/Left xwv4610",fontsize=10,color="white",style="solid",shape="box"];1544 -> 4069[label="",style="solid", color="burlywood", weight=9]; 4069 -> 1644[label="",style="solid", color="burlywood", weight=3]; 4070[label="xwv461/Right xwv4610",fontsize=10,color="white",style="solid",shape="box"];1544 -> 4070[label="",style="solid", color="burlywood", weight=9]; 4070 -> 1645[label="",style="solid", color="burlywood", weight=3]; 1545 -> 1647[label="",style="dashed", color="red", weight=0]; 1545[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1545 -> 1650[label="",style="dashed", color="magenta", weight=3]; 1546 -> 1647[label="",style="dashed", color="red", weight=0]; 1546[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1546 -> 1651[label="",style="dashed", color="magenta", weight=3]; 1547[label="Nothing <= xwv461",fontsize=16,color="burlywood",shape="box"];4071[label="xwv461/Nothing",fontsize=10,color="white",style="solid",shape="box"];1547 -> 4071[label="",style="solid", color="burlywood", weight=9]; 4071 -> 1656[label="",style="solid", color="burlywood", weight=3]; 4072[label="xwv461/Just xwv4610",fontsize=10,color="white",style="solid",shape="box"];1547 -> 4072[label="",style="solid", color="burlywood", weight=9]; 4072 -> 1657[label="",style="solid", color="burlywood", weight=3]; 1548[label="Just xwv4410 <= xwv461",fontsize=16,color="burlywood",shape="box"];4073[label="xwv461/Nothing",fontsize=10,color="white",style="solid",shape="box"];1548 -> 4073[label="",style="solid", color="burlywood", weight=9]; 4073 -> 1658[label="",style="solid", color="burlywood", weight=3]; 4074[label="xwv461/Just xwv4610",fontsize=10,color="white",style="solid",shape="box"];1548 -> 4074[label="",style="solid", color="burlywood", weight=9]; 4074 -> 1659[label="",style="solid", color="burlywood", weight=3]; 1549[label="(xwv4410,xwv4411,xwv4412) <= xwv461",fontsize=16,color="burlywood",shape="box"];4075[label="xwv461/(xwv4610,xwv4611,xwv4612)",fontsize=10,color="white",style="solid",shape="box"];1549 -> 4075[label="",style="solid", color="burlywood", weight=9]; 4075 -> 1660[label="",style="solid", color="burlywood", weight=3]; 1550 -> 1647[label="",style="dashed", color="red", weight=0]; 1550[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1550 -> 1652[label="",style="dashed", color="magenta", weight=3]; 1551 -> 1647[label="",style="dashed", color="red", weight=0]; 1551[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1551 -> 1653[label="",style="dashed", color="magenta", weight=3]; 1552 -> 1647[label="",style="dashed", color="red", weight=0]; 1552[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1552 -> 1654[label="",style="dashed", color="magenta", weight=3]; 1553[label="LT <= xwv461",fontsize=16,color="burlywood",shape="box"];4076[label="xwv461/LT",fontsize=10,color="white",style="solid",shape="box"];1553 -> 4076[label="",style="solid", color="burlywood", weight=9]; 4076 -> 1661[label="",style="solid", color="burlywood", weight=3]; 4077[label="xwv461/EQ",fontsize=10,color="white",style="solid",shape="box"];1553 -> 4077[label="",style="solid", color="burlywood", weight=9]; 4077 -> 1662[label="",style="solid", color="burlywood", weight=3]; 4078[label="xwv461/GT",fontsize=10,color="white",style="solid",shape="box"];1553 -> 4078[label="",style="solid", color="burlywood", weight=9]; 4078 -> 1663[label="",style="solid", color="burlywood", weight=3]; 1554[label="EQ <= xwv461",fontsize=16,color="burlywood",shape="box"];4079[label="xwv461/LT",fontsize=10,color="white",style="solid",shape="box"];1554 -> 4079[label="",style="solid", color="burlywood", weight=9]; 4079 -> 1664[label="",style="solid", color="burlywood", weight=3]; 4080[label="xwv461/EQ",fontsize=10,color="white",style="solid",shape="box"];1554 -> 4080[label="",style="solid", color="burlywood", weight=9]; 4080 -> 1665[label="",style="solid", color="burlywood", weight=3]; 4081[label="xwv461/GT",fontsize=10,color="white",style="solid",shape="box"];1554 -> 4081[label="",style="solid", color="burlywood", weight=9]; 4081 -> 1666[label="",style="solid", color="burlywood", weight=3]; 1555[label="GT <= xwv461",fontsize=16,color="burlywood",shape="box"];4082[label="xwv461/LT",fontsize=10,color="white",style="solid",shape="box"];1555 -> 4082[label="",style="solid", color="burlywood", weight=9]; 4082 -> 1667[label="",style="solid", color="burlywood", weight=3]; 4083[label="xwv461/EQ",fontsize=10,color="white",style="solid",shape="box"];1555 -> 4083[label="",style="solid", color="burlywood", weight=9]; 4083 -> 1668[label="",style="solid", color="burlywood", weight=3]; 4084[label="xwv461/GT",fontsize=10,color="white",style="solid",shape="box"];1555 -> 4084[label="",style="solid", color="burlywood", weight=9]; 4084 -> 1669[label="",style="solid", color="burlywood", weight=3]; 1556 -> 1647[label="",style="dashed", color="red", weight=0]; 1556[label="compare xwv441 xwv461 /= GT",fontsize=16,color="magenta"];1556 -> 1655[label="",style="dashed", color="magenta", weight=3]; 1557[label="xwv460",fontsize=16,color="green",shape="box"];1558[label="xwv440",fontsize=16,color="green",shape="box"];1559[label="xwv460",fontsize=16,color="green",shape="box"];1560[label="xwv440",fontsize=16,color="green",shape="box"];1561[label="xwv460",fontsize=16,color="green",shape="box"];1562[label="xwv440",fontsize=16,color="green",shape="box"];1563[label="xwv460",fontsize=16,color="green",shape="box"];1564[label="xwv440",fontsize=16,color="green",shape="box"];1565[label="xwv460",fontsize=16,color="green",shape="box"];1566[label="xwv440",fontsize=16,color="green",shape="box"];1567[label="xwv460",fontsize=16,color="green",shape="box"];1568[label="xwv440",fontsize=16,color="green",shape="box"];1569[label="xwv460",fontsize=16,color="green",shape="box"];1570[label="xwv440",fontsize=16,color="green",shape="box"];1571[label="xwv460",fontsize=16,color="green",shape="box"];1572[label="xwv440",fontsize=16,color="green",shape="box"];1573[label="xwv460",fontsize=16,color="green",shape="box"];1574[label="xwv440",fontsize=16,color="green",shape="box"];1575[label="xwv460",fontsize=16,color="green",shape="box"];1576[label="xwv440",fontsize=16,color="green",shape="box"];1577[label="xwv460",fontsize=16,color="green",shape="box"];1578[label="xwv440",fontsize=16,color="green",shape="box"];1579[label="xwv460",fontsize=16,color="green",shape="box"];1580[label="xwv440",fontsize=16,color="green",shape="box"];1581[label="xwv460",fontsize=16,color="green",shape="box"];1582[label="xwv440",fontsize=16,color="green",shape="box"];1583[label="xwv460",fontsize=16,color="green",shape="box"];1584[label="xwv440",fontsize=16,color="green",shape="box"];1585[label="LT",fontsize=16,color="green",shape="box"];1586[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1586 -> 1670[label="",style="solid", color="black", weight=3]; 1587[label="LT",fontsize=16,color="green",shape="box"];1588[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1588 -> 1671[label="",style="solid", color="black", weight=3]; 1589[label="LT",fontsize=16,color="green",shape="box"];1590[label="compare xwv440 xwv460",fontsize=16,color="burlywood",shape="triangle"];4085[label="xwv440/xwv4400 :% xwv4401",fontsize=10,color="white",style="solid",shape="box"];1590 -> 4085[label="",style="solid", color="burlywood", weight=9]; 4085 -> 1672[label="",style="solid", color="burlywood", weight=3]; 1591[label="LT",fontsize=16,color="green",shape="box"];1592[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1592 -> 1673[label="",style="solid", color="black", weight=3]; 1593[label="LT",fontsize=16,color="green",shape="box"];1594[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1594 -> 1674[label="",style="solid", color="black", weight=3]; 1595[label="LT",fontsize=16,color="green",shape="box"];1596[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1596 -> 1675[label="",style="solid", color="black", weight=3]; 1599[label="LT",fontsize=16,color="green",shape="box"];1600[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1600 -> 1678[label="",style="solid", color="black", weight=3]; 1601[label="LT",fontsize=16,color="green",shape="box"];1602[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1602 -> 1679[label="",style="solid", color="black", weight=3]; 1603[label="LT",fontsize=16,color="green",shape="box"];1604[label="compare xwv440 xwv460",fontsize=16,color="burlywood",shape="triangle"];4086[label="xwv440/Integer xwv4400",fontsize=10,color="white",style="solid",shape="box"];1604 -> 4086[label="",style="solid", color="burlywood", weight=9]; 4086 -> 1680[label="",style="solid", color="burlywood", weight=3]; 1605[label="LT",fontsize=16,color="green",shape="box"];1606[label="compare xwv440 xwv460",fontsize=16,color="burlywood",shape="triangle"];4087[label="xwv440/()",fontsize=10,color="white",style="solid",shape="box"];1606 -> 4087[label="",style="solid", color="burlywood", weight=9]; 4087 -> 1681[label="",style="solid", color="burlywood", weight=3]; 1607[label="LT",fontsize=16,color="green",shape="box"];1608[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1608 -> 1682[label="",style="solid", color="black", weight=3]; 1609[label="LT",fontsize=16,color="green",shape="box"];1610[label="compare xwv440 xwv460",fontsize=16,color="black",shape="triangle"];1610 -> 1683[label="",style="solid", color="black", weight=3]; 1611[label="LT",fontsize=16,color="green",shape="box"];1612[label="compare xwv440 xwv460",fontsize=16,color="burlywood",shape="triangle"];4088[label="xwv440/xwv4400 : xwv4401",fontsize=10,color="white",style="solid",shape="box"];1612 -> 4088[label="",style="solid", color="burlywood", weight=9]; 4088 -> 1684[label="",style="solid", color="burlywood", weight=3]; 4089[label="xwv440/[]",fontsize=10,color="white",style="solid",shape="box"];1612 -> 4089[label="",style="solid", color="burlywood", weight=9]; 4089 -> 1685[label="",style="solid", color="burlywood", weight=3]; 1613[label="compare1 (xwv110,xwv111) (xwv112,xwv113) False",fontsize=16,color="black",shape="box"];1613 -> 1686[label="",style="solid", color="black", weight=3]; 1614[label="compare1 (xwv110,xwv111) (xwv112,xwv113) True",fontsize=16,color="black",shape="box"];1614 -> 1687[label="",style="solid", color="black", weight=3]; 1615[label="True",fontsize=16,color="green",shape="box"];1202 -> 1206[label="",style="dashed", color="red", weight=0]; 1202[label="FiniteMap.sizeFM (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)",fontsize=16,color="magenta"];1202 -> 1342[label="",style="dashed", color="magenta", weight=3]; 1203 -> 1206[label="",style="dashed", color="red", weight=0]; 1203[label="FiniteMap.sizeFM (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204)",fontsize=16,color="magenta"];1203 -> 1343[label="",style="dashed", color="magenta", weight=3]; 1208[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) False",fontsize=16,color="black",shape="box"];1208 -> 1344[label="",style="solid", color="black", weight=3]; 1209[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) True",fontsize=16,color="black",shape="box"];1209 -> 1345[label="",style="solid", color="black", weight=3]; 2952[label="Pos (primPlusNat xwv2440 xwv2450)",fontsize=16,color="green",shape="box"];2952 -> 2970[label="",style="dashed", color="green", weight=3]; 2953[label="primMinusNat xwv2440 xwv2450",fontsize=16,color="burlywood",shape="triangle"];4090[label="xwv2440/Succ xwv24400",fontsize=10,color="white",style="solid",shape="box"];2953 -> 4090[label="",style="solid", color="burlywood", weight=9]; 4090 -> 2971[label="",style="solid", color="burlywood", weight=3]; 4091[label="xwv2440/Zero",fontsize=10,color="white",style="solid",shape="box"];2953 -> 4091[label="",style="solid", color="burlywood", weight=9]; 4091 -> 2972[label="",style="solid", color="burlywood", weight=3]; 2954 -> 2953[label="",style="dashed", color="red", weight=0]; 2954[label="primMinusNat xwv2460 xwv2440",fontsize=16,color="magenta"];2954 -> 2973[label="",style="dashed", color="magenta", weight=3]; 2954 -> 2974[label="",style="dashed", color="magenta", weight=3]; 2955[label="Neg (primPlusNat xwv2440 xwv2460)",fontsize=16,color="green",shape="box"];2955 -> 2975[label="",style="dashed", color="green", weight=3]; 1465[label="primCmpInt (Pos (Succ xwv4400)) (Pos xwv460)",fontsize=16,color="black",shape="box"];1465 -> 1621[label="",style="solid", color="black", weight=3]; 1466[label="primCmpInt (Pos (Succ xwv4400)) (Neg xwv460)",fontsize=16,color="black",shape="box"];1466 -> 1622[label="",style="solid", color="black", weight=3]; 1467[label="primCmpInt (Pos Zero) (Pos xwv460)",fontsize=16,color="burlywood",shape="box"];4092[label="xwv460/Succ xwv4600",fontsize=10,color="white",style="solid",shape="box"];1467 -> 4092[label="",style="solid", color="burlywood", weight=9]; 4092 -> 1623[label="",style="solid", color="burlywood", weight=3]; 4093[label="xwv460/Zero",fontsize=10,color="white",style="solid",shape="box"];1467 -> 4093[label="",style="solid", color="burlywood", weight=9]; 4093 -> 1624[label="",style="solid", color="burlywood", weight=3]; 1468[label="primCmpInt (Pos Zero) (Neg xwv460)",fontsize=16,color="burlywood",shape="box"];4094[label="xwv460/Succ xwv4600",fontsize=10,color="white",style="solid",shape="box"];1468 -> 4094[label="",style="solid", color="burlywood", weight=9]; 4094 -> 1625[label="",style="solid", color="burlywood", weight=3]; 4095[label="xwv460/Zero",fontsize=10,color="white",style="solid",shape="box"];1468 -> 4095[label="",style="solid", color="burlywood", weight=9]; 4095 -> 1626[label="",style="solid", color="burlywood", weight=3]; 1469[label="primCmpInt (Neg (Succ xwv4400)) (Pos xwv460)",fontsize=16,color="black",shape="box"];1469 -> 1627[label="",style="solid", color="black", weight=3]; 1470[label="primCmpInt (Neg (Succ xwv4400)) (Neg xwv460)",fontsize=16,color="black",shape="box"];1470 -> 1628[label="",style="solid", color="black", weight=3]; 1471[label="primCmpInt (Neg Zero) (Pos xwv460)",fontsize=16,color="burlywood",shape="box"];4096[label="xwv460/Succ xwv4600",fontsize=10,color="white",style="solid",shape="box"];1471 -> 4096[label="",style="solid", color="burlywood", weight=9]; 4096 -> 1629[label="",style="solid", color="burlywood", weight=3]; 4097[label="xwv460/Zero",fontsize=10,color="white",style="solid",shape="box"];1471 -> 4097[label="",style="solid", color="burlywood", weight=9]; 4097 -> 1630[label="",style="solid", color="burlywood", weight=3]; 1472[label="primCmpInt (Neg Zero) (Neg xwv460)",fontsize=16,color="burlywood",shape="box"];4098[label="xwv460/Succ xwv4600",fontsize=10,color="white",style="solid",shape="box"];1472 -> 4098[label="",style="solid", color="burlywood", weight=9]; 4098 -> 1631[label="",style="solid", color="burlywood", weight=3]; 4099[label="xwv460/Zero",fontsize=10,color="white",style="solid",shape="box"];1472 -> 4099[label="",style="solid", color="burlywood", weight=9]; 4099 -> 1632[label="",style="solid", color="burlywood", weight=3]; 2956 -> 2902[label="",style="dashed", color="red", weight=0]; 2956[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];2957 -> 2883[label="",style="dashed", color="red", weight=0]; 2957[label="FiniteMap.mkBalBranch6Size_r xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];2958[label="FiniteMap.mkBalBranch6MkBalBranch2 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 otherwise",fontsize=16,color="black",shape="box"];2958 -> 2976[label="",style="solid", color="black", weight=3]; 2959[label="FiniteMap.mkBalBranch6MkBalBranch1 xwv200 xwv201 xwv240 xwv204 xwv240 xwv204 xwv240",fontsize=16,color="burlywood",shape="box"];4100[label="xwv240/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2959 -> 4100[label="",style="solid", color="burlywood", weight=9]; 4100 -> 2977[label="",style="solid", color="burlywood", weight=3]; 4101[label="xwv240/FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404",fontsize=10,color="white",style="solid",shape="box"];2959 -> 4101[label="",style="solid", color="burlywood", weight=9]; 4101 -> 2978[label="",style="solid", color="burlywood", weight=3]; 2968 -> 2991[label="",style="dashed", color="red", weight=0]; 2968[label="FiniteMap.mkBalBranch6MkBalBranch01 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv2040 xwv2041 xwv2042 xwv2043 xwv2044 (FiniteMap.sizeFM xwv2043 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xwv2044)",fontsize=16,color="magenta"];2968 -> 2992[label="",style="dashed", color="magenta", weight=3]; 3672 -> 3674[label="",style="dashed", color="red", weight=0]; 3672[label="primPlusInt (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xwv361 xwv360 xwv358) (FiniteMap.mkBranchRight_size xwv361 xwv360 xwv358)",fontsize=16,color="magenta"];3672 -> 3675[label="",style="dashed", color="magenta", weight=3]; 1231 -> 1400[label="",style="dashed", color="red", weight=0]; 1231[label="primPlusNat (primMulNat xwv400100 (Succ xwv300000)) (Succ xwv300000)",fontsize=16,color="magenta"];1231 -> 1401[label="",style="dashed", color="magenta", weight=3]; 1232[label="Zero",fontsize=16,color="green",shape="box"];1233[label="Zero",fontsize=16,color="green",shape="box"];1234[label="Zero",fontsize=16,color="green",shape="box"];1648 -> 1586[label="",style="dashed", color="red", weight=0]; 1648[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1648 -> 1688[label="",style="dashed", color="magenta", weight=3]; 1648 -> 1689[label="",style="dashed", color="magenta", weight=3]; 1647[label="xwv123 /= GT",fontsize=16,color="black",shape="triangle"];1647 -> 1690[label="",style="solid", color="black", weight=3]; 1636[label="(xwv4410,xwv4411) <= (xwv4610,xwv4611)",fontsize=16,color="black",shape="box"];1636 -> 1691[label="",style="solid", color="black", weight=3]; 1649 -> 1590[label="",style="dashed", color="red", weight=0]; 1649[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1649 -> 1692[label="",style="dashed", color="magenta", weight=3]; 1649 -> 1693[label="",style="dashed", color="magenta", weight=3]; 1638[label="False <= False",fontsize=16,color="black",shape="box"];1638 -> 1694[label="",style="solid", color="black", weight=3]; 1639[label="False <= True",fontsize=16,color="black",shape="box"];1639 -> 1695[label="",style="solid", color="black", weight=3]; 1640[label="True <= False",fontsize=16,color="black",shape="box"];1640 -> 1696[label="",style="solid", color="black", weight=3]; 1641[label="True <= True",fontsize=16,color="black",shape="box"];1641 -> 1697[label="",style="solid", color="black", weight=3]; 1642[label="Left xwv4410 <= Left xwv4610",fontsize=16,color="black",shape="box"];1642 -> 1698[label="",style="solid", color="black", weight=3]; 1643[label="Left xwv4410 <= Right xwv4610",fontsize=16,color="black",shape="box"];1643 -> 1699[label="",style="solid", color="black", weight=3]; 1644[label="Right xwv4410 <= Left xwv4610",fontsize=16,color="black",shape="box"];1644 -> 1700[label="",style="solid", color="black", weight=3]; 1645[label="Right xwv4410 <= Right xwv4610",fontsize=16,color="black",shape="box"];1645 -> 1701[label="",style="solid", color="black", weight=3]; 1650 -> 1596[label="",style="dashed", color="red", weight=0]; 1650[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1650 -> 1702[label="",style="dashed", color="magenta", weight=3]; 1650 -> 1703[label="",style="dashed", color="magenta", weight=3]; 1651 -> 1038[label="",style="dashed", color="red", weight=0]; 1651[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1651 -> 1704[label="",style="dashed", color="magenta", weight=3]; 1651 -> 1705[label="",style="dashed", color="magenta", weight=3]; 1656[label="Nothing <= Nothing",fontsize=16,color="black",shape="box"];1656 -> 1746[label="",style="solid", color="black", weight=3]; 1657[label="Nothing <= Just xwv4610",fontsize=16,color="black",shape="box"];1657 -> 1747[label="",style="solid", color="black", weight=3]; 1658[label="Just xwv4410 <= Nothing",fontsize=16,color="black",shape="box"];1658 -> 1748[label="",style="solid", color="black", weight=3]; 1659[label="Just xwv4410 <= Just xwv4610",fontsize=16,color="black",shape="box"];1659 -> 1749[label="",style="solid", color="black", weight=3]; 1660[label="(xwv4410,xwv4411,xwv4412) <= (xwv4610,xwv4611,xwv4612)",fontsize=16,color="black",shape="box"];1660 -> 1750[label="",style="solid", color="black", weight=3]; 1652 -> 1604[label="",style="dashed", color="red", weight=0]; 1652[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1652 -> 1706[label="",style="dashed", color="magenta", weight=3]; 1652 -> 1707[label="",style="dashed", color="magenta", weight=3]; 1653 -> 1606[label="",style="dashed", color="red", weight=0]; 1653[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1653 -> 1708[label="",style="dashed", color="magenta", weight=3]; 1653 -> 1709[label="",style="dashed", color="magenta", weight=3]; 1654 -> 1608[label="",style="dashed", color="red", weight=0]; 1654[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1654 -> 1710[label="",style="dashed", color="magenta", weight=3]; 1654 -> 1711[label="",style="dashed", color="magenta", weight=3]; 1661[label="LT <= LT",fontsize=16,color="black",shape="box"];1661 -> 1751[label="",style="solid", color="black", weight=3]; 1662[label="LT <= EQ",fontsize=16,color="black",shape="box"];1662 -> 1752[label="",style="solid", color="black", weight=3]; 1663[label="LT <= GT",fontsize=16,color="black",shape="box"];1663 -> 1753[label="",style="solid", color="black", weight=3]; 1664[label="EQ <= LT",fontsize=16,color="black",shape="box"];1664 -> 1754[label="",style="solid", color="black", weight=3]; 1665[label="EQ <= EQ",fontsize=16,color="black",shape="box"];1665 -> 1755[label="",style="solid", color="black", weight=3]; 1666[label="EQ <= GT",fontsize=16,color="black",shape="box"];1666 -> 1756[label="",style="solid", color="black", weight=3]; 1667[label="GT <= LT",fontsize=16,color="black",shape="box"];1667 -> 1757[label="",style="solid", color="black", weight=3]; 1668[label="GT <= EQ",fontsize=16,color="black",shape="box"];1668 -> 1758[label="",style="solid", color="black", weight=3]; 1669[label="GT <= GT",fontsize=16,color="black",shape="box"];1669 -> 1759[label="",style="solid", color="black", weight=3]; 1655 -> 1612[label="",style="dashed", color="red", weight=0]; 1655[label="compare xwv441 xwv461",fontsize=16,color="magenta"];1655 -> 1712[label="",style="dashed", color="magenta", weight=3]; 1655 -> 1713[label="",style="dashed", color="magenta", weight=3]; 1670[label="primCmpChar xwv440 xwv460",fontsize=16,color="burlywood",shape="box"];4102[label="xwv440/Char xwv4400",fontsize=10,color="white",style="solid",shape="box"];1670 -> 4102[label="",style="solid", color="burlywood", weight=9]; 4102 -> 1760[label="",style="solid", color="burlywood", weight=3]; 1671[label="compare3 xwv440 xwv460",fontsize=16,color="black",shape="box"];1671 -> 1761[label="",style="solid", color="black", weight=3]; 1672[label="compare (xwv4400 :% xwv4401) xwv460",fontsize=16,color="burlywood",shape="box"];4103[label="xwv460/xwv4600 :% xwv4601",fontsize=10,color="white",style="solid",shape="box"];1672 -> 4103[label="",style="solid", color="burlywood", weight=9]; 4103 -> 1762[label="",style="solid", color="burlywood", weight=3]; 1673[label="compare3 xwv440 xwv460",fontsize=16,color="black",shape="box"];1673 -> 1763[label="",style="solid", color="black", weight=3]; 1674[label="compare3 xwv440 xwv460",fontsize=16,color="black",shape="box"];1674 -> 1764[label="",style="solid", color="black", weight=3]; 1675[label="primCmpFloat xwv440 xwv460",fontsize=16,color="burlywood",shape="box"];4104[label="xwv440/Float xwv4400 xwv4401",fontsize=10,color="white",style="solid",shape="box"];1675 -> 4104[label="",style="solid", color="burlywood", weight=9]; 4104 -> 1765[label="",style="solid", color="burlywood", weight=3]; 1678[label="compare3 xwv440 xwv460",fontsize=16,color="black",shape="box"];1678 -> 1766[label="",style="solid", color="black", weight=3]; 1679[label="compare3 xwv440 xwv460",fontsize=16,color="black",shape="box"];1679 -> 1767[label="",style="solid", color="black", weight=3]; 1680[label="compare (Integer xwv4400) xwv460",fontsize=16,color="burlywood",shape="box"];4105[label="xwv460/Integer xwv4600",fontsize=10,color="white",style="solid",shape="box"];1680 -> 4105[label="",style="solid", color="burlywood", weight=9]; 4105 -> 1768[label="",style="solid", color="burlywood", weight=3]; 1681[label="compare () xwv460",fontsize=16,color="burlywood",shape="box"];4106[label="xwv460/()",fontsize=10,color="white",style="solid",shape="box"];1681 -> 4106[label="",style="solid", color="burlywood", weight=9]; 4106 -> 1769[label="",style="solid", color="burlywood", weight=3]; 1682[label="primCmpDouble xwv440 xwv460",fontsize=16,color="burlywood",shape="box"];4107[label="xwv440/Double xwv4400 xwv4401",fontsize=10,color="white",style="solid",shape="box"];1682 -> 4107[label="",style="solid", color="burlywood", weight=9]; 4107 -> 1770[label="",style="solid", color="burlywood", weight=3]; 1683[label="compare3 xwv440 xwv460",fontsize=16,color="black",shape="box"];1683 -> 1771[label="",style="solid", color="black", weight=3]; 1684[label="compare (xwv4400 : xwv4401) xwv460",fontsize=16,color="burlywood",shape="box"];4108[label="xwv460/xwv4600 : xwv4601",fontsize=10,color="white",style="solid",shape="box"];1684 -> 4108[label="",style="solid", color="burlywood", weight=9]; 4108 -> 1772[label="",style="solid", color="burlywood", weight=3]; 4109[label="xwv460/[]",fontsize=10,color="white",style="solid",shape="box"];1684 -> 4109[label="",style="solid", color="burlywood", weight=9]; 4109 -> 1773[label="",style="solid", color="burlywood", weight=3]; 1685[label="compare [] xwv460",fontsize=16,color="burlywood",shape="box"];4110[label="xwv460/xwv4600 : xwv4601",fontsize=10,color="white",style="solid",shape="box"];1685 -> 4110[label="",style="solid", color="burlywood", weight=9]; 4110 -> 1774[label="",style="solid", color="burlywood", weight=3]; 4111[label="xwv460/[]",fontsize=10,color="white",style="solid",shape="box"];1685 -> 4111[label="",style="solid", color="burlywood", weight=9]; 4111 -> 1775[label="",style="solid", color="burlywood", weight=3]; 1686[label="compare0 (xwv110,xwv111) (xwv112,xwv113) otherwise",fontsize=16,color="black",shape="box"];1686 -> 1776[label="",style="solid", color="black", weight=3]; 1687[label="LT",fontsize=16,color="green",shape="box"];1342[label="FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194",fontsize=16,color="green",shape="box"];1343[label="FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204",fontsize=16,color="green",shape="box"];1344[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) otherwise",fontsize=16,color="black",shape="box"];1344 -> 1403[label="",style="solid", color="black", weight=3]; 1345 -> 2788[label="",style="dashed", color="red", weight=0]; 1345[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)) (FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.deleteMin (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204))",fontsize=16,color="magenta"];1345 -> 2801[label="",style="dashed", color="magenta", weight=3]; 1345 -> 2802[label="",style="dashed", color="magenta", weight=3]; 1345 -> 2803[label="",style="dashed", color="magenta", weight=3]; 1345 -> 2804[label="",style="dashed", color="magenta", weight=3]; 2970 -> 1718[label="",style="dashed", color="red", weight=0]; 2970[label="primPlusNat xwv2440 xwv2450",fontsize=16,color="magenta"];2970 -> 2999[label="",style="dashed", color="magenta", weight=3]; 2970 -> 3000[label="",style="dashed", color="magenta", weight=3]; 2971[label="primMinusNat (Succ xwv24400) xwv2450",fontsize=16,color="burlywood",shape="box"];4112[label="xwv2450/Succ xwv24500",fontsize=10,color="white",style="solid",shape="box"];2971 -> 4112[label="",style="solid", color="burlywood", weight=9]; 4112 -> 3001[label="",style="solid", color="burlywood", weight=3]; 4113[label="xwv2450/Zero",fontsize=10,color="white",style="solid",shape="box"];2971 -> 4113[label="",style="solid", color="burlywood", weight=9]; 4113 -> 3002[label="",style="solid", color="burlywood", weight=3]; 2972[label="primMinusNat Zero xwv2450",fontsize=16,color="burlywood",shape="box"];4114[label="xwv2450/Succ xwv24500",fontsize=10,color="white",style="solid",shape="box"];2972 -> 4114[label="",style="solid", color="burlywood", weight=9]; 4114 -> 3003[label="",style="solid", color="burlywood", weight=3]; 4115[label="xwv2450/Zero",fontsize=10,color="white",style="solid",shape="box"];2972 -> 4115[label="",style="solid", color="burlywood", weight=9]; 4115 -> 3004[label="",style="solid", color="burlywood", weight=3]; 2973[label="xwv2460",fontsize=16,color="green",shape="box"];2974[label="xwv2440",fontsize=16,color="green",shape="box"];2975 -> 1718[label="",style="dashed", color="red", weight=0]; 2975[label="primPlusNat xwv2440 xwv2460",fontsize=16,color="magenta"];2975 -> 3005[label="",style="dashed", color="magenta", weight=3]; 2975 -> 3006[label="",style="dashed", color="magenta", weight=3]; 1621[label="primCmpNat (Succ xwv4400) xwv460",fontsize=16,color="burlywood",shape="box"];4116[label="xwv460/Succ xwv4600",fontsize=10,color="white",style="solid",shape="box"];1621 -> 4116[label="",style="solid", color="burlywood", weight=9]; 4116 -> 1730[label="",style="solid", color="burlywood", weight=3]; 4117[label="xwv460/Zero",fontsize=10,color="white",style="solid",shape="box"];1621 -> 4117[label="",style="solid", color="burlywood", weight=9]; 4117 -> 1731[label="",style="solid", color="burlywood", weight=3]; 1622[label="GT",fontsize=16,color="green",shape="box"];1623[label="primCmpInt (Pos Zero) (Pos (Succ xwv4600))",fontsize=16,color="black",shape="box"];1623 -> 1732[label="",style="solid", color="black", weight=3]; 1624[label="primCmpInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];1624 -> 1733[label="",style="solid", color="black", weight=3]; 1625[label="primCmpInt (Pos Zero) (Neg (Succ xwv4600))",fontsize=16,color="black",shape="box"];1625 -> 1734[label="",style="solid", color="black", weight=3]; 1626[label="primCmpInt (Pos Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];1626 -> 1735[label="",style="solid", color="black", weight=3]; 1627[label="LT",fontsize=16,color="green",shape="box"];1628[label="primCmpNat xwv460 (Succ xwv4400)",fontsize=16,color="burlywood",shape="box"];4118[label="xwv460/Succ xwv4600",fontsize=10,color="white",style="solid",shape="box"];1628 -> 4118[label="",style="solid", color="burlywood", weight=9]; 4118 -> 1736[label="",style="solid", color="burlywood", weight=3]; 4119[label="xwv460/Zero",fontsize=10,color="white",style="solid",shape="box"];1628 -> 4119[label="",style="solid", color="burlywood", weight=9]; 4119 -> 1737[label="",style="solid", color="burlywood", weight=3]; 1629[label="primCmpInt (Neg Zero) (Pos (Succ xwv4600))",fontsize=16,color="black",shape="box"];1629 -> 1738[label="",style="solid", color="black", weight=3]; 1630[label="primCmpInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];1630 -> 1739[label="",style="solid", color="black", weight=3]; 1631[label="primCmpInt (Neg Zero) (Neg (Succ xwv4600))",fontsize=16,color="black",shape="box"];1631 -> 1740[label="",style="solid", color="black", weight=3]; 1632[label="primCmpInt (Neg Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];1632 -> 1741[label="",style="solid", color="black", weight=3]; 2976[label="FiniteMap.mkBalBranch6MkBalBranch2 xwv200 xwv201 xwv240 xwv204 xwv200 xwv201 xwv240 xwv204 True",fontsize=16,color="black",shape="box"];2976 -> 3007[label="",style="solid", color="black", weight=3]; 2977[label="FiniteMap.mkBalBranch6MkBalBranch1 xwv200 xwv201 FiniteMap.EmptyFM xwv204 FiniteMap.EmptyFM xwv204 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];2977 -> 3008[label="",style="solid", color="black", weight=3]; 2978[label="FiniteMap.mkBalBranch6MkBalBranch1 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404)",fontsize=16,color="black",shape="box"];2978 -> 3009[label="",style="solid", color="black", weight=3]; 2992 -> 1453[label="",style="dashed", color="red", weight=0]; 2992[label="FiniteMap.sizeFM xwv2043 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xwv2044",fontsize=16,color="magenta"];2992 -> 3010[label="",style="dashed", color="magenta", weight=3]; 2992 -> 3011[label="",style="dashed", color="magenta", weight=3]; 2991[label="FiniteMap.mkBalBranch6MkBalBranch01 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv2040 xwv2041 xwv2042 xwv2043 xwv2044 xwv252",fontsize=16,color="burlywood",shape="triangle"];4120[label="xwv252/False",fontsize=10,color="white",style="solid",shape="box"];2991 -> 4120[label="",style="solid", color="burlywood", weight=9]; 4120 -> 3012[label="",style="solid", color="burlywood", weight=3]; 4121[label="xwv252/True",fontsize=10,color="white",style="solid",shape="box"];2991 -> 4121[label="",style="solid", color="burlywood", weight=9]; 4121 -> 3013[label="",style="solid", color="burlywood", weight=3]; 3675[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size xwv361 xwv360 xwv358",fontsize=16,color="black",shape="box"];3675 -> 3677[label="",style="solid", color="black", weight=3]; 3674[label="primPlusInt xwv362 (FiniteMap.mkBranchRight_size xwv361 xwv360 xwv358)",fontsize=16,color="burlywood",shape="triangle"];4122[label="xwv362/Pos xwv3620",fontsize=10,color="white",style="solid",shape="box"];3674 -> 4122[label="",style="solid", color="burlywood", weight=9]; 4122 -> 3678[label="",style="solid", color="burlywood", weight=3]; 4123[label="xwv362/Neg xwv3620",fontsize=10,color="white",style="solid",shape="box"];3674 -> 4123[label="",style="solid", color="burlywood", weight=9]; 4123 -> 3679[label="",style="solid", color="burlywood", weight=3]; 1401 -> 974[label="",style="dashed", color="red", weight=0]; 1401[label="primMulNat xwv400100 (Succ xwv300000)",fontsize=16,color="magenta"];1401 -> 1424[label="",style="dashed", color="magenta", weight=3]; 1401 -> 1425[label="",style="dashed", color="magenta", weight=3]; 1400[label="primPlusNat xwv101 (Succ xwv300000)",fontsize=16,color="burlywood",shape="triangle"];4124[label="xwv101/Succ xwv1010",fontsize=10,color="white",style="solid",shape="box"];1400 -> 4124[label="",style="solid", color="burlywood", weight=9]; 4124 -> 1426[label="",style="solid", color="burlywood", weight=3]; 4125[label="xwv101/Zero",fontsize=10,color="white",style="solid",shape="box"];1400 -> 4125[label="",style="solid", color="burlywood", weight=9]; 4125 -> 1427[label="",style="solid", color="burlywood", weight=3]; 1688[label="xwv441",fontsize=16,color="green",shape="box"];1689[label="xwv461",fontsize=16,color="green",shape="box"];1690 -> 1777[label="",style="dashed", color="red", weight=0]; 1690[label="not (xwv123 == GT)",fontsize=16,color="magenta"];1690 -> 1778[label="",style="dashed", color="magenta", weight=3]; 1691 -> 1858[label="",style="dashed", color="red", weight=0]; 1691[label="xwv4410 < xwv4610 || xwv4410 == xwv4610 && xwv4411 <= xwv4611",fontsize=16,color="magenta"];1691 -> 1859[label="",style="dashed", color="magenta", weight=3]; 1691 -> 1860[label="",style="dashed", color="magenta", weight=3]; 1692[label="xwv441",fontsize=16,color="green",shape="box"];1693[label="xwv461",fontsize=16,color="green",shape="box"];1694[label="True",fontsize=16,color="green",shape="box"];1695[label="True",fontsize=16,color="green",shape="box"];1696[label="False",fontsize=16,color="green",shape="box"];1697[label="True",fontsize=16,color="green",shape="box"];1698[label="xwv4410 <= xwv4610",fontsize=16,color="blue",shape="box"];4126[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4126[label="",style="solid", color="blue", weight=9]; 4126 -> 1784[label="",style="solid", color="blue", weight=3]; 4127[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4127[label="",style="solid", color="blue", weight=9]; 4127 -> 1785[label="",style="solid", color="blue", weight=3]; 4128[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4128[label="",style="solid", color="blue", weight=9]; 4128 -> 1786[label="",style="solid", color="blue", weight=3]; 4129[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4129[label="",style="solid", color="blue", weight=9]; 4129 -> 1787[label="",style="solid", color="blue", weight=3]; 4130[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4130[label="",style="solid", color="blue", weight=9]; 4130 -> 1788[label="",style="solid", color="blue", weight=3]; 4131[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4131[label="",style="solid", color="blue", weight=9]; 4131 -> 1789[label="",style="solid", color="blue", weight=3]; 4132[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4132[label="",style="solid", color="blue", weight=9]; 4132 -> 1790[label="",style="solid", color="blue", weight=3]; 4133[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4133[label="",style="solid", color="blue", weight=9]; 4133 -> 1791[label="",style="solid", color="blue", weight=3]; 4134[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4134[label="",style="solid", color="blue", weight=9]; 4134 -> 1792[label="",style="solid", color="blue", weight=3]; 4135[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4135[label="",style="solid", color="blue", weight=9]; 4135 -> 1793[label="",style="solid", color="blue", weight=3]; 4136[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4136[label="",style="solid", color="blue", weight=9]; 4136 -> 1794[label="",style="solid", color="blue", weight=3]; 4137[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4137[label="",style="solid", color="blue", weight=9]; 4137 -> 1795[label="",style="solid", color="blue", weight=3]; 4138[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4138[label="",style="solid", color="blue", weight=9]; 4138 -> 1796[label="",style="solid", color="blue", weight=3]; 4139[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1698 -> 4139[label="",style="solid", color="blue", weight=9]; 4139 -> 1797[label="",style="solid", color="blue", weight=3]; 1699[label="True",fontsize=16,color="green",shape="box"];1700[label="False",fontsize=16,color="green",shape="box"];1701[label="xwv4410 <= xwv4610",fontsize=16,color="blue",shape="box"];4140[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4140[label="",style="solid", color="blue", weight=9]; 4140 -> 1798[label="",style="solid", color="blue", weight=3]; 4141[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4141[label="",style="solid", color="blue", weight=9]; 4141 -> 1799[label="",style="solid", color="blue", weight=3]; 4142[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4142[label="",style="solid", color="blue", weight=9]; 4142 -> 1800[label="",style="solid", color="blue", weight=3]; 4143[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4143[label="",style="solid", color="blue", weight=9]; 4143 -> 1801[label="",style="solid", color="blue", weight=3]; 4144[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4144[label="",style="solid", color="blue", weight=9]; 4144 -> 1802[label="",style="solid", color="blue", weight=3]; 4145[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4145[label="",style="solid", color="blue", weight=9]; 4145 -> 1803[label="",style="solid", color="blue", weight=3]; 4146[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4146[label="",style="solid", color="blue", weight=9]; 4146 -> 1804[label="",style="solid", color="blue", weight=3]; 4147[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4147[label="",style="solid", color="blue", weight=9]; 4147 -> 1805[label="",style="solid", color="blue", weight=3]; 4148[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4148[label="",style="solid", color="blue", weight=9]; 4148 -> 1806[label="",style="solid", color="blue", weight=3]; 4149[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4149[label="",style="solid", color="blue", weight=9]; 4149 -> 1807[label="",style="solid", color="blue", weight=3]; 4150[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4150[label="",style="solid", color="blue", weight=9]; 4150 -> 1808[label="",style="solid", color="blue", weight=3]; 4151[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4151[label="",style="solid", color="blue", weight=9]; 4151 -> 1809[label="",style="solid", color="blue", weight=3]; 4152[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4152[label="",style="solid", color="blue", weight=9]; 4152 -> 1810[label="",style="solid", color="blue", weight=3]; 4153[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1701 -> 4153[label="",style="solid", color="blue", weight=9]; 4153 -> 1811[label="",style="solid", color="blue", weight=3]; 1702[label="xwv441",fontsize=16,color="green",shape="box"];1703[label="xwv461",fontsize=16,color="green",shape="box"];1704[label="xwv441",fontsize=16,color="green",shape="box"];1705[label="xwv461",fontsize=16,color="green",shape="box"];1746[label="True",fontsize=16,color="green",shape="box"];1747[label="True",fontsize=16,color="green",shape="box"];1748[label="False",fontsize=16,color="green",shape="box"];1749[label="xwv4410 <= xwv4610",fontsize=16,color="blue",shape="box"];4154[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4154[label="",style="solid", color="blue", weight=9]; 4154 -> 1812[label="",style="solid", color="blue", weight=3]; 4155[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4155[label="",style="solid", color="blue", weight=9]; 4155 -> 1813[label="",style="solid", color="blue", weight=3]; 4156[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4156[label="",style="solid", color="blue", weight=9]; 4156 -> 1814[label="",style="solid", color="blue", weight=3]; 4157[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4157[label="",style="solid", color="blue", weight=9]; 4157 -> 1815[label="",style="solid", color="blue", weight=3]; 4158[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4158[label="",style="solid", color="blue", weight=9]; 4158 -> 1816[label="",style="solid", color="blue", weight=3]; 4159[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4159[label="",style="solid", color="blue", weight=9]; 4159 -> 1817[label="",style="solid", color="blue", weight=3]; 4160[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4160[label="",style="solid", color="blue", weight=9]; 4160 -> 1818[label="",style="solid", color="blue", weight=3]; 4161[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4161[label="",style="solid", color="blue", weight=9]; 4161 -> 1819[label="",style="solid", color="blue", weight=3]; 4162[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4162[label="",style="solid", color="blue", weight=9]; 4162 -> 1820[label="",style="solid", color="blue", weight=3]; 4163[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4163[label="",style="solid", color="blue", weight=9]; 4163 -> 1821[label="",style="solid", color="blue", weight=3]; 4164[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4164[label="",style="solid", color="blue", weight=9]; 4164 -> 1822[label="",style="solid", color="blue", weight=3]; 4165[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4165[label="",style="solid", color="blue", weight=9]; 4165 -> 1823[label="",style="solid", color="blue", weight=3]; 4166[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4166[label="",style="solid", color="blue", weight=9]; 4166 -> 1824[label="",style="solid", color="blue", weight=3]; 4167[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1749 -> 4167[label="",style="solid", color="blue", weight=9]; 4167 -> 1825[label="",style="solid", color="blue", weight=3]; 1750 -> 1858[label="",style="dashed", color="red", weight=0]; 1750[label="xwv4410 < xwv4610 || xwv4410 == xwv4610 && (xwv4411 < xwv4611 || xwv4411 == xwv4611 && xwv4412 <= xwv4612)",fontsize=16,color="magenta"];1750 -> 1861[label="",style="dashed", color="magenta", weight=3]; 1750 -> 1862[label="",style="dashed", color="magenta", weight=3]; 1706[label="xwv441",fontsize=16,color="green",shape="box"];1707[label="xwv461",fontsize=16,color="green",shape="box"];1708[label="xwv441",fontsize=16,color="green",shape="box"];1709[label="xwv461",fontsize=16,color="green",shape="box"];1710[label="xwv441",fontsize=16,color="green",shape="box"];1711[label="xwv461",fontsize=16,color="green",shape="box"];1751[label="True",fontsize=16,color="green",shape="box"];1752[label="True",fontsize=16,color="green",shape="box"];1753[label="True",fontsize=16,color="green",shape="box"];1754[label="False",fontsize=16,color="green",shape="box"];1755[label="True",fontsize=16,color="green",shape="box"];1756[label="True",fontsize=16,color="green",shape="box"];1757[label="False",fontsize=16,color="green",shape="box"];1758[label="False",fontsize=16,color="green",shape="box"];1759[label="True",fontsize=16,color="green",shape="box"];1712[label="xwv441",fontsize=16,color="green",shape="box"];1713[label="xwv461",fontsize=16,color="green",shape="box"];1760[label="primCmpChar (Char xwv4400) xwv460",fontsize=16,color="burlywood",shape="box"];4168[label="xwv460/Char xwv4600",fontsize=10,color="white",style="solid",shape="box"];1760 -> 4168[label="",style="solid", color="burlywood", weight=9]; 4168 -> 1826[label="",style="solid", color="burlywood", weight=3]; 1761 -> 1310[label="",style="dashed", color="red", weight=0]; 1761[label="compare2 xwv440 xwv460 (xwv440 == xwv460)",fontsize=16,color="magenta"];1761 -> 1827[label="",style="dashed", color="magenta", weight=3]; 1761 -> 1828[label="",style="dashed", color="magenta", weight=3]; 1761 -> 1829[label="",style="dashed", color="magenta", weight=3]; 1762[label="compare (xwv4400 :% xwv4401) (xwv4600 :% xwv4601)",fontsize=16,color="black",shape="box"];1762 -> 1830[label="",style="solid", color="black", weight=3]; 1763 -> 1831[label="",style="dashed", color="red", weight=0]; 1763[label="compare2 xwv440 xwv460 (xwv440 == xwv460)",fontsize=16,color="magenta"];1763 -> 1832[label="",style="dashed", color="magenta", weight=3]; 1764 -> 1833[label="",style="dashed", color="red", weight=0]; 1764[label="compare2 xwv440 xwv460 (xwv440 == xwv460)",fontsize=16,color="magenta"];1764 -> 1834[label="",style="dashed", color="magenta", weight=3]; 1765[label="primCmpFloat (Float xwv4400 xwv4401) xwv460",fontsize=16,color="burlywood",shape="box"];4169[label="xwv4401/Pos xwv44010",fontsize=10,color="white",style="solid",shape="box"];1765 -> 4169[label="",style="solid", color="burlywood", weight=9]; 4169 -> 1835[label="",style="solid", color="burlywood", weight=3]; 4170[label="xwv4401/Neg xwv44010",fontsize=10,color="white",style="solid",shape="box"];1765 -> 4170[label="",style="solid", color="burlywood", weight=9]; 4170 -> 1836[label="",style="solid", color="burlywood", weight=3]; 1766 -> 1837[label="",style="dashed", color="red", weight=0]; 1766[label="compare2 xwv440 xwv460 (xwv440 == xwv460)",fontsize=16,color="magenta"];1766 -> 1838[label="",style="dashed", color="magenta", weight=3]; 1767 -> 1839[label="",style="dashed", color="red", weight=0]; 1767[label="compare2 xwv440 xwv460 (xwv440 == xwv460)",fontsize=16,color="magenta"];1767 -> 1840[label="",style="dashed", color="magenta", weight=3]; 1768[label="compare (Integer xwv4400) (Integer xwv4600)",fontsize=16,color="black",shape="box"];1768 -> 1841[label="",style="solid", color="black", weight=3]; 1769[label="compare () ()",fontsize=16,color="black",shape="box"];1769 -> 1842[label="",style="solid", color="black", weight=3]; 1770[label="primCmpDouble (Double xwv4400 xwv4401) xwv460",fontsize=16,color="burlywood",shape="box"];4171[label="xwv4401/Pos xwv44010",fontsize=10,color="white",style="solid",shape="box"];1770 -> 4171[label="",style="solid", color="burlywood", weight=9]; 4171 -> 1843[label="",style="solid", color="burlywood", weight=3]; 4172[label="xwv4401/Neg xwv44010",fontsize=10,color="white",style="solid",shape="box"];1770 -> 4172[label="",style="solid", color="burlywood", weight=9]; 4172 -> 1844[label="",style="solid", color="burlywood", weight=3]; 1771 -> 1845[label="",style="dashed", color="red", weight=0]; 1771[label="compare2 xwv440 xwv460 (xwv440 == xwv460)",fontsize=16,color="magenta"];1771 -> 1846[label="",style="dashed", color="magenta", weight=3]; 1772[label="compare (xwv4400 : xwv4401) (xwv4600 : xwv4601)",fontsize=16,color="black",shape="box"];1772 -> 1847[label="",style="solid", color="black", weight=3]; 1773[label="compare (xwv4400 : xwv4401) []",fontsize=16,color="black",shape="box"];1773 -> 1848[label="",style="solid", color="black", weight=3]; 1774[label="compare [] (xwv4600 : xwv4601)",fontsize=16,color="black",shape="box"];1774 -> 1849[label="",style="solid", color="black", weight=3]; 1775[label="compare [] []",fontsize=16,color="black",shape="box"];1775 -> 1850[label="",style="solid", color="black", weight=3]; 1776[label="compare0 (xwv110,xwv111) (xwv112,xwv113) True",fontsize=16,color="black",shape="box"];1776 -> 1851[label="",style="solid", color="black", weight=3]; 1403[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) True",fontsize=16,color="black",shape="box"];1403 -> 1463[label="",style="solid", color="black", weight=3]; 2801[label="FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)",fontsize=16,color="black",shape="box"];2801 -> 2815[label="",style="solid", color="black", weight=3]; 2802[label="FiniteMap.deleteMin (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204)",fontsize=16,color="burlywood",shape="triangle"];4173[label="xwv203/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2802 -> 4173[label="",style="solid", color="burlywood", weight=9]; 4173 -> 2816[label="",style="solid", color="burlywood", weight=3]; 4174[label="xwv203/FiniteMap.Branch xwv2030 xwv2031 xwv2032 xwv2033 xwv2034",fontsize=10,color="white",style="solid",shape="box"];2802 -> 4174[label="",style="solid", color="burlywood", weight=9]; 4174 -> 2817[label="",style="solid", color="burlywood", weight=3]; 2803[label="FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)",fontsize=16,color="black",shape="box"];2803 -> 2818[label="",style="solid", color="black", weight=3]; 2804[label="FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194",fontsize=16,color="green",shape="box"];2999[label="xwv2440",fontsize=16,color="green",shape="box"];3000[label="xwv2450",fontsize=16,color="green",shape="box"];1718[label="primPlusNat xwv1920 xwv970",fontsize=16,color="burlywood",shape="triangle"];4175[label="xwv1920/Succ xwv19200",fontsize=10,color="white",style="solid",shape="box"];1718 -> 4175[label="",style="solid", color="burlywood", weight=9]; 4175 -> 2149[label="",style="solid", color="burlywood", weight=3]; 4176[label="xwv1920/Zero",fontsize=10,color="white",style="solid",shape="box"];1718 -> 4176[label="",style="solid", color="burlywood", weight=9]; 4176 -> 2150[label="",style="solid", color="burlywood", weight=3]; 3001[label="primMinusNat (Succ xwv24400) (Succ xwv24500)",fontsize=16,color="black",shape="box"];3001 -> 3026[label="",style="solid", color="black", weight=3]; 3002[label="primMinusNat (Succ xwv24400) Zero",fontsize=16,color="black",shape="box"];3002 -> 3027[label="",style="solid", color="black", weight=3]; 3003[label="primMinusNat Zero (Succ xwv24500)",fontsize=16,color="black",shape="box"];3003 -> 3028[label="",style="solid", color="black", weight=3]; 3004[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];3004 -> 3029[label="",style="solid", color="black", weight=3]; 3005[label="xwv2440",fontsize=16,color="green",shape="box"];3006[label="xwv2460",fontsize=16,color="green",shape="box"];1730[label="primCmpNat (Succ xwv4400) (Succ xwv4600)",fontsize=16,color="black",shape="box"];1730 -> 2296[label="",style="solid", color="black", weight=3]; 1731[label="primCmpNat (Succ xwv4400) Zero",fontsize=16,color="black",shape="box"];1731 -> 2297[label="",style="solid", color="black", weight=3]; 1732 -> 1983[label="",style="dashed", color="red", weight=0]; 1732[label="primCmpNat Zero (Succ xwv4600)",fontsize=16,color="magenta"];1732 -> 2298[label="",style="dashed", color="magenta", weight=3]; 1732 -> 2299[label="",style="dashed", color="magenta", weight=3]; 1733[label="EQ",fontsize=16,color="green",shape="box"];1734[label="GT",fontsize=16,color="green",shape="box"];1735[label="EQ",fontsize=16,color="green",shape="box"];1736[label="primCmpNat (Succ xwv4600) (Succ xwv4400)",fontsize=16,color="black",shape="box"];1736 -> 2300[label="",style="solid", color="black", weight=3]; 1737[label="primCmpNat Zero (Succ xwv4400)",fontsize=16,color="black",shape="box"];1737 -> 2301[label="",style="solid", color="black", weight=3]; 1738[label="LT",fontsize=16,color="green",shape="box"];1739[label="EQ",fontsize=16,color="green",shape="box"];1740 -> 1983[label="",style="dashed", color="red", weight=0]; 1740[label="primCmpNat (Succ xwv4600) Zero",fontsize=16,color="magenta"];1740 -> 2302[label="",style="dashed", color="magenta", weight=3]; 1740 -> 2303[label="",style="dashed", color="magenta", weight=3]; 1741[label="EQ",fontsize=16,color="green",shape="box"];3007 -> 3568[label="",style="dashed", color="red", weight=0]; 3007[label="FiniteMap.mkBranch (Pos (Succ (Succ Zero))) xwv200 xwv201 xwv240 xwv204",fontsize=16,color="magenta"];3007 -> 3574[label="",style="dashed", color="magenta", weight=3]; 3007 -> 3575[label="",style="dashed", color="magenta", weight=3]; 3007 -> 3576[label="",style="dashed", color="magenta", weight=3]; 3007 -> 3577[label="",style="dashed", color="magenta", weight=3]; 3007 -> 3578[label="",style="dashed", color="magenta", weight=3]; 3008[label="error []",fontsize=16,color="red",shape="box"];3009[label="FiniteMap.mkBalBranch6MkBalBranch12 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404)",fontsize=16,color="black",shape="box"];3009 -> 3031[label="",style="solid", color="black", weight=3]; 3010 -> 1206[label="",style="dashed", color="red", weight=0]; 3010[label="FiniteMap.sizeFM xwv2043",fontsize=16,color="magenta"];3010 -> 3032[label="",style="dashed", color="magenta", weight=3]; 3011 -> 372[label="",style="dashed", color="red", weight=0]; 3011[label="Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xwv2044",fontsize=16,color="magenta"];3011 -> 3033[label="",style="dashed", color="magenta", weight=3]; 3011 -> 3034[label="",style="dashed", color="magenta", weight=3]; 3012[label="FiniteMap.mkBalBranch6MkBalBranch01 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv2040 xwv2041 xwv2042 xwv2043 xwv2044 False",fontsize=16,color="black",shape="box"];3012 -> 3035[label="",style="solid", color="black", weight=3]; 3013[label="FiniteMap.mkBalBranch6MkBalBranch01 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv2040 xwv2041 xwv2042 xwv2043 xwv2044 True",fontsize=16,color="black",shape="box"];3013 -> 3036[label="",style="solid", color="black", weight=3]; 3677 -> 2916[label="",style="dashed", color="red", weight=0]; 3677[label="primPlusInt (Pos (Succ Zero)) (FiniteMap.mkBranchLeft_size xwv361 xwv360 xwv358)",fontsize=16,color="magenta"];3677 -> 3680[label="",style="dashed", color="magenta", weight=3]; 3677 -> 3681[label="",style="dashed", color="magenta", weight=3]; 3678[label="primPlusInt (Pos xwv3620) (FiniteMap.mkBranchRight_size xwv361 xwv360 xwv358)",fontsize=16,color="black",shape="box"];3678 -> 3682[label="",style="solid", color="black", weight=3]; 3679[label="primPlusInt (Neg xwv3620) (FiniteMap.mkBranchRight_size xwv361 xwv360 xwv358)",fontsize=16,color="black",shape="box"];3679 -> 3683[label="",style="solid", color="black", weight=3]; 1424[label="Succ xwv300000",fontsize=16,color="green",shape="box"];1425[label="xwv400100",fontsize=16,color="green",shape="box"];1426[label="primPlusNat (Succ xwv1010) (Succ xwv300000)",fontsize=16,color="black",shape="box"];1426 -> 1533[label="",style="solid", color="black", weight=3]; 1427[label="primPlusNat Zero (Succ xwv300000)",fontsize=16,color="black",shape="box"];1427 -> 1534[label="",style="solid", color="black", weight=3]; 1778 -> 135[label="",style="dashed", color="red", weight=0]; 1778[label="xwv123 == GT",fontsize=16,color="magenta"];1778 -> 1852[label="",style="dashed", color="magenta", weight=3]; 1778 -> 1853[label="",style="dashed", color="magenta", weight=3]; 1777[label="not xwv124",fontsize=16,color="burlywood",shape="triangle"];4177[label="xwv124/False",fontsize=10,color="white",style="solid",shape="box"];1777 -> 4177[label="",style="solid", color="burlywood", weight=9]; 4177 -> 1854[label="",style="solid", color="burlywood", weight=3]; 4178[label="xwv124/True",fontsize=10,color="white",style="solid",shape="box"];1777 -> 4178[label="",style="solid", color="burlywood", weight=9]; 4178 -> 1855[label="",style="solid", color="burlywood", weight=3]; 1859[label="xwv4410 < xwv4610",fontsize=16,color="blue",shape="box"];4179[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4179[label="",style="solid", color="blue", weight=9]; 4179 -> 1865[label="",style="solid", color="blue", weight=3]; 4180[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4180[label="",style="solid", color="blue", weight=9]; 4180 -> 1866[label="",style="solid", color="blue", weight=3]; 4181[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4181[label="",style="solid", color="blue", weight=9]; 4181 -> 1867[label="",style="solid", color="blue", weight=3]; 4182[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4182[label="",style="solid", color="blue", weight=9]; 4182 -> 1868[label="",style="solid", color="blue", weight=3]; 4183[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4183[label="",style="solid", color="blue", weight=9]; 4183 -> 1869[label="",style="solid", color="blue", weight=3]; 4184[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4184[label="",style="solid", color="blue", weight=9]; 4184 -> 1870[label="",style="solid", color="blue", weight=3]; 4185[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4185[label="",style="solid", color="blue", weight=9]; 4185 -> 1871[label="",style="solid", color="blue", weight=3]; 4186[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4186[label="",style="solid", color="blue", weight=9]; 4186 -> 1872[label="",style="solid", color="blue", weight=3]; 4187[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4187[label="",style="solid", color="blue", weight=9]; 4187 -> 1873[label="",style="solid", color="blue", weight=3]; 4188[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4188[label="",style="solid", color="blue", weight=9]; 4188 -> 1874[label="",style="solid", color="blue", weight=3]; 4189[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4189[label="",style="solid", color="blue", weight=9]; 4189 -> 1875[label="",style="solid", color="blue", weight=3]; 4190[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4190[label="",style="solid", color="blue", weight=9]; 4190 -> 1876[label="",style="solid", color="blue", weight=3]; 4191[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4191[label="",style="solid", color="blue", weight=9]; 4191 -> 1877[label="",style="solid", color="blue", weight=3]; 4192[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1859 -> 4192[label="",style="solid", color="blue", weight=9]; 4192 -> 1878[label="",style="solid", color="blue", weight=3]; 1860 -> 376[label="",style="dashed", color="red", weight=0]; 1860[label="xwv4410 == xwv4610 && xwv4411 <= xwv4611",fontsize=16,color="magenta"];1860 -> 1879[label="",style="dashed", color="magenta", weight=3]; 1860 -> 1880[label="",style="dashed", color="magenta", weight=3]; 1858[label="xwv134 || xwv135",fontsize=16,color="burlywood",shape="triangle"];4193[label="xwv134/False",fontsize=10,color="white",style="solid",shape="box"];1858 -> 4193[label="",style="solid", color="burlywood", weight=9]; 4193 -> 1881[label="",style="solid", color="burlywood", weight=3]; 4194[label="xwv134/True",fontsize=10,color="white",style="solid",shape="box"];1858 -> 4194[label="",style="solid", color="burlywood", weight=9]; 4194 -> 1882[label="",style="solid", color="burlywood", weight=3]; 1784 -> 1480[label="",style="dashed", color="red", weight=0]; 1784[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1784 -> 1883[label="",style="dashed", color="magenta", weight=3]; 1784 -> 1884[label="",style="dashed", color="magenta", weight=3]; 1785 -> 1481[label="",style="dashed", color="red", weight=0]; 1785[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1785 -> 1885[label="",style="dashed", color="magenta", weight=3]; 1785 -> 1886[label="",style="dashed", color="magenta", weight=3]; 1786 -> 1482[label="",style="dashed", color="red", weight=0]; 1786[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1786 -> 1887[label="",style="dashed", color="magenta", weight=3]; 1786 -> 1888[label="",style="dashed", color="magenta", weight=3]; 1787 -> 1483[label="",style="dashed", color="red", weight=0]; 1787[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1787 -> 1889[label="",style="dashed", color="magenta", weight=3]; 1787 -> 1890[label="",style="dashed", color="magenta", weight=3]; 1788 -> 1484[label="",style="dashed", color="red", weight=0]; 1788[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1788 -> 1891[label="",style="dashed", color="magenta", weight=3]; 1788 -> 1892[label="",style="dashed", color="magenta", weight=3]; 1789 -> 1485[label="",style="dashed", color="red", weight=0]; 1789[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1789 -> 1893[label="",style="dashed", color="magenta", weight=3]; 1789 -> 1894[label="",style="dashed", color="magenta", weight=3]; 1790 -> 1486[label="",style="dashed", color="red", weight=0]; 1790[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1790 -> 1895[label="",style="dashed", color="magenta", weight=3]; 1790 -> 1896[label="",style="dashed", color="magenta", weight=3]; 1791 -> 1487[label="",style="dashed", color="red", weight=0]; 1791[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1791 -> 1897[label="",style="dashed", color="magenta", weight=3]; 1791 -> 1898[label="",style="dashed", color="magenta", weight=3]; 1792 -> 1488[label="",style="dashed", color="red", weight=0]; 1792[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1792 -> 1899[label="",style="dashed", color="magenta", weight=3]; 1792 -> 1900[label="",style="dashed", color="magenta", weight=3]; 1793 -> 1489[label="",style="dashed", color="red", weight=0]; 1793[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1793 -> 1901[label="",style="dashed", color="magenta", weight=3]; 1793 -> 1902[label="",style="dashed", color="magenta", weight=3]; 1794 -> 1490[label="",style="dashed", color="red", weight=0]; 1794[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1794 -> 1903[label="",style="dashed", color="magenta", weight=3]; 1794 -> 1904[label="",style="dashed", color="magenta", weight=3]; 1795 -> 1491[label="",style="dashed", color="red", weight=0]; 1795[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1795 -> 1905[label="",style="dashed", color="magenta", weight=3]; 1795 -> 1906[label="",style="dashed", color="magenta", weight=3]; 1796 -> 1492[label="",style="dashed", color="red", weight=0]; 1796[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1796 -> 1907[label="",style="dashed", color="magenta", weight=3]; 1796 -> 1908[label="",style="dashed", color="magenta", weight=3]; 1797 -> 1493[label="",style="dashed", color="red", weight=0]; 1797[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1797 -> 1909[label="",style="dashed", color="magenta", weight=3]; 1797 -> 1910[label="",style="dashed", color="magenta", weight=3]; 1798 -> 1480[label="",style="dashed", color="red", weight=0]; 1798[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1798 -> 1911[label="",style="dashed", color="magenta", weight=3]; 1798 -> 1912[label="",style="dashed", color="magenta", weight=3]; 1799 -> 1481[label="",style="dashed", color="red", weight=0]; 1799[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1799 -> 1913[label="",style="dashed", color="magenta", weight=3]; 1799 -> 1914[label="",style="dashed", color="magenta", weight=3]; 1800 -> 1482[label="",style="dashed", color="red", weight=0]; 1800[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1800 -> 1915[label="",style="dashed", color="magenta", weight=3]; 1800 -> 1916[label="",style="dashed", color="magenta", weight=3]; 1801 -> 1483[label="",style="dashed", color="red", weight=0]; 1801[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1801 -> 1917[label="",style="dashed", color="magenta", weight=3]; 1801 -> 1918[label="",style="dashed", color="magenta", weight=3]; 1802 -> 1484[label="",style="dashed", color="red", weight=0]; 1802[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1802 -> 1919[label="",style="dashed", color="magenta", weight=3]; 1802 -> 1920[label="",style="dashed", color="magenta", weight=3]; 1803 -> 1485[label="",style="dashed", color="red", weight=0]; 1803[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1803 -> 1921[label="",style="dashed", color="magenta", weight=3]; 1803 -> 1922[label="",style="dashed", color="magenta", weight=3]; 1804 -> 1486[label="",style="dashed", color="red", weight=0]; 1804[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1804 -> 1923[label="",style="dashed", color="magenta", weight=3]; 1804 -> 1924[label="",style="dashed", color="magenta", weight=3]; 1805 -> 1487[label="",style="dashed", color="red", weight=0]; 1805[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1805 -> 1925[label="",style="dashed", color="magenta", weight=3]; 1805 -> 1926[label="",style="dashed", color="magenta", weight=3]; 1806 -> 1488[label="",style="dashed", color="red", weight=0]; 1806[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1806 -> 1927[label="",style="dashed", color="magenta", weight=3]; 1806 -> 1928[label="",style="dashed", color="magenta", weight=3]; 1807 -> 1489[label="",style="dashed", color="red", weight=0]; 1807[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1807 -> 1929[label="",style="dashed", color="magenta", weight=3]; 1807 -> 1930[label="",style="dashed", color="magenta", weight=3]; 1808 -> 1490[label="",style="dashed", color="red", weight=0]; 1808[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1808 -> 1931[label="",style="dashed", color="magenta", weight=3]; 1808 -> 1932[label="",style="dashed", color="magenta", weight=3]; 1809 -> 1491[label="",style="dashed", color="red", weight=0]; 1809[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1809 -> 1933[label="",style="dashed", color="magenta", weight=3]; 1809 -> 1934[label="",style="dashed", color="magenta", weight=3]; 1810 -> 1492[label="",style="dashed", color="red", weight=0]; 1810[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1810 -> 1935[label="",style="dashed", color="magenta", weight=3]; 1810 -> 1936[label="",style="dashed", color="magenta", weight=3]; 1811 -> 1493[label="",style="dashed", color="red", weight=0]; 1811[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1811 -> 1937[label="",style="dashed", color="magenta", weight=3]; 1811 -> 1938[label="",style="dashed", color="magenta", weight=3]; 1812 -> 1480[label="",style="dashed", color="red", weight=0]; 1812[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1812 -> 1939[label="",style="dashed", color="magenta", weight=3]; 1812 -> 1940[label="",style="dashed", color="magenta", weight=3]; 1813 -> 1481[label="",style="dashed", color="red", weight=0]; 1813[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1813 -> 1941[label="",style="dashed", color="magenta", weight=3]; 1813 -> 1942[label="",style="dashed", color="magenta", weight=3]; 1814 -> 1482[label="",style="dashed", color="red", weight=0]; 1814[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1814 -> 1943[label="",style="dashed", color="magenta", weight=3]; 1814 -> 1944[label="",style="dashed", color="magenta", weight=3]; 1815 -> 1483[label="",style="dashed", color="red", weight=0]; 1815[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1815 -> 1945[label="",style="dashed", color="magenta", weight=3]; 1815 -> 1946[label="",style="dashed", color="magenta", weight=3]; 1816 -> 1484[label="",style="dashed", color="red", weight=0]; 1816[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1816 -> 1947[label="",style="dashed", color="magenta", weight=3]; 1816 -> 1948[label="",style="dashed", color="magenta", weight=3]; 1817 -> 1485[label="",style="dashed", color="red", weight=0]; 1817[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1817 -> 1949[label="",style="dashed", color="magenta", weight=3]; 1817 -> 1950[label="",style="dashed", color="magenta", weight=3]; 1818 -> 1486[label="",style="dashed", color="red", weight=0]; 1818[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1818 -> 1951[label="",style="dashed", color="magenta", weight=3]; 1818 -> 1952[label="",style="dashed", color="magenta", weight=3]; 1819 -> 1487[label="",style="dashed", color="red", weight=0]; 1819[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1819 -> 1953[label="",style="dashed", color="magenta", weight=3]; 1819 -> 1954[label="",style="dashed", color="magenta", weight=3]; 1820 -> 1488[label="",style="dashed", color="red", weight=0]; 1820[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1820 -> 1955[label="",style="dashed", color="magenta", weight=3]; 1820 -> 1956[label="",style="dashed", color="magenta", weight=3]; 1821 -> 1489[label="",style="dashed", color="red", weight=0]; 1821[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1821 -> 1957[label="",style="dashed", color="magenta", weight=3]; 1821 -> 1958[label="",style="dashed", color="magenta", weight=3]; 1822 -> 1490[label="",style="dashed", color="red", weight=0]; 1822[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1822 -> 1959[label="",style="dashed", color="magenta", weight=3]; 1822 -> 1960[label="",style="dashed", color="magenta", weight=3]; 1823 -> 1491[label="",style="dashed", color="red", weight=0]; 1823[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1823 -> 1961[label="",style="dashed", color="magenta", weight=3]; 1823 -> 1962[label="",style="dashed", color="magenta", weight=3]; 1824 -> 1492[label="",style="dashed", color="red", weight=0]; 1824[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1824 -> 1963[label="",style="dashed", color="magenta", weight=3]; 1824 -> 1964[label="",style="dashed", color="magenta", weight=3]; 1825 -> 1493[label="",style="dashed", color="red", weight=0]; 1825[label="xwv4410 <= xwv4610",fontsize=16,color="magenta"];1825 -> 1965[label="",style="dashed", color="magenta", weight=3]; 1825 -> 1966[label="",style="dashed", color="magenta", weight=3]; 1861[label="xwv4410 < xwv4610",fontsize=16,color="blue",shape="box"];4195[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4195[label="",style="solid", color="blue", weight=9]; 4195 -> 1967[label="",style="solid", color="blue", weight=3]; 4196[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4196[label="",style="solid", color="blue", weight=9]; 4196 -> 1968[label="",style="solid", color="blue", weight=3]; 4197[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4197[label="",style="solid", color="blue", weight=9]; 4197 -> 1969[label="",style="solid", color="blue", weight=3]; 4198[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4198[label="",style="solid", color="blue", weight=9]; 4198 -> 1970[label="",style="solid", color="blue", weight=3]; 4199[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4199[label="",style="solid", color="blue", weight=9]; 4199 -> 1971[label="",style="solid", color="blue", weight=3]; 4200[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4200[label="",style="solid", color="blue", weight=9]; 4200 -> 1972[label="",style="solid", color="blue", weight=3]; 4201[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4201[label="",style="solid", color="blue", weight=9]; 4201 -> 1973[label="",style="solid", color="blue", weight=3]; 4202[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4202[label="",style="solid", color="blue", weight=9]; 4202 -> 1974[label="",style="solid", color="blue", weight=3]; 4203[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4203[label="",style="solid", color="blue", weight=9]; 4203 -> 1975[label="",style="solid", color="blue", weight=3]; 4204[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4204[label="",style="solid", color="blue", weight=9]; 4204 -> 1976[label="",style="solid", color="blue", weight=3]; 4205[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4205[label="",style="solid", color="blue", weight=9]; 4205 -> 1977[label="",style="solid", color="blue", weight=3]; 4206[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4206[label="",style="solid", color="blue", weight=9]; 4206 -> 1978[label="",style="solid", color="blue", weight=3]; 4207[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4207[label="",style="solid", color="blue", weight=9]; 4207 -> 1979[label="",style="solid", color="blue", weight=3]; 4208[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1861 -> 4208[label="",style="solid", color="blue", weight=9]; 4208 -> 1980[label="",style="solid", color="blue", weight=3]; 1862 -> 376[label="",style="dashed", color="red", weight=0]; 1862[label="xwv4410 == xwv4610 && (xwv4411 < xwv4611 || xwv4411 == xwv4611 && xwv4412 <= xwv4612)",fontsize=16,color="magenta"];1862 -> 1981[label="",style="dashed", color="magenta", weight=3]; 1862 -> 1982[label="",style="dashed", color="magenta", weight=3]; 1826[label="primCmpChar (Char xwv4400) (Char xwv4600)",fontsize=16,color="black",shape="box"];1826 -> 1983[label="",style="solid", color="black", weight=3]; 1827[label="xwv440",fontsize=16,color="green",shape="box"];1828[label="xwv460",fontsize=16,color="green",shape="box"];1829 -> 134[label="",style="dashed", color="red", weight=0]; 1829[label="xwv440 == xwv460",fontsize=16,color="magenta"];1829 -> 1984[label="",style="dashed", color="magenta", weight=3]; 1829 -> 1985[label="",style="dashed", color="magenta", weight=3]; 1830[label="compare (xwv4400 * xwv4601) (xwv4600 * xwv4401)",fontsize=16,color="blue",shape="box"];4209[label="compare :: Int -> Int -> Ordering",fontsize=10,color="white",style="solid",shape="box"];1830 -> 4209[label="",style="solid", color="blue", weight=9]; 4209 -> 1986[label="",style="solid", color="blue", weight=3]; 4210[label="compare :: Integer -> Integer -> Ordering",fontsize=10,color="white",style="solid",shape="box"];1830 -> 4210[label="",style="solid", color="blue", weight=9]; 4210 -> 1987[label="",style="solid", color="blue", weight=3]; 1832 -> 140[label="",style="dashed", color="red", weight=0]; 1832[label="xwv440 == xwv460",fontsize=16,color="magenta"];1832 -> 1988[label="",style="dashed", color="magenta", weight=3]; 1832 -> 1989[label="",style="dashed", color="magenta", weight=3]; 1831[label="compare2 xwv440 xwv460 xwv126",fontsize=16,color="burlywood",shape="triangle"];4211[label="xwv126/False",fontsize=10,color="white",style="solid",shape="box"];1831 -> 4211[label="",style="solid", color="burlywood", weight=9]; 4211 -> 1990[label="",style="solid", color="burlywood", weight=3]; 4212[label="xwv126/True",fontsize=10,color="white",style="solid",shape="box"];1831 -> 4212[label="",style="solid", color="burlywood", weight=9]; 4212 -> 1991[label="",style="solid", color="burlywood", weight=3]; 1834 -> 133[label="",style="dashed", color="red", weight=0]; 1834[label="xwv440 == xwv460",fontsize=16,color="magenta"];1834 -> 1992[label="",style="dashed", color="magenta", weight=3]; 1834 -> 1993[label="",style="dashed", color="magenta", weight=3]; 1833[label="compare2 xwv440 xwv460 xwv127",fontsize=16,color="burlywood",shape="triangle"];4213[label="xwv127/False",fontsize=10,color="white",style="solid",shape="box"];1833 -> 4213[label="",style="solid", color="burlywood", weight=9]; 4213 -> 1994[label="",style="solid", color="burlywood", weight=3]; 4214[label="xwv127/True",fontsize=10,color="white",style="solid",shape="box"];1833 -> 4214[label="",style="solid", color="burlywood", weight=9]; 4214 -> 1995[label="",style="solid", color="burlywood", weight=3]; 1835[label="primCmpFloat (Float xwv4400 (Pos xwv44010)) xwv460",fontsize=16,color="burlywood",shape="box"];4215[label="xwv460/Float xwv4600 xwv4601",fontsize=10,color="white",style="solid",shape="box"];1835 -> 4215[label="",style="solid", color="burlywood", weight=9]; 4215 -> 1996[label="",style="solid", color="burlywood", weight=3]; 1836[label="primCmpFloat (Float xwv4400 (Neg xwv44010)) xwv460",fontsize=16,color="burlywood",shape="box"];4216[label="xwv460/Float xwv4600 xwv4601",fontsize=10,color="white",style="solid",shape="box"];1836 -> 4216[label="",style="solid", color="burlywood", weight=9]; 4216 -> 1997[label="",style="solid", color="burlywood", weight=3]; 1838 -> 136[label="",style="dashed", color="red", weight=0]; 1838[label="xwv440 == xwv460",fontsize=16,color="magenta"];1838 -> 1998[label="",style="dashed", color="magenta", weight=3]; 1838 -> 1999[label="",style="dashed", color="magenta", weight=3]; 1837[label="compare2 xwv440 xwv460 xwv128",fontsize=16,color="burlywood",shape="triangle"];4217[label="xwv128/False",fontsize=10,color="white",style="solid",shape="box"];1837 -> 4217[label="",style="solid", color="burlywood", weight=9]; 4217 -> 2000[label="",style="solid", color="burlywood", weight=3]; 4218[label="xwv128/True",fontsize=10,color="white",style="solid",shape="box"];1837 -> 4218[label="",style="solid", color="burlywood", weight=9]; 4218 -> 2001[label="",style="solid", color="burlywood", weight=3]; 1840 -> 142[label="",style="dashed", color="red", weight=0]; 1840[label="xwv440 == xwv460",fontsize=16,color="magenta"];1840 -> 2002[label="",style="dashed", color="magenta", weight=3]; 1840 -> 2003[label="",style="dashed", color="magenta", weight=3]; 1839[label="compare2 xwv440 xwv460 xwv129",fontsize=16,color="burlywood",shape="triangle"];4219[label="xwv129/False",fontsize=10,color="white",style="solid",shape="box"];1839 -> 4219[label="",style="solid", color="burlywood", weight=9]; 4219 -> 2004[label="",style="solid", color="burlywood", weight=3]; 4220[label="xwv129/True",fontsize=10,color="white",style="solid",shape="box"];1839 -> 4220[label="",style="solid", color="burlywood", weight=9]; 4220 -> 2005[label="",style="solid", color="burlywood", weight=3]; 1841 -> 1110[label="",style="dashed", color="red", weight=0]; 1841[label="primCmpInt xwv4400 xwv4600",fontsize=16,color="magenta"];1841 -> 2006[label="",style="dashed", color="magenta", weight=3]; 1841 -> 2007[label="",style="dashed", color="magenta", weight=3]; 1842[label="EQ",fontsize=16,color="green",shape="box"];1843[label="primCmpDouble (Double xwv4400 (Pos xwv44010)) xwv460",fontsize=16,color="burlywood",shape="box"];4221[label="xwv460/Double xwv4600 xwv4601",fontsize=10,color="white",style="solid",shape="box"];1843 -> 4221[label="",style="solid", color="burlywood", weight=9]; 4221 -> 2008[label="",style="solid", color="burlywood", weight=3]; 1844[label="primCmpDouble (Double xwv4400 (Neg xwv44010)) xwv460",fontsize=16,color="burlywood",shape="box"];4222[label="xwv460/Double xwv4600 xwv4601",fontsize=10,color="white",style="solid",shape="box"];1844 -> 4222[label="",style="solid", color="burlywood", weight=9]; 4222 -> 2009[label="",style="solid", color="burlywood", weight=3]; 1846 -> 135[label="",style="dashed", color="red", weight=0]; 1846[label="xwv440 == xwv460",fontsize=16,color="magenta"];1846 -> 2010[label="",style="dashed", color="magenta", weight=3]; 1846 -> 2011[label="",style="dashed", color="magenta", weight=3]; 1845[label="compare2 xwv440 xwv460 xwv130",fontsize=16,color="burlywood",shape="triangle"];4223[label="xwv130/False",fontsize=10,color="white",style="solid",shape="box"];1845 -> 4223[label="",style="solid", color="burlywood", weight=9]; 4223 -> 2012[label="",style="solid", color="burlywood", weight=3]; 4224[label="xwv130/True",fontsize=10,color="white",style="solid",shape="box"];1845 -> 4224[label="",style="solid", color="burlywood", weight=9]; 4224 -> 2013[label="",style="solid", color="burlywood", weight=3]; 1847 -> 2014[label="",style="dashed", color="red", weight=0]; 1847[label="primCompAux xwv4400 xwv4600 (compare xwv4401 xwv4601)",fontsize=16,color="magenta"];1847 -> 2015[label="",style="dashed", color="magenta", weight=3]; 1848[label="GT",fontsize=16,color="green",shape="box"];1849[label="LT",fontsize=16,color="green",shape="box"];1850[label="EQ",fontsize=16,color="green",shape="box"];1851[label="GT",fontsize=16,color="green",shape="box"];1463 -> 2788[label="",style="dashed", color="red", weight=0]; 1463[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)) (FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)) (FiniteMap.deleteMax (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)) (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204)",fontsize=16,color="magenta"];1463 -> 2805[label="",style="dashed", color="magenta", weight=3]; 1463 -> 2806[label="",style="dashed", color="magenta", weight=3]; 1463 -> 2807[label="",style="dashed", color="magenta", weight=3]; 1463 -> 2808[label="",style="dashed", color="magenta", weight=3]; 2815[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194))",fontsize=16,color="black",shape="box"];2815 -> 2824[label="",style="solid", color="black", weight=3]; 2816[label="FiniteMap.deleteMin (FiniteMap.Branch xwv200 xwv201 xwv202 FiniteMap.EmptyFM xwv204)",fontsize=16,color="black",shape="box"];2816 -> 2825[label="",style="solid", color="black", weight=3]; 2817[label="FiniteMap.deleteMin (FiniteMap.Branch xwv200 xwv201 xwv202 (FiniteMap.Branch xwv2030 xwv2031 xwv2032 xwv2033 xwv2034) xwv204)",fontsize=16,color="black",shape="box"];2817 -> 2826[label="",style="solid", color="black", weight=3]; 2818[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194))",fontsize=16,color="black",shape="box"];2818 -> 2827[label="",style="solid", color="black", weight=3]; 2149[label="primPlusNat (Succ xwv19200) xwv970",fontsize=16,color="burlywood",shape="box"];4225[label="xwv970/Succ xwv9700",fontsize=10,color="white",style="solid",shape="box"];2149 -> 4225[label="",style="solid", color="burlywood", weight=9]; 4225 -> 2312[label="",style="solid", color="burlywood", weight=3]; 4226[label="xwv970/Zero",fontsize=10,color="white",style="solid",shape="box"];2149 -> 4226[label="",style="solid", color="burlywood", weight=9]; 4226 -> 2313[label="",style="solid", color="burlywood", weight=3]; 2150[label="primPlusNat Zero xwv970",fontsize=16,color="burlywood",shape="box"];4227[label="xwv970/Succ xwv9700",fontsize=10,color="white",style="solid",shape="box"];2150 -> 4227[label="",style="solid", color="burlywood", weight=9]; 4227 -> 2314[label="",style="solid", color="burlywood", weight=3]; 4228[label="xwv970/Zero",fontsize=10,color="white",style="solid",shape="box"];2150 -> 4228[label="",style="solid", color="burlywood", weight=9]; 4228 -> 2315[label="",style="solid", color="burlywood", weight=3]; 3026 -> 2953[label="",style="dashed", color="red", weight=0]; 3026[label="primMinusNat xwv24400 xwv24500",fontsize=16,color="magenta"];3026 -> 3054[label="",style="dashed", color="magenta", weight=3]; 3026 -> 3055[label="",style="dashed", color="magenta", weight=3]; 3027[label="Pos (Succ xwv24400)",fontsize=16,color="green",shape="box"];3028[label="Neg (Succ xwv24500)",fontsize=16,color="green",shape="box"];3029[label="Pos Zero",fontsize=16,color="green",shape="box"];2296 -> 1983[label="",style="dashed", color="red", weight=0]; 2296[label="primCmpNat xwv4400 xwv4600",fontsize=16,color="magenta"];2296 -> 2443[label="",style="dashed", color="magenta", weight=3]; 2296 -> 2444[label="",style="dashed", color="magenta", weight=3]; 2297[label="GT",fontsize=16,color="green",shape="box"];2298[label="Zero",fontsize=16,color="green",shape="box"];2299[label="Succ xwv4600",fontsize=16,color="green",shape="box"];1983[label="primCmpNat xwv4400 xwv4600",fontsize=16,color="burlywood",shape="triangle"];4229[label="xwv4400/Succ xwv44000",fontsize=10,color="white",style="solid",shape="box"];1983 -> 4229[label="",style="solid", color="burlywood", weight=9]; 4229 -> 2120[label="",style="solid", color="burlywood", weight=3]; 4230[label="xwv4400/Zero",fontsize=10,color="white",style="solid",shape="box"];1983 -> 4230[label="",style="solid", color="burlywood", weight=9]; 4230 -> 2121[label="",style="solid", color="burlywood", weight=3]; 2300 -> 1983[label="",style="dashed", color="red", weight=0]; 2300[label="primCmpNat xwv4600 xwv4400",fontsize=16,color="magenta"];2300 -> 2445[label="",style="dashed", color="magenta", weight=3]; 2300 -> 2446[label="",style="dashed", color="magenta", weight=3]; 2301[label="LT",fontsize=16,color="green",shape="box"];2302[label="Succ xwv4600",fontsize=16,color="green",shape="box"];2303[label="Zero",fontsize=16,color="green",shape="box"];3574[label="xwv201",fontsize=16,color="green",shape="box"];3575[label="xwv204",fontsize=16,color="green",shape="box"];3576[label="Succ Zero",fontsize=16,color="green",shape="box"];3577[label="xwv200",fontsize=16,color="green",shape="box"];3578[label="xwv240",fontsize=16,color="green",shape="box"];3031 -> 3056[label="",style="dashed", color="red", weight=0]; 3031[label="FiniteMap.mkBalBranch6MkBalBranch11 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 xwv2400 xwv2401 xwv2402 xwv2403 xwv2404 (FiniteMap.sizeFM xwv2404 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xwv2403)",fontsize=16,color="magenta"];3031 -> 3057[label="",style="dashed", color="magenta", weight=3]; 3032[label="xwv2043",fontsize=16,color="green",shape="box"];3033[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];3034 -> 1206[label="",style="dashed", color="red", weight=0]; 3034[label="FiniteMap.sizeFM xwv2044",fontsize=16,color="magenta"];3034 -> 3058[label="",style="dashed", color="magenta", weight=3]; 3035[label="FiniteMap.mkBalBranch6MkBalBranch00 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv2040 xwv2041 xwv2042 xwv2043 xwv2044 otherwise",fontsize=16,color="black",shape="box"];3035 -> 3059[label="",style="solid", color="black", weight=3]; 3036[label="FiniteMap.mkBalBranch6Single_L xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044)",fontsize=16,color="black",shape="box"];3036 -> 3060[label="",style="solid", color="black", weight=3]; 3680[label="Succ Zero",fontsize=16,color="green",shape="box"];3681[label="FiniteMap.mkBranchLeft_size xwv361 xwv360 xwv358",fontsize=16,color="black",shape="box"];3681 -> 3684[label="",style="solid", color="black", weight=3]; 3682 -> 2916[label="",style="dashed", color="red", weight=0]; 3682[label="primPlusInt (Pos xwv3620) (FiniteMap.sizeFM xwv361)",fontsize=16,color="magenta"];3682 -> 3685[label="",style="dashed", color="magenta", weight=3]; 3682 -> 3686[label="",style="dashed", color="magenta", weight=3]; 3683 -> 2918[label="",style="dashed", color="red", weight=0]; 3683[label="primPlusInt (Neg xwv3620) (FiniteMap.sizeFM xwv361)",fontsize=16,color="magenta"];3683 -> 3687[label="",style="dashed", color="magenta", weight=3]; 3683 -> 3688[label="",style="dashed", color="magenta", weight=3]; 1533[label="Succ (Succ (primPlusNat xwv1010 xwv300000))",fontsize=16,color="green",shape="box"];1533 -> 1724[label="",style="dashed", color="green", weight=3]; 1534[label="Succ xwv300000",fontsize=16,color="green",shape="box"];1852[label="GT",fontsize=16,color="green",shape="box"];1853[label="xwv123",fontsize=16,color="green",shape="box"];1854[label="not False",fontsize=16,color="black",shape="box"];1854 -> 2016[label="",style="solid", color="black", weight=3]; 1855[label="not True",fontsize=16,color="black",shape="box"];1855 -> 2017[label="",style="solid", color="black", weight=3]; 1865 -> 1447[label="",style="dashed", color="red", weight=0]; 1865[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1865 -> 2018[label="",style="dashed", color="magenta", weight=3]; 1865 -> 2019[label="",style="dashed", color="magenta", weight=3]; 1866 -> 1448[label="",style="dashed", color="red", weight=0]; 1866[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1866 -> 2020[label="",style="dashed", color="magenta", weight=3]; 1866 -> 2021[label="",style="dashed", color="magenta", weight=3]; 1867 -> 1449[label="",style="dashed", color="red", weight=0]; 1867[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1867 -> 2022[label="",style="dashed", color="magenta", weight=3]; 1867 -> 2023[label="",style="dashed", color="magenta", weight=3]; 1868 -> 1450[label="",style="dashed", color="red", weight=0]; 1868[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1868 -> 2024[label="",style="dashed", color="magenta", weight=3]; 1868 -> 2025[label="",style="dashed", color="magenta", weight=3]; 1869 -> 1451[label="",style="dashed", color="red", weight=0]; 1869[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1869 -> 2026[label="",style="dashed", color="magenta", weight=3]; 1869 -> 2027[label="",style="dashed", color="magenta", weight=3]; 1870 -> 1452[label="",style="dashed", color="red", weight=0]; 1870[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1870 -> 2028[label="",style="dashed", color="magenta", weight=3]; 1870 -> 2029[label="",style="dashed", color="magenta", weight=3]; 1871 -> 1453[label="",style="dashed", color="red", weight=0]; 1871[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1871 -> 2030[label="",style="dashed", color="magenta", weight=3]; 1871 -> 2031[label="",style="dashed", color="magenta", weight=3]; 1872 -> 1454[label="",style="dashed", color="red", weight=0]; 1872[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1872 -> 2032[label="",style="dashed", color="magenta", weight=3]; 1872 -> 2033[label="",style="dashed", color="magenta", weight=3]; 1873 -> 1455[label="",style="dashed", color="red", weight=0]; 1873[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1873 -> 2034[label="",style="dashed", color="magenta", weight=3]; 1873 -> 2035[label="",style="dashed", color="magenta", weight=3]; 1874 -> 1456[label="",style="dashed", color="red", weight=0]; 1874[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1874 -> 2036[label="",style="dashed", color="magenta", weight=3]; 1874 -> 2037[label="",style="dashed", color="magenta", weight=3]; 1875 -> 1457[label="",style="dashed", color="red", weight=0]; 1875[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1875 -> 2038[label="",style="dashed", color="magenta", weight=3]; 1875 -> 2039[label="",style="dashed", color="magenta", weight=3]; 1876 -> 1458[label="",style="dashed", color="red", weight=0]; 1876[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1876 -> 2040[label="",style="dashed", color="magenta", weight=3]; 1876 -> 2041[label="",style="dashed", color="magenta", weight=3]; 1877 -> 1459[label="",style="dashed", color="red", weight=0]; 1877[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1877 -> 2042[label="",style="dashed", color="magenta", weight=3]; 1877 -> 2043[label="",style="dashed", color="magenta", weight=3]; 1878 -> 1460[label="",style="dashed", color="red", weight=0]; 1878[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1878 -> 2044[label="",style="dashed", color="magenta", weight=3]; 1878 -> 2045[label="",style="dashed", color="magenta", weight=3]; 1879[label="xwv4411 <= xwv4611",fontsize=16,color="blue",shape="box"];4231[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4231[label="",style="solid", color="blue", weight=9]; 4231 -> 2046[label="",style="solid", color="blue", weight=3]; 4232[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4232[label="",style="solid", color="blue", weight=9]; 4232 -> 2047[label="",style="solid", color="blue", weight=3]; 4233[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4233[label="",style="solid", color="blue", weight=9]; 4233 -> 2048[label="",style="solid", color="blue", weight=3]; 4234[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4234[label="",style="solid", color="blue", weight=9]; 4234 -> 2049[label="",style="solid", color="blue", weight=3]; 4235[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4235[label="",style="solid", color="blue", weight=9]; 4235 -> 2050[label="",style="solid", color="blue", weight=3]; 4236[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4236[label="",style="solid", color="blue", weight=9]; 4236 -> 2051[label="",style="solid", color="blue", weight=3]; 4237[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4237[label="",style="solid", color="blue", weight=9]; 4237 -> 2052[label="",style="solid", color="blue", weight=3]; 4238[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4238[label="",style="solid", color="blue", weight=9]; 4238 -> 2053[label="",style="solid", color="blue", weight=3]; 4239[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4239[label="",style="solid", color="blue", weight=9]; 4239 -> 2054[label="",style="solid", color="blue", weight=3]; 4240[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4240[label="",style="solid", color="blue", weight=9]; 4240 -> 2055[label="",style="solid", color="blue", weight=3]; 4241[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4241[label="",style="solid", color="blue", weight=9]; 4241 -> 2056[label="",style="solid", color="blue", weight=3]; 4242[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4242[label="",style="solid", color="blue", weight=9]; 4242 -> 2057[label="",style="solid", color="blue", weight=3]; 4243[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4243[label="",style="solid", color="blue", weight=9]; 4243 -> 2058[label="",style="solid", color="blue", weight=3]; 4244[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1879 -> 4244[label="",style="solid", color="blue", weight=9]; 4244 -> 2059[label="",style="solid", color="blue", weight=3]; 1880[label="xwv4410 == xwv4610",fontsize=16,color="blue",shape="box"];4245[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4245[label="",style="solid", color="blue", weight=9]; 4245 -> 2060[label="",style="solid", color="blue", weight=3]; 4246[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4246[label="",style="solid", color="blue", weight=9]; 4246 -> 2061[label="",style="solid", color="blue", weight=3]; 4247[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4247[label="",style="solid", color="blue", weight=9]; 4247 -> 2062[label="",style="solid", color="blue", weight=3]; 4248[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4248[label="",style="solid", color="blue", weight=9]; 4248 -> 2063[label="",style="solid", color="blue", weight=3]; 4249[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4249[label="",style="solid", color="blue", weight=9]; 4249 -> 2064[label="",style="solid", color="blue", weight=3]; 4250[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4250[label="",style="solid", color="blue", weight=9]; 4250 -> 2065[label="",style="solid", color="blue", weight=3]; 4251[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4251[label="",style="solid", color="blue", weight=9]; 4251 -> 2066[label="",style="solid", color="blue", weight=3]; 4252[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4252[label="",style="solid", color="blue", weight=9]; 4252 -> 2067[label="",style="solid", color="blue", weight=3]; 4253[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4253[label="",style="solid", color="blue", weight=9]; 4253 -> 2068[label="",style="solid", color="blue", weight=3]; 4254[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4254[label="",style="solid", color="blue", weight=9]; 4254 -> 2069[label="",style="solid", color="blue", weight=3]; 4255[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4255[label="",style="solid", color="blue", weight=9]; 4255 -> 2070[label="",style="solid", color="blue", weight=3]; 4256[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4256[label="",style="solid", color="blue", weight=9]; 4256 -> 2071[label="",style="solid", color="blue", weight=3]; 4257[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4257[label="",style="solid", color="blue", weight=9]; 4257 -> 2072[label="",style="solid", color="blue", weight=3]; 4258[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1880 -> 4258[label="",style="solid", color="blue", weight=9]; 4258 -> 2073[label="",style="solid", color="blue", weight=3]; 1881[label="False || xwv135",fontsize=16,color="black",shape="box"];1881 -> 2074[label="",style="solid", color="black", weight=3]; 1882[label="True || xwv135",fontsize=16,color="black",shape="box"];1882 -> 2075[label="",style="solid", color="black", weight=3]; 1883[label="xwv4610",fontsize=16,color="green",shape="box"];1884[label="xwv4410",fontsize=16,color="green",shape="box"];1885[label="xwv4610",fontsize=16,color="green",shape="box"];1886[label="xwv4410",fontsize=16,color="green",shape="box"];1887[label="xwv4610",fontsize=16,color="green",shape="box"];1888[label="xwv4410",fontsize=16,color="green",shape="box"];1889[label="xwv4610",fontsize=16,color="green",shape="box"];1890[label="xwv4410",fontsize=16,color="green",shape="box"];1891[label="xwv4610",fontsize=16,color="green",shape="box"];1892[label="xwv4410",fontsize=16,color="green",shape="box"];1893[label="xwv4610",fontsize=16,color="green",shape="box"];1894[label="xwv4410",fontsize=16,color="green",shape="box"];1895[label="xwv4610",fontsize=16,color="green",shape="box"];1896[label="xwv4410",fontsize=16,color="green",shape="box"];1897[label="xwv4610",fontsize=16,color="green",shape="box"];1898[label="xwv4410",fontsize=16,color="green",shape="box"];1899[label="xwv4610",fontsize=16,color="green",shape="box"];1900[label="xwv4410",fontsize=16,color="green",shape="box"];1901[label="xwv4610",fontsize=16,color="green",shape="box"];1902[label="xwv4410",fontsize=16,color="green",shape="box"];1903[label="xwv4610",fontsize=16,color="green",shape="box"];1904[label="xwv4410",fontsize=16,color="green",shape="box"];1905[label="xwv4610",fontsize=16,color="green",shape="box"];1906[label="xwv4410",fontsize=16,color="green",shape="box"];1907[label="xwv4610",fontsize=16,color="green",shape="box"];1908[label="xwv4410",fontsize=16,color="green",shape="box"];1909[label="xwv4610",fontsize=16,color="green",shape="box"];1910[label="xwv4410",fontsize=16,color="green",shape="box"];1911[label="xwv4610",fontsize=16,color="green",shape="box"];1912[label="xwv4410",fontsize=16,color="green",shape="box"];1913[label="xwv4610",fontsize=16,color="green",shape="box"];1914[label="xwv4410",fontsize=16,color="green",shape="box"];1915[label="xwv4610",fontsize=16,color="green",shape="box"];1916[label="xwv4410",fontsize=16,color="green",shape="box"];1917[label="xwv4610",fontsize=16,color="green",shape="box"];1918[label="xwv4410",fontsize=16,color="green",shape="box"];1919[label="xwv4610",fontsize=16,color="green",shape="box"];1920[label="xwv4410",fontsize=16,color="green",shape="box"];1921[label="xwv4610",fontsize=16,color="green",shape="box"];1922[label="xwv4410",fontsize=16,color="green",shape="box"];1923[label="xwv4610",fontsize=16,color="green",shape="box"];1924[label="xwv4410",fontsize=16,color="green",shape="box"];1925[label="xwv4610",fontsize=16,color="green",shape="box"];1926[label="xwv4410",fontsize=16,color="green",shape="box"];1927[label="xwv4610",fontsize=16,color="green",shape="box"];1928[label="xwv4410",fontsize=16,color="green",shape="box"];1929[label="xwv4610",fontsize=16,color="green",shape="box"];1930[label="xwv4410",fontsize=16,color="green",shape="box"];1931[label="xwv4610",fontsize=16,color="green",shape="box"];1932[label="xwv4410",fontsize=16,color="green",shape="box"];1933[label="xwv4610",fontsize=16,color="green",shape="box"];1934[label="xwv4410",fontsize=16,color="green",shape="box"];1935[label="xwv4610",fontsize=16,color="green",shape="box"];1936[label="xwv4410",fontsize=16,color="green",shape="box"];1937[label="xwv4610",fontsize=16,color="green",shape="box"];1938[label="xwv4410",fontsize=16,color="green",shape="box"];1939[label="xwv4610",fontsize=16,color="green",shape="box"];1940[label="xwv4410",fontsize=16,color="green",shape="box"];1941[label="xwv4610",fontsize=16,color="green",shape="box"];1942[label="xwv4410",fontsize=16,color="green",shape="box"];1943[label="xwv4610",fontsize=16,color="green",shape="box"];1944[label="xwv4410",fontsize=16,color="green",shape="box"];1945[label="xwv4610",fontsize=16,color="green",shape="box"];1946[label="xwv4410",fontsize=16,color="green",shape="box"];1947[label="xwv4610",fontsize=16,color="green",shape="box"];1948[label="xwv4410",fontsize=16,color="green",shape="box"];1949[label="xwv4610",fontsize=16,color="green",shape="box"];1950[label="xwv4410",fontsize=16,color="green",shape="box"];1951[label="xwv4610",fontsize=16,color="green",shape="box"];1952[label="xwv4410",fontsize=16,color="green",shape="box"];1953[label="xwv4610",fontsize=16,color="green",shape="box"];1954[label="xwv4410",fontsize=16,color="green",shape="box"];1955[label="xwv4610",fontsize=16,color="green",shape="box"];1956[label="xwv4410",fontsize=16,color="green",shape="box"];1957[label="xwv4610",fontsize=16,color="green",shape="box"];1958[label="xwv4410",fontsize=16,color="green",shape="box"];1959[label="xwv4610",fontsize=16,color="green",shape="box"];1960[label="xwv4410",fontsize=16,color="green",shape="box"];1961[label="xwv4610",fontsize=16,color="green",shape="box"];1962[label="xwv4410",fontsize=16,color="green",shape="box"];1963[label="xwv4610",fontsize=16,color="green",shape="box"];1964[label="xwv4410",fontsize=16,color="green",shape="box"];1965[label="xwv4610",fontsize=16,color="green",shape="box"];1966[label="xwv4410",fontsize=16,color="green",shape="box"];1967 -> 1447[label="",style="dashed", color="red", weight=0]; 1967[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1967 -> 2076[label="",style="dashed", color="magenta", weight=3]; 1967 -> 2077[label="",style="dashed", color="magenta", weight=3]; 1968 -> 1448[label="",style="dashed", color="red", weight=0]; 1968[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1968 -> 2078[label="",style="dashed", color="magenta", weight=3]; 1968 -> 2079[label="",style="dashed", color="magenta", weight=3]; 1969 -> 1449[label="",style="dashed", color="red", weight=0]; 1969[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1969 -> 2080[label="",style="dashed", color="magenta", weight=3]; 1969 -> 2081[label="",style="dashed", color="magenta", weight=3]; 1970 -> 1450[label="",style="dashed", color="red", weight=0]; 1970[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1970 -> 2082[label="",style="dashed", color="magenta", weight=3]; 1970 -> 2083[label="",style="dashed", color="magenta", weight=3]; 1971 -> 1451[label="",style="dashed", color="red", weight=0]; 1971[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1971 -> 2084[label="",style="dashed", color="magenta", weight=3]; 1971 -> 2085[label="",style="dashed", color="magenta", weight=3]; 1972 -> 1452[label="",style="dashed", color="red", weight=0]; 1972[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1972 -> 2086[label="",style="dashed", color="magenta", weight=3]; 1972 -> 2087[label="",style="dashed", color="magenta", weight=3]; 1973 -> 1453[label="",style="dashed", color="red", weight=0]; 1973[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1973 -> 2088[label="",style="dashed", color="magenta", weight=3]; 1973 -> 2089[label="",style="dashed", color="magenta", weight=3]; 1974 -> 1454[label="",style="dashed", color="red", weight=0]; 1974[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1974 -> 2090[label="",style="dashed", color="magenta", weight=3]; 1974 -> 2091[label="",style="dashed", color="magenta", weight=3]; 1975 -> 1455[label="",style="dashed", color="red", weight=0]; 1975[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1975 -> 2092[label="",style="dashed", color="magenta", weight=3]; 1975 -> 2093[label="",style="dashed", color="magenta", weight=3]; 1976 -> 1456[label="",style="dashed", color="red", weight=0]; 1976[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1976 -> 2094[label="",style="dashed", color="magenta", weight=3]; 1976 -> 2095[label="",style="dashed", color="magenta", weight=3]; 1977 -> 1457[label="",style="dashed", color="red", weight=0]; 1977[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1977 -> 2096[label="",style="dashed", color="magenta", weight=3]; 1977 -> 2097[label="",style="dashed", color="magenta", weight=3]; 1978 -> 1458[label="",style="dashed", color="red", weight=0]; 1978[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1978 -> 2098[label="",style="dashed", color="magenta", weight=3]; 1978 -> 2099[label="",style="dashed", color="magenta", weight=3]; 1979 -> 1459[label="",style="dashed", color="red", weight=0]; 1979[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1979 -> 2100[label="",style="dashed", color="magenta", weight=3]; 1979 -> 2101[label="",style="dashed", color="magenta", weight=3]; 1980 -> 1460[label="",style="dashed", color="red", weight=0]; 1980[label="xwv4410 < xwv4610",fontsize=16,color="magenta"];1980 -> 2102[label="",style="dashed", color="magenta", weight=3]; 1980 -> 2103[label="",style="dashed", color="magenta", weight=3]; 1981 -> 1858[label="",style="dashed", color="red", weight=0]; 1981[label="xwv4411 < xwv4611 || xwv4411 == xwv4611 && xwv4412 <= xwv4612",fontsize=16,color="magenta"];1981 -> 2104[label="",style="dashed", color="magenta", weight=3]; 1981 -> 2105[label="",style="dashed", color="magenta", weight=3]; 1982[label="xwv4410 == xwv4610",fontsize=16,color="blue",shape="box"];4259[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4259[label="",style="solid", color="blue", weight=9]; 4259 -> 2106[label="",style="solid", color="blue", weight=3]; 4260[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4260[label="",style="solid", color="blue", weight=9]; 4260 -> 2107[label="",style="solid", color="blue", weight=3]; 4261[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4261[label="",style="solid", color="blue", weight=9]; 4261 -> 2108[label="",style="solid", color="blue", weight=3]; 4262[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4262[label="",style="solid", color="blue", weight=9]; 4262 -> 2109[label="",style="solid", color="blue", weight=3]; 4263[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4263[label="",style="solid", color="blue", weight=9]; 4263 -> 2110[label="",style="solid", color="blue", weight=3]; 4264[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4264[label="",style="solid", color="blue", weight=9]; 4264 -> 2111[label="",style="solid", color="blue", weight=3]; 4265[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4265[label="",style="solid", color="blue", weight=9]; 4265 -> 2112[label="",style="solid", color="blue", weight=3]; 4266[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4266[label="",style="solid", color="blue", weight=9]; 4266 -> 2113[label="",style="solid", color="blue", weight=3]; 4267[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4267[label="",style="solid", color="blue", weight=9]; 4267 -> 2114[label="",style="solid", color="blue", weight=3]; 4268[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4268[label="",style="solid", color="blue", weight=9]; 4268 -> 2115[label="",style="solid", color="blue", weight=3]; 4269[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4269[label="",style="solid", color="blue", weight=9]; 4269 -> 2116[label="",style="solid", color="blue", weight=3]; 4270[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4270[label="",style="solid", color="blue", weight=9]; 4270 -> 2117[label="",style="solid", color="blue", weight=3]; 4271[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4271[label="",style="solid", color="blue", weight=9]; 4271 -> 2118[label="",style="solid", color="blue", weight=3]; 4272[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];1982 -> 4272[label="",style="solid", color="blue", weight=9]; 4272 -> 2119[label="",style="solid", color="blue", weight=3]; 1984[label="xwv460",fontsize=16,color="green",shape="box"];1985[label="xwv440",fontsize=16,color="green",shape="box"];1986 -> 1038[label="",style="dashed", color="red", weight=0]; 1986[label="compare (xwv4400 * xwv4601) (xwv4600 * xwv4401)",fontsize=16,color="magenta"];1986 -> 2122[label="",style="dashed", color="magenta", weight=3]; 1986 -> 2123[label="",style="dashed", color="magenta", weight=3]; 1987 -> 1604[label="",style="dashed", color="red", weight=0]; 1987[label="compare (xwv4400 * xwv4601) (xwv4600 * xwv4401)",fontsize=16,color="magenta"];1987 -> 2124[label="",style="dashed", color="magenta", weight=3]; 1987 -> 2125[label="",style="dashed", color="magenta", weight=3]; 1988[label="xwv460",fontsize=16,color="green",shape="box"];1989[label="xwv440",fontsize=16,color="green",shape="box"];1990[label="compare2 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];1990 -> 2126[label="",style="solid", color="black", weight=3]; 1991[label="compare2 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];1991 -> 2127[label="",style="solid", color="black", weight=3]; 1992[label="xwv460",fontsize=16,color="green",shape="box"];1993[label="xwv440",fontsize=16,color="green",shape="box"];1994[label="compare2 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];1994 -> 2128[label="",style="solid", color="black", weight=3]; 1995[label="compare2 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];1995 -> 2129[label="",style="solid", color="black", weight=3]; 1996[label="primCmpFloat (Float xwv4400 (Pos xwv44010)) (Float xwv4600 xwv4601)",fontsize=16,color="burlywood",shape="box"];4273[label="xwv4601/Pos xwv46010",fontsize=10,color="white",style="solid",shape="box"];1996 -> 4273[label="",style="solid", color="burlywood", weight=9]; 4273 -> 2130[label="",style="solid", color="burlywood", weight=3]; 4274[label="xwv4601/Neg xwv46010",fontsize=10,color="white",style="solid",shape="box"];1996 -> 4274[label="",style="solid", color="burlywood", weight=9]; 4274 -> 2131[label="",style="solid", color="burlywood", weight=3]; 1997[label="primCmpFloat (Float xwv4400 (Neg xwv44010)) (Float xwv4600 xwv4601)",fontsize=16,color="burlywood",shape="box"];4275[label="xwv4601/Pos xwv46010",fontsize=10,color="white",style="solid",shape="box"];1997 -> 4275[label="",style="solid", color="burlywood", weight=9]; 4275 -> 2132[label="",style="solid", color="burlywood", weight=3]; 4276[label="xwv4601/Neg xwv46010",fontsize=10,color="white",style="solid",shape="box"];1997 -> 4276[label="",style="solid", color="burlywood", weight=9]; 4276 -> 2133[label="",style="solid", color="burlywood", weight=3]; 1998[label="xwv460",fontsize=16,color="green",shape="box"];1999[label="xwv440",fontsize=16,color="green",shape="box"];2000[label="compare2 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2000 -> 2134[label="",style="solid", color="black", weight=3]; 2001[label="compare2 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2001 -> 2135[label="",style="solid", color="black", weight=3]; 2002[label="xwv460",fontsize=16,color="green",shape="box"];2003[label="xwv440",fontsize=16,color="green",shape="box"];2004[label="compare2 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2004 -> 2136[label="",style="solid", color="black", weight=3]; 2005[label="compare2 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2005 -> 2137[label="",style="solid", color="black", weight=3]; 2006[label="xwv4400",fontsize=16,color="green",shape="box"];2007[label="xwv4600",fontsize=16,color="green",shape="box"];2008[label="primCmpDouble (Double xwv4400 (Pos xwv44010)) (Double xwv4600 xwv4601)",fontsize=16,color="burlywood",shape="box"];4277[label="xwv4601/Pos xwv46010",fontsize=10,color="white",style="solid",shape="box"];2008 -> 4277[label="",style="solid", color="burlywood", weight=9]; 4277 -> 2138[label="",style="solid", color="burlywood", weight=3]; 4278[label="xwv4601/Neg xwv46010",fontsize=10,color="white",style="solid",shape="box"];2008 -> 4278[label="",style="solid", color="burlywood", weight=9]; 4278 -> 2139[label="",style="solid", color="burlywood", weight=3]; 2009[label="primCmpDouble (Double xwv4400 (Neg xwv44010)) (Double xwv4600 xwv4601)",fontsize=16,color="burlywood",shape="box"];4279[label="xwv4601/Pos xwv46010",fontsize=10,color="white",style="solid",shape="box"];2009 -> 4279[label="",style="solid", color="burlywood", weight=9]; 4279 -> 2140[label="",style="solid", color="burlywood", weight=3]; 4280[label="xwv4601/Neg xwv46010",fontsize=10,color="white",style="solid",shape="box"];2009 -> 4280[label="",style="solid", color="burlywood", weight=9]; 4280 -> 2141[label="",style="solid", color="burlywood", weight=3]; 2010[label="xwv460",fontsize=16,color="green",shape="box"];2011[label="xwv440",fontsize=16,color="green",shape="box"];2012[label="compare2 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2012 -> 2142[label="",style="solid", color="black", weight=3]; 2013[label="compare2 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2013 -> 2143[label="",style="solid", color="black", weight=3]; 2015 -> 1612[label="",style="dashed", color="red", weight=0]; 2015[label="compare xwv4401 xwv4601",fontsize=16,color="magenta"];2015 -> 2144[label="",style="dashed", color="magenta", weight=3]; 2015 -> 2145[label="",style="dashed", color="magenta", weight=3]; 2014[label="primCompAux xwv4400 xwv4600 xwv136",fontsize=16,color="black",shape="triangle"];2014 -> 2146[label="",style="solid", color="black", weight=3]; 2805[label="FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)",fontsize=16,color="black",shape="box"];2805 -> 2819[label="",style="solid", color="black", weight=3]; 2806[label="FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204",fontsize=16,color="green",shape="box"];2807[label="FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)",fontsize=16,color="black",shape="box"];2807 -> 2820[label="",style="solid", color="black", weight=3]; 2808[label="FiniteMap.deleteMax (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194)",fontsize=16,color="burlywood",shape="triangle"];4281[label="xwv194/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2808 -> 4281[label="",style="solid", color="burlywood", weight=9]; 4281 -> 2821[label="",style="solid", color="burlywood", weight=3]; 4282[label="xwv194/FiniteMap.Branch xwv1940 xwv1941 xwv1942 xwv1943 xwv1944",fontsize=10,color="white",style="solid",shape="box"];2808 -> 4282[label="",style="solid", color="burlywood", weight=9]; 4282 -> 2822[label="",style="solid", color="burlywood", weight=3]; 2824 -> 3084[label="",style="dashed", color="red", weight=0]; 2824[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.findMin (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204))",fontsize=16,color="magenta"];2824 -> 3085[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3086[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3087[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3088[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3089[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3090[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3091[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3092[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3093[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3094[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3095[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3096[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3097[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3098[label="",style="dashed", color="magenta", weight=3]; 2824 -> 3099[label="",style="dashed", color="magenta", weight=3]; 2825[label="xwv204",fontsize=16,color="green",shape="box"];2826 -> 2788[label="",style="dashed", color="red", weight=0]; 2826[label="FiniteMap.mkBalBranch xwv200 xwv201 (FiniteMap.deleteMin (FiniteMap.Branch xwv2030 xwv2031 xwv2032 xwv2033 xwv2034)) xwv204",fontsize=16,color="magenta"];2826 -> 2840[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3187[label="",style="dashed", color="red", weight=0]; 2827[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.findMin (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204))",fontsize=16,color="magenta"];2827 -> 3188[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3189[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3190[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3191[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3192[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3193[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3194[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3195[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3196[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3197[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3198[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3199[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3200[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3201[label="",style="dashed", color="magenta", weight=3]; 2827 -> 3202[label="",style="dashed", color="magenta", weight=3]; 2312[label="primPlusNat (Succ xwv19200) (Succ xwv9700)",fontsize=16,color="black",shape="box"];2312 -> 2454[label="",style="solid", color="black", weight=3]; 2313[label="primPlusNat (Succ xwv19200) Zero",fontsize=16,color="black",shape="box"];2313 -> 2455[label="",style="solid", color="black", weight=3]; 2314[label="primPlusNat Zero (Succ xwv9700)",fontsize=16,color="black",shape="box"];2314 -> 2456[label="",style="solid", color="black", weight=3]; 2315[label="primPlusNat Zero Zero",fontsize=16,color="black",shape="box"];2315 -> 2457[label="",style="solid", color="black", weight=3]; 3054[label="xwv24400",fontsize=16,color="green",shape="box"];3055[label="xwv24500",fontsize=16,color="green",shape="box"];2443[label="xwv4400",fontsize=16,color="green",shape="box"];2444[label="xwv4600",fontsize=16,color="green",shape="box"];2120[label="primCmpNat (Succ xwv44000) xwv4600",fontsize=16,color="burlywood",shape="box"];4283[label="xwv4600/Succ xwv46000",fontsize=10,color="white",style="solid",shape="box"];2120 -> 4283[label="",style="solid", color="burlywood", weight=9]; 4283 -> 2261[label="",style="solid", color="burlywood", weight=3]; 4284[label="xwv4600/Zero",fontsize=10,color="white",style="solid",shape="box"];2120 -> 4284[label="",style="solid", color="burlywood", weight=9]; 4284 -> 2262[label="",style="solid", color="burlywood", weight=3]; 2121[label="primCmpNat Zero xwv4600",fontsize=16,color="burlywood",shape="box"];4285[label="xwv4600/Succ xwv46000",fontsize=10,color="white",style="solid",shape="box"];2121 -> 4285[label="",style="solid", color="burlywood", weight=9]; 4285 -> 2263[label="",style="solid", color="burlywood", weight=3]; 4286[label="xwv4600/Zero",fontsize=10,color="white",style="solid",shape="box"];2121 -> 4286[label="",style="solid", color="burlywood", weight=9]; 4286 -> 2264[label="",style="solid", color="burlywood", weight=3]; 2445[label="xwv4600",fontsize=16,color="green",shape="box"];2446[label="xwv4400",fontsize=16,color="green",shape="box"];3057 -> 1453[label="",style="dashed", color="red", weight=0]; 3057[label="FiniteMap.sizeFM xwv2404 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xwv2403",fontsize=16,color="magenta"];3057 -> 3064[label="",style="dashed", color="magenta", weight=3]; 3057 -> 3065[label="",style="dashed", color="magenta", weight=3]; 3056[label="FiniteMap.mkBalBranch6MkBalBranch11 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 xwv2400 xwv2401 xwv2402 xwv2403 xwv2404 xwv257",fontsize=16,color="burlywood",shape="triangle"];4287[label="xwv257/False",fontsize=10,color="white",style="solid",shape="box"];3056 -> 4287[label="",style="solid", color="burlywood", weight=9]; 4287 -> 3066[label="",style="solid", color="burlywood", weight=3]; 4288[label="xwv257/True",fontsize=10,color="white",style="solid",shape="box"];3056 -> 4288[label="",style="solid", color="burlywood", weight=9]; 4288 -> 3067[label="",style="solid", color="burlywood", weight=3]; 3058[label="xwv2044",fontsize=16,color="green",shape="box"];3059[label="FiniteMap.mkBalBranch6MkBalBranch00 xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv2040 xwv2041 xwv2042 xwv2043 xwv2044 True",fontsize=16,color="black",shape="box"];3059 -> 3076[label="",style="solid", color="black", weight=3]; 3060 -> 3568[label="",style="dashed", color="red", weight=0]; 3060[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ Zero)))) xwv2040 xwv2041 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) xwv200 xwv201 xwv240 xwv2043) xwv2044",fontsize=16,color="magenta"];3060 -> 3579[label="",style="dashed", color="magenta", weight=3]; 3060 -> 3580[label="",style="dashed", color="magenta", weight=3]; 3060 -> 3581[label="",style="dashed", color="magenta", weight=3]; 3060 -> 3582[label="",style="dashed", color="magenta", weight=3]; 3060 -> 3583[label="",style="dashed", color="magenta", weight=3]; 3684[label="FiniteMap.sizeFM xwv360",fontsize=16,color="burlywood",shape="triangle"];4289[label="xwv360/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3684 -> 4289[label="",style="solid", color="burlywood", weight=9]; 4289 -> 3689[label="",style="solid", color="burlywood", weight=3]; 4290[label="xwv360/FiniteMap.Branch xwv3600 xwv3601 xwv3602 xwv3603 xwv3604",fontsize=10,color="white",style="solid",shape="box"];3684 -> 4290[label="",style="solid", color="burlywood", weight=9]; 4290 -> 3690[label="",style="solid", color="burlywood", weight=3]; 3685[label="xwv3620",fontsize=16,color="green",shape="box"];3686 -> 3684[label="",style="dashed", color="red", weight=0]; 3686[label="FiniteMap.sizeFM xwv361",fontsize=16,color="magenta"];3686 -> 3691[label="",style="dashed", color="magenta", weight=3]; 3687 -> 3684[label="",style="dashed", color="red", weight=0]; 3687[label="FiniteMap.sizeFM xwv361",fontsize=16,color="magenta"];3687 -> 3692[label="",style="dashed", color="magenta", weight=3]; 3688[label="xwv3620",fontsize=16,color="green",shape="box"];1724 -> 1718[label="",style="dashed", color="red", weight=0]; 1724[label="primPlusNat xwv1010 xwv300000",fontsize=16,color="magenta"];1724 -> 2157[label="",style="dashed", color="magenta", weight=3]; 1724 -> 2158[label="",style="dashed", color="magenta", weight=3]; 2016[label="True",fontsize=16,color="green",shape="box"];2017[label="False",fontsize=16,color="green",shape="box"];2018[label="xwv4410",fontsize=16,color="green",shape="box"];2019[label="xwv4610",fontsize=16,color="green",shape="box"];2020[label="xwv4410",fontsize=16,color="green",shape="box"];2021[label="xwv4610",fontsize=16,color="green",shape="box"];2022[label="xwv4410",fontsize=16,color="green",shape="box"];2023[label="xwv4610",fontsize=16,color="green",shape="box"];2024[label="xwv4410",fontsize=16,color="green",shape="box"];2025[label="xwv4610",fontsize=16,color="green",shape="box"];2026[label="xwv4410",fontsize=16,color="green",shape="box"];2027[label="xwv4610",fontsize=16,color="green",shape="box"];2028[label="xwv4410",fontsize=16,color="green",shape="box"];2029[label="xwv4610",fontsize=16,color="green",shape="box"];2030[label="xwv4410",fontsize=16,color="green",shape="box"];2031[label="xwv4610",fontsize=16,color="green",shape="box"];2032[label="xwv4410",fontsize=16,color="green",shape="box"];2033[label="xwv4610",fontsize=16,color="green",shape="box"];2034[label="xwv4410",fontsize=16,color="green",shape="box"];2035[label="xwv4610",fontsize=16,color="green",shape="box"];2036[label="xwv4410",fontsize=16,color="green",shape="box"];2037[label="xwv4610",fontsize=16,color="green",shape="box"];2038[label="xwv4410",fontsize=16,color="green",shape="box"];2039[label="xwv4610",fontsize=16,color="green",shape="box"];2040[label="xwv4410",fontsize=16,color="green",shape="box"];2041[label="xwv4610",fontsize=16,color="green",shape="box"];2042[label="xwv4410",fontsize=16,color="green",shape="box"];2043[label="xwv4610",fontsize=16,color="green",shape="box"];2044[label="xwv4410",fontsize=16,color="green",shape="box"];2045[label="xwv4610",fontsize=16,color="green",shape="box"];2046 -> 1480[label="",style="dashed", color="red", weight=0]; 2046[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2046 -> 2161[label="",style="dashed", color="magenta", weight=3]; 2046 -> 2162[label="",style="dashed", color="magenta", weight=3]; 2047 -> 1481[label="",style="dashed", color="red", weight=0]; 2047[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2047 -> 2163[label="",style="dashed", color="magenta", weight=3]; 2047 -> 2164[label="",style="dashed", color="magenta", weight=3]; 2048 -> 1482[label="",style="dashed", color="red", weight=0]; 2048[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2048 -> 2165[label="",style="dashed", color="magenta", weight=3]; 2048 -> 2166[label="",style="dashed", color="magenta", weight=3]; 2049 -> 1483[label="",style="dashed", color="red", weight=0]; 2049[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2049 -> 2167[label="",style="dashed", color="magenta", weight=3]; 2049 -> 2168[label="",style="dashed", color="magenta", weight=3]; 2050 -> 1484[label="",style="dashed", color="red", weight=0]; 2050[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2050 -> 2169[label="",style="dashed", color="magenta", weight=3]; 2050 -> 2170[label="",style="dashed", color="magenta", weight=3]; 2051 -> 1485[label="",style="dashed", color="red", weight=0]; 2051[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2051 -> 2171[label="",style="dashed", color="magenta", weight=3]; 2051 -> 2172[label="",style="dashed", color="magenta", weight=3]; 2052 -> 1486[label="",style="dashed", color="red", weight=0]; 2052[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2052 -> 2173[label="",style="dashed", color="magenta", weight=3]; 2052 -> 2174[label="",style="dashed", color="magenta", weight=3]; 2053 -> 1487[label="",style="dashed", color="red", weight=0]; 2053[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2053 -> 2175[label="",style="dashed", color="magenta", weight=3]; 2053 -> 2176[label="",style="dashed", color="magenta", weight=3]; 2054 -> 1488[label="",style="dashed", color="red", weight=0]; 2054[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2054 -> 2177[label="",style="dashed", color="magenta", weight=3]; 2054 -> 2178[label="",style="dashed", color="magenta", weight=3]; 2055 -> 1489[label="",style="dashed", color="red", weight=0]; 2055[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2055 -> 2179[label="",style="dashed", color="magenta", weight=3]; 2055 -> 2180[label="",style="dashed", color="magenta", weight=3]; 2056 -> 1490[label="",style="dashed", color="red", weight=0]; 2056[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2056 -> 2181[label="",style="dashed", color="magenta", weight=3]; 2056 -> 2182[label="",style="dashed", color="magenta", weight=3]; 2057 -> 1491[label="",style="dashed", color="red", weight=0]; 2057[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2057 -> 2183[label="",style="dashed", color="magenta", weight=3]; 2057 -> 2184[label="",style="dashed", color="magenta", weight=3]; 2058 -> 1492[label="",style="dashed", color="red", weight=0]; 2058[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2058 -> 2185[label="",style="dashed", color="magenta", weight=3]; 2058 -> 2186[label="",style="dashed", color="magenta", weight=3]; 2059 -> 1493[label="",style="dashed", color="red", weight=0]; 2059[label="xwv4411 <= xwv4611",fontsize=16,color="magenta"];2059 -> 2187[label="",style="dashed", color="magenta", weight=3]; 2059 -> 2188[label="",style="dashed", color="magenta", weight=3]; 2060 -> 132[label="",style="dashed", color="red", weight=0]; 2060[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2060 -> 2189[label="",style="dashed", color="magenta", weight=3]; 2060 -> 2190[label="",style="dashed", color="magenta", weight=3]; 2061 -> 134[label="",style="dashed", color="red", weight=0]; 2061[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2061 -> 2191[label="",style="dashed", color="magenta", weight=3]; 2061 -> 2192[label="",style="dashed", color="magenta", weight=3]; 2062 -> 130[label="",style="dashed", color="red", weight=0]; 2062[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2062 -> 2193[label="",style="dashed", color="magenta", weight=3]; 2062 -> 2194[label="",style="dashed", color="magenta", weight=3]; 2063 -> 140[label="",style="dashed", color="red", weight=0]; 2063[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2063 -> 2195[label="",style="dashed", color="magenta", weight=3]; 2063 -> 2196[label="",style="dashed", color="magenta", weight=3]; 2064 -> 133[label="",style="dashed", color="red", weight=0]; 2064[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2064 -> 2197[label="",style="dashed", color="magenta", weight=3]; 2064 -> 2198[label="",style="dashed", color="magenta", weight=3]; 2065 -> 129[label="",style="dashed", color="red", weight=0]; 2065[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2065 -> 2199[label="",style="dashed", color="magenta", weight=3]; 2065 -> 2200[label="",style="dashed", color="magenta", weight=3]; 2066 -> 138[label="",style="dashed", color="red", weight=0]; 2066[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2066 -> 2201[label="",style="dashed", color="magenta", weight=3]; 2066 -> 2202[label="",style="dashed", color="magenta", weight=3]; 2067 -> 136[label="",style="dashed", color="red", weight=0]; 2067[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2067 -> 2203[label="",style="dashed", color="magenta", weight=3]; 2067 -> 2204[label="",style="dashed", color="magenta", weight=3]; 2068 -> 142[label="",style="dashed", color="red", weight=0]; 2068[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2068 -> 2205[label="",style="dashed", color="magenta", weight=3]; 2068 -> 2206[label="",style="dashed", color="magenta", weight=3]; 2069 -> 131[label="",style="dashed", color="red", weight=0]; 2069[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2069 -> 2207[label="",style="dashed", color="magenta", weight=3]; 2069 -> 2208[label="",style="dashed", color="magenta", weight=3]; 2070 -> 141[label="",style="dashed", color="red", weight=0]; 2070[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2070 -> 2209[label="",style="dashed", color="magenta", weight=3]; 2070 -> 2210[label="",style="dashed", color="magenta", weight=3]; 2071 -> 137[label="",style="dashed", color="red", weight=0]; 2071[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2071 -> 2211[label="",style="dashed", color="magenta", weight=3]; 2071 -> 2212[label="",style="dashed", color="magenta", weight=3]; 2072 -> 135[label="",style="dashed", color="red", weight=0]; 2072[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2072 -> 2213[label="",style="dashed", color="magenta", weight=3]; 2072 -> 2214[label="",style="dashed", color="magenta", weight=3]; 2073 -> 139[label="",style="dashed", color="red", weight=0]; 2073[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2073 -> 2215[label="",style="dashed", color="magenta", weight=3]; 2073 -> 2216[label="",style="dashed", color="magenta", weight=3]; 2074[label="xwv135",fontsize=16,color="green",shape="box"];2075[label="True",fontsize=16,color="green",shape="box"];2076[label="xwv4410",fontsize=16,color="green",shape="box"];2077[label="xwv4610",fontsize=16,color="green",shape="box"];2078[label="xwv4410",fontsize=16,color="green",shape="box"];2079[label="xwv4610",fontsize=16,color="green",shape="box"];2080[label="xwv4410",fontsize=16,color="green",shape="box"];2081[label="xwv4610",fontsize=16,color="green",shape="box"];2082[label="xwv4410",fontsize=16,color="green",shape="box"];2083[label="xwv4610",fontsize=16,color="green",shape="box"];2084[label="xwv4410",fontsize=16,color="green",shape="box"];2085[label="xwv4610",fontsize=16,color="green",shape="box"];2086[label="xwv4410",fontsize=16,color="green",shape="box"];2087[label="xwv4610",fontsize=16,color="green",shape="box"];2088[label="xwv4410",fontsize=16,color="green",shape="box"];2089[label="xwv4610",fontsize=16,color="green",shape="box"];2090[label="xwv4410",fontsize=16,color="green",shape="box"];2091[label="xwv4610",fontsize=16,color="green",shape="box"];2092[label="xwv4410",fontsize=16,color="green",shape="box"];2093[label="xwv4610",fontsize=16,color="green",shape="box"];2094[label="xwv4410",fontsize=16,color="green",shape="box"];2095[label="xwv4610",fontsize=16,color="green",shape="box"];2096[label="xwv4410",fontsize=16,color="green",shape="box"];2097[label="xwv4610",fontsize=16,color="green",shape="box"];2098[label="xwv4410",fontsize=16,color="green",shape="box"];2099[label="xwv4610",fontsize=16,color="green",shape="box"];2100[label="xwv4410",fontsize=16,color="green",shape="box"];2101[label="xwv4610",fontsize=16,color="green",shape="box"];2102[label="xwv4410",fontsize=16,color="green",shape="box"];2103[label="xwv4610",fontsize=16,color="green",shape="box"];2104[label="xwv4411 < xwv4611",fontsize=16,color="blue",shape="box"];4291[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4291[label="",style="solid", color="blue", weight=9]; 4291 -> 2217[label="",style="solid", color="blue", weight=3]; 4292[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4292[label="",style="solid", color="blue", weight=9]; 4292 -> 2218[label="",style="solid", color="blue", weight=3]; 4293[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4293[label="",style="solid", color="blue", weight=9]; 4293 -> 2219[label="",style="solid", color="blue", weight=3]; 4294[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4294[label="",style="solid", color="blue", weight=9]; 4294 -> 2220[label="",style="solid", color="blue", weight=3]; 4295[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4295[label="",style="solid", color="blue", weight=9]; 4295 -> 2221[label="",style="solid", color="blue", weight=3]; 4296[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4296[label="",style="solid", color="blue", weight=9]; 4296 -> 2222[label="",style="solid", color="blue", weight=3]; 4297[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4297[label="",style="solid", color="blue", weight=9]; 4297 -> 2223[label="",style="solid", color="blue", weight=3]; 4298[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4298[label="",style="solid", color="blue", weight=9]; 4298 -> 2224[label="",style="solid", color="blue", weight=3]; 4299[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4299[label="",style="solid", color="blue", weight=9]; 4299 -> 2225[label="",style="solid", color="blue", weight=3]; 4300[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4300[label="",style="solid", color="blue", weight=9]; 4300 -> 2226[label="",style="solid", color="blue", weight=3]; 4301[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4301[label="",style="solid", color="blue", weight=9]; 4301 -> 2227[label="",style="solid", color="blue", weight=3]; 4302[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4302[label="",style="solid", color="blue", weight=9]; 4302 -> 2228[label="",style="solid", color="blue", weight=3]; 4303[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4303[label="",style="solid", color="blue", weight=9]; 4303 -> 2229[label="",style="solid", color="blue", weight=3]; 4304[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2104 -> 4304[label="",style="solid", color="blue", weight=9]; 4304 -> 2230[label="",style="solid", color="blue", weight=3]; 2105 -> 376[label="",style="dashed", color="red", weight=0]; 2105[label="xwv4411 == xwv4611 && xwv4412 <= xwv4612",fontsize=16,color="magenta"];2105 -> 2231[label="",style="dashed", color="magenta", weight=3]; 2105 -> 2232[label="",style="dashed", color="magenta", weight=3]; 2106 -> 132[label="",style="dashed", color="red", weight=0]; 2106[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2106 -> 2233[label="",style="dashed", color="magenta", weight=3]; 2106 -> 2234[label="",style="dashed", color="magenta", weight=3]; 2107 -> 134[label="",style="dashed", color="red", weight=0]; 2107[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2107 -> 2235[label="",style="dashed", color="magenta", weight=3]; 2107 -> 2236[label="",style="dashed", color="magenta", weight=3]; 2108 -> 130[label="",style="dashed", color="red", weight=0]; 2108[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2108 -> 2237[label="",style="dashed", color="magenta", weight=3]; 2108 -> 2238[label="",style="dashed", color="magenta", weight=3]; 2109 -> 140[label="",style="dashed", color="red", weight=0]; 2109[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2109 -> 2239[label="",style="dashed", color="magenta", weight=3]; 2109 -> 2240[label="",style="dashed", color="magenta", weight=3]; 2110 -> 133[label="",style="dashed", color="red", weight=0]; 2110[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2110 -> 2241[label="",style="dashed", color="magenta", weight=3]; 2110 -> 2242[label="",style="dashed", color="magenta", weight=3]; 2111 -> 129[label="",style="dashed", color="red", weight=0]; 2111[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2111 -> 2243[label="",style="dashed", color="magenta", weight=3]; 2111 -> 2244[label="",style="dashed", color="magenta", weight=3]; 2112 -> 138[label="",style="dashed", color="red", weight=0]; 2112[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2112 -> 2245[label="",style="dashed", color="magenta", weight=3]; 2112 -> 2246[label="",style="dashed", color="magenta", weight=3]; 2113 -> 136[label="",style="dashed", color="red", weight=0]; 2113[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2113 -> 2247[label="",style="dashed", color="magenta", weight=3]; 2113 -> 2248[label="",style="dashed", color="magenta", weight=3]; 2114 -> 142[label="",style="dashed", color="red", weight=0]; 2114[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2114 -> 2249[label="",style="dashed", color="magenta", weight=3]; 2114 -> 2250[label="",style="dashed", color="magenta", weight=3]; 2115 -> 131[label="",style="dashed", color="red", weight=0]; 2115[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2115 -> 2251[label="",style="dashed", color="magenta", weight=3]; 2115 -> 2252[label="",style="dashed", color="magenta", weight=3]; 2116 -> 141[label="",style="dashed", color="red", weight=0]; 2116[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2116 -> 2253[label="",style="dashed", color="magenta", weight=3]; 2116 -> 2254[label="",style="dashed", color="magenta", weight=3]; 2117 -> 137[label="",style="dashed", color="red", weight=0]; 2117[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2117 -> 2255[label="",style="dashed", color="magenta", weight=3]; 2117 -> 2256[label="",style="dashed", color="magenta", weight=3]; 2118 -> 135[label="",style="dashed", color="red", weight=0]; 2118[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2118 -> 2257[label="",style="dashed", color="magenta", weight=3]; 2118 -> 2258[label="",style="dashed", color="magenta", weight=3]; 2119 -> 139[label="",style="dashed", color="red", weight=0]; 2119[label="xwv4410 == xwv4610",fontsize=16,color="magenta"];2119 -> 2259[label="",style="dashed", color="magenta", weight=3]; 2119 -> 2260[label="",style="dashed", color="magenta", weight=3]; 2122 -> 372[label="",style="dashed", color="red", weight=0]; 2122[label="xwv4400 * xwv4601",fontsize=16,color="magenta"];2122 -> 2265[label="",style="dashed", color="magenta", weight=3]; 2122 -> 2266[label="",style="dashed", color="magenta", weight=3]; 2123 -> 372[label="",style="dashed", color="red", weight=0]; 2123[label="xwv4600 * xwv4401",fontsize=16,color="magenta"];2123 -> 2267[label="",style="dashed", color="magenta", weight=3]; 2123 -> 2268[label="",style="dashed", color="magenta", weight=3]; 2124[label="xwv4400 * xwv4601",fontsize=16,color="burlywood",shape="triangle"];4305[label="xwv4400/Integer xwv44000",fontsize=10,color="white",style="solid",shape="box"];2124 -> 4305[label="",style="solid", color="burlywood", weight=9]; 4305 -> 2269[label="",style="solid", color="burlywood", weight=3]; 2125 -> 2124[label="",style="dashed", color="red", weight=0]; 2125[label="xwv4600 * xwv4401",fontsize=16,color="magenta"];2125 -> 2270[label="",style="dashed", color="magenta", weight=3]; 2125 -> 2271[label="",style="dashed", color="magenta", weight=3]; 2126 -> 2272[label="",style="dashed", color="red", weight=0]; 2126[label="compare1 xwv440 xwv460 (xwv440 <= xwv460)",fontsize=16,color="magenta"];2126 -> 2273[label="",style="dashed", color="magenta", weight=3]; 2127[label="EQ",fontsize=16,color="green",shape="box"];2128 -> 2274[label="",style="dashed", color="red", weight=0]; 2128[label="compare1 xwv440 xwv460 (xwv440 <= xwv460)",fontsize=16,color="magenta"];2128 -> 2275[label="",style="dashed", color="magenta", weight=3]; 2129[label="EQ",fontsize=16,color="green",shape="box"];2130[label="primCmpFloat (Float xwv4400 (Pos xwv44010)) (Float xwv4600 (Pos xwv46010))",fontsize=16,color="black",shape="box"];2130 -> 2276[label="",style="solid", color="black", weight=3]; 2131[label="primCmpFloat (Float xwv4400 (Pos xwv44010)) (Float xwv4600 (Neg xwv46010))",fontsize=16,color="black",shape="box"];2131 -> 2277[label="",style="solid", color="black", weight=3]; 2132[label="primCmpFloat (Float xwv4400 (Neg xwv44010)) (Float xwv4600 (Pos xwv46010))",fontsize=16,color="black",shape="box"];2132 -> 2278[label="",style="solid", color="black", weight=3]; 2133[label="primCmpFloat (Float xwv4400 (Neg xwv44010)) (Float xwv4600 (Neg xwv46010))",fontsize=16,color="black",shape="box"];2133 -> 2279[label="",style="solid", color="black", weight=3]; 2134 -> 2280[label="",style="dashed", color="red", weight=0]; 2134[label="compare1 xwv440 xwv460 (xwv440 <= xwv460)",fontsize=16,color="magenta"];2134 -> 2281[label="",style="dashed", color="magenta", weight=3]; 2135[label="EQ",fontsize=16,color="green",shape="box"];2136 -> 2282[label="",style="dashed", color="red", weight=0]; 2136[label="compare1 xwv440 xwv460 (xwv440 <= xwv460)",fontsize=16,color="magenta"];2136 -> 2283[label="",style="dashed", color="magenta", weight=3]; 2137[label="EQ",fontsize=16,color="green",shape="box"];2138[label="primCmpDouble (Double xwv4400 (Pos xwv44010)) (Double xwv4600 (Pos xwv46010))",fontsize=16,color="black",shape="box"];2138 -> 2284[label="",style="solid", color="black", weight=3]; 2139[label="primCmpDouble (Double xwv4400 (Pos xwv44010)) (Double xwv4600 (Neg xwv46010))",fontsize=16,color="black",shape="box"];2139 -> 2285[label="",style="solid", color="black", weight=3]; 2140[label="primCmpDouble (Double xwv4400 (Neg xwv44010)) (Double xwv4600 (Pos xwv46010))",fontsize=16,color="black",shape="box"];2140 -> 2286[label="",style="solid", color="black", weight=3]; 2141[label="primCmpDouble (Double xwv4400 (Neg xwv44010)) (Double xwv4600 (Neg xwv46010))",fontsize=16,color="black",shape="box"];2141 -> 2287[label="",style="solid", color="black", weight=3]; 2142 -> 2288[label="",style="dashed", color="red", weight=0]; 2142[label="compare1 xwv440 xwv460 (xwv440 <= xwv460)",fontsize=16,color="magenta"];2142 -> 2289[label="",style="dashed", color="magenta", weight=3]; 2143[label="EQ",fontsize=16,color="green",shape="box"];2144[label="xwv4401",fontsize=16,color="green",shape="box"];2145[label="xwv4601",fontsize=16,color="green",shape="box"];2146 -> 2290[label="",style="dashed", color="red", weight=0]; 2146[label="primCompAux0 xwv136 (compare xwv4400 xwv4600)",fontsize=16,color="magenta"];2146 -> 2291[label="",style="dashed", color="magenta", weight=3]; 2146 -> 2292[label="",style="dashed", color="magenta", weight=3]; 2819[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194))",fontsize=16,color="black",shape="box"];2819 -> 2828[label="",style="solid", color="black", weight=3]; 2820[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194))",fontsize=16,color="black",shape="box"];2820 -> 2829[label="",style="solid", color="black", weight=3]; 2821[label="FiniteMap.deleteMax (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 FiniteMap.EmptyFM)",fontsize=16,color="black",shape="box"];2821 -> 2830[label="",style="solid", color="black", weight=3]; 2822[label="FiniteMap.deleteMax (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 (FiniteMap.Branch xwv1940 xwv1941 xwv1942 xwv1943 xwv1944))",fontsize=16,color="black",shape="box"];2822 -> 2831[label="",style="solid", color="black", weight=3]; 3085[label="xwv194",fontsize=16,color="green",shape="box"];3086[label="xwv193",fontsize=16,color="green",shape="box"];3087[label="xwv190",fontsize=16,color="green",shape="box"];3088[label="xwv204",fontsize=16,color="green",shape="box"];3089[label="xwv202",fontsize=16,color="green",shape="box"];3090[label="xwv200",fontsize=16,color="green",shape="box"];3091[label="xwv203",fontsize=16,color="green",shape="box"];3092[label="xwv203",fontsize=16,color="green",shape="box"];3093[label="xwv204",fontsize=16,color="green",shape="box"];3094[label="xwv201",fontsize=16,color="green",shape="box"];3095[label="xwv192",fontsize=16,color="green",shape="box"];3096[label="xwv200",fontsize=16,color="green",shape="box"];3097[label="xwv201",fontsize=16,color="green",shape="box"];3098[label="xwv202",fontsize=16,color="green",shape="box"];3099[label="xwv191",fontsize=16,color="green",shape="box"];3084[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch xwv262 xwv263 xwv264 xwv265 xwv266) (FiniteMap.Branch xwv267 xwv268 xwv269 xwv270 xwv271) (FiniteMap.findMin (FiniteMap.Branch xwv272 xwv273 xwv274 xwv275 xwv276))",fontsize=16,color="burlywood",shape="triangle"];4306[label="xwv275/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3084 -> 4306[label="",style="solid", color="burlywood", weight=9]; 4306 -> 3175[label="",style="solid", color="burlywood", weight=3]; 4307[label="xwv275/FiniteMap.Branch xwv2750 xwv2751 xwv2752 xwv2753 xwv2754",fontsize=10,color="white",style="solid",shape="box"];3084 -> 4307[label="",style="solid", color="burlywood", weight=9]; 4307 -> 3176[label="",style="solid", color="burlywood", weight=3]; 2840 -> 2802[label="",style="dashed", color="red", weight=0]; 2840[label="FiniteMap.deleteMin (FiniteMap.Branch xwv2030 xwv2031 xwv2032 xwv2033 xwv2034)",fontsize=16,color="magenta"];2840 -> 2856[label="",style="dashed", color="magenta", weight=3]; 2840 -> 2857[label="",style="dashed", color="magenta", weight=3]; 2840 -> 2858[label="",style="dashed", color="magenta", weight=3]; 2840 -> 2859[label="",style="dashed", color="magenta", weight=3]; 2840 -> 2860[label="",style="dashed", color="magenta", weight=3]; 3188[label="xwv203",fontsize=16,color="green",shape="box"];3189[label="xwv200",fontsize=16,color="green",shape="box"];3190[label="xwv200",fontsize=16,color="green",shape="box"];3191[label="xwv201",fontsize=16,color="green",shape="box"];3192[label="xwv193",fontsize=16,color="green",shape="box"];3193[label="xwv204",fontsize=16,color="green",shape="box"];3194[label="xwv190",fontsize=16,color="green",shape="box"];3195[label="xwv204",fontsize=16,color="green",shape="box"];3196[label="xwv201",fontsize=16,color="green",shape="box"];3197[label="xwv203",fontsize=16,color="green",shape="box"];3198[label="xwv202",fontsize=16,color="green",shape="box"];3199[label="xwv194",fontsize=16,color="green",shape="box"];3200[label="xwv192",fontsize=16,color="green",shape="box"];3201[label="xwv202",fontsize=16,color="green",shape="box"];3202[label="xwv191",fontsize=16,color="green",shape="box"];3187[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch xwv278 xwv279 xwv280 xwv281 xwv282) (FiniteMap.Branch xwv283 xwv284 xwv285 xwv286 xwv287) (FiniteMap.findMin (FiniteMap.Branch xwv288 xwv289 xwv290 xwv291 xwv292))",fontsize=16,color="burlywood",shape="triangle"];4308[label="xwv291/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3187 -> 4308[label="",style="solid", color="burlywood", weight=9]; 4308 -> 3278[label="",style="solid", color="burlywood", weight=3]; 4309[label="xwv291/FiniteMap.Branch xwv2910 xwv2911 xwv2912 xwv2913 xwv2914",fontsize=10,color="white",style="solid",shape="box"];3187 -> 4309[label="",style="solid", color="burlywood", weight=9]; 4309 -> 3279[label="",style="solid", color="burlywood", weight=3]; 2454[label="Succ (Succ (primPlusNat xwv19200 xwv9700))",fontsize=16,color="green",shape="box"];2454 -> 2628[label="",style="dashed", color="green", weight=3]; 2455[label="Succ xwv19200",fontsize=16,color="green",shape="box"];2456[label="Succ xwv9700",fontsize=16,color="green",shape="box"];2457[label="Zero",fontsize=16,color="green",shape="box"];2261[label="primCmpNat (Succ xwv44000) (Succ xwv46000)",fontsize=16,color="black",shape="box"];2261 -> 2376[label="",style="solid", color="black", weight=3]; 2262[label="primCmpNat (Succ xwv44000) Zero",fontsize=16,color="black",shape="box"];2262 -> 2377[label="",style="solid", color="black", weight=3]; 2263[label="primCmpNat Zero (Succ xwv46000)",fontsize=16,color="black",shape="box"];2263 -> 2378[label="",style="solid", color="black", weight=3]; 2264[label="primCmpNat Zero Zero",fontsize=16,color="black",shape="box"];2264 -> 2379[label="",style="solid", color="black", weight=3]; 3064 -> 1206[label="",style="dashed", color="red", weight=0]; 3064[label="FiniteMap.sizeFM xwv2404",fontsize=16,color="magenta"];3064 -> 3078[label="",style="dashed", color="magenta", weight=3]; 3065 -> 372[label="",style="dashed", color="red", weight=0]; 3065[label="Pos (Succ (Succ Zero)) * FiniteMap.sizeFM xwv2403",fontsize=16,color="magenta"];3065 -> 3079[label="",style="dashed", color="magenta", weight=3]; 3065 -> 3080[label="",style="dashed", color="magenta", weight=3]; 3066[label="FiniteMap.mkBalBranch6MkBalBranch11 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 xwv2400 xwv2401 xwv2402 xwv2403 xwv2404 False",fontsize=16,color="black",shape="box"];3066 -> 3081[label="",style="solid", color="black", weight=3]; 3067[label="FiniteMap.mkBalBranch6MkBalBranch11 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 xwv2400 xwv2401 xwv2402 xwv2403 xwv2404 True",fontsize=16,color="black",shape="box"];3067 -> 3082[label="",style="solid", color="black", weight=3]; 3076[label="FiniteMap.mkBalBranch6Double_L xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 xwv2043 xwv2044)",fontsize=16,color="burlywood",shape="box"];4310[label="xwv2043/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3076 -> 4310[label="",style="solid", color="burlywood", weight=9]; 4310 -> 3177[label="",style="solid", color="burlywood", weight=3]; 4311[label="xwv2043/FiniteMap.Branch xwv20430 xwv20431 xwv20432 xwv20433 xwv20434",fontsize=10,color="white",style="solid",shape="box"];3076 -> 4311[label="",style="solid", color="burlywood", weight=9]; 4311 -> 3178[label="",style="solid", color="burlywood", weight=3]; 3579[label="xwv2041",fontsize=16,color="green",shape="box"];3580[label="xwv2044",fontsize=16,color="green",shape="box"];3581[label="Succ (Succ Zero)",fontsize=16,color="green",shape="box"];3582[label="xwv2040",fontsize=16,color="green",shape="box"];3583 -> 3568[label="",style="dashed", color="red", weight=0]; 3583[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) xwv200 xwv201 xwv240 xwv2043",fontsize=16,color="magenta"];3583 -> 3625[label="",style="dashed", color="magenta", weight=3]; 3583 -> 3626[label="",style="dashed", color="magenta", weight=3]; 3583 -> 3627[label="",style="dashed", color="magenta", weight=3]; 3583 -> 3628[label="",style="dashed", color="magenta", weight=3]; 3583 -> 3629[label="",style="dashed", color="magenta", weight=3]; 3689[label="FiniteMap.sizeFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];3689 -> 3693[label="",style="solid", color="black", weight=3]; 3690[label="FiniteMap.sizeFM (FiniteMap.Branch xwv3600 xwv3601 xwv3602 xwv3603 xwv3604)",fontsize=16,color="black",shape="box"];3690 -> 3694[label="",style="solid", color="black", weight=3]; 3691[label="xwv361",fontsize=16,color="green",shape="box"];3692[label="xwv361",fontsize=16,color="green",shape="box"];2157[label="xwv1010",fontsize=16,color="green",shape="box"];2158[label="xwv300000",fontsize=16,color="green",shape="box"];2161[label="xwv4611",fontsize=16,color="green",shape="box"];2162[label="xwv4411",fontsize=16,color="green",shape="box"];2163[label="xwv4611",fontsize=16,color="green",shape="box"];2164[label="xwv4411",fontsize=16,color="green",shape="box"];2165[label="xwv4611",fontsize=16,color="green",shape="box"];2166[label="xwv4411",fontsize=16,color="green",shape="box"];2167[label="xwv4611",fontsize=16,color="green",shape="box"];2168[label="xwv4411",fontsize=16,color="green",shape="box"];2169[label="xwv4611",fontsize=16,color="green",shape="box"];2170[label="xwv4411",fontsize=16,color="green",shape="box"];2171[label="xwv4611",fontsize=16,color="green",shape="box"];2172[label="xwv4411",fontsize=16,color="green",shape="box"];2173[label="xwv4611",fontsize=16,color="green",shape="box"];2174[label="xwv4411",fontsize=16,color="green",shape="box"];2175[label="xwv4611",fontsize=16,color="green",shape="box"];2176[label="xwv4411",fontsize=16,color="green",shape="box"];2177[label="xwv4611",fontsize=16,color="green",shape="box"];2178[label="xwv4411",fontsize=16,color="green",shape="box"];2179[label="xwv4611",fontsize=16,color="green",shape="box"];2180[label="xwv4411",fontsize=16,color="green",shape="box"];2181[label="xwv4611",fontsize=16,color="green",shape="box"];2182[label="xwv4411",fontsize=16,color="green",shape="box"];2183[label="xwv4611",fontsize=16,color="green",shape="box"];2184[label="xwv4411",fontsize=16,color="green",shape="box"];2185[label="xwv4611",fontsize=16,color="green",shape="box"];2186[label="xwv4411",fontsize=16,color="green",shape="box"];2187[label="xwv4611",fontsize=16,color="green",shape="box"];2188[label="xwv4411",fontsize=16,color="green",shape="box"];2189[label="xwv4610",fontsize=16,color="green",shape="box"];2190[label="xwv4410",fontsize=16,color="green",shape="box"];2191[label="xwv4610",fontsize=16,color="green",shape="box"];2192[label="xwv4410",fontsize=16,color="green",shape="box"];2193[label="xwv4610",fontsize=16,color="green",shape="box"];2194[label="xwv4410",fontsize=16,color="green",shape="box"];2195[label="xwv4610",fontsize=16,color="green",shape="box"];2196[label="xwv4410",fontsize=16,color="green",shape="box"];2197[label="xwv4610",fontsize=16,color="green",shape="box"];2198[label="xwv4410",fontsize=16,color="green",shape="box"];2199[label="xwv4610",fontsize=16,color="green",shape="box"];2200[label="xwv4410",fontsize=16,color="green",shape="box"];2201[label="xwv4610",fontsize=16,color="green",shape="box"];2202[label="xwv4410",fontsize=16,color="green",shape="box"];2203[label="xwv4610",fontsize=16,color="green",shape="box"];2204[label="xwv4410",fontsize=16,color="green",shape="box"];2205[label="xwv4610",fontsize=16,color="green",shape="box"];2206[label="xwv4410",fontsize=16,color="green",shape="box"];2207[label="xwv4610",fontsize=16,color="green",shape="box"];2208[label="xwv4410",fontsize=16,color="green",shape="box"];2209[label="xwv4610",fontsize=16,color="green",shape="box"];2210[label="xwv4410",fontsize=16,color="green",shape="box"];2211[label="xwv4610",fontsize=16,color="green",shape="box"];2212[label="xwv4410",fontsize=16,color="green",shape="box"];2213[label="xwv4610",fontsize=16,color="green",shape="box"];2214[label="xwv4410",fontsize=16,color="green",shape="box"];2215[label="xwv4610",fontsize=16,color="green",shape="box"];2216[label="xwv4410",fontsize=16,color="green",shape="box"];2217 -> 1447[label="",style="dashed", color="red", weight=0]; 2217[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2217 -> 2320[label="",style="dashed", color="magenta", weight=3]; 2217 -> 2321[label="",style="dashed", color="magenta", weight=3]; 2218 -> 1448[label="",style="dashed", color="red", weight=0]; 2218[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2218 -> 2322[label="",style="dashed", color="magenta", weight=3]; 2218 -> 2323[label="",style="dashed", color="magenta", weight=3]; 2219 -> 1449[label="",style="dashed", color="red", weight=0]; 2219[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2219 -> 2324[label="",style="dashed", color="magenta", weight=3]; 2219 -> 2325[label="",style="dashed", color="magenta", weight=3]; 2220 -> 1450[label="",style="dashed", color="red", weight=0]; 2220[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2220 -> 2326[label="",style="dashed", color="magenta", weight=3]; 2220 -> 2327[label="",style="dashed", color="magenta", weight=3]; 2221 -> 1451[label="",style="dashed", color="red", weight=0]; 2221[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2221 -> 2328[label="",style="dashed", color="magenta", weight=3]; 2221 -> 2329[label="",style="dashed", color="magenta", weight=3]; 2222 -> 1452[label="",style="dashed", color="red", weight=0]; 2222[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2222 -> 2330[label="",style="dashed", color="magenta", weight=3]; 2222 -> 2331[label="",style="dashed", color="magenta", weight=3]; 2223 -> 1453[label="",style="dashed", color="red", weight=0]; 2223[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2223 -> 2332[label="",style="dashed", color="magenta", weight=3]; 2223 -> 2333[label="",style="dashed", color="magenta", weight=3]; 2224 -> 1454[label="",style="dashed", color="red", weight=0]; 2224[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2224 -> 2334[label="",style="dashed", color="magenta", weight=3]; 2224 -> 2335[label="",style="dashed", color="magenta", weight=3]; 2225 -> 1455[label="",style="dashed", color="red", weight=0]; 2225[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2225 -> 2336[label="",style="dashed", color="magenta", weight=3]; 2225 -> 2337[label="",style="dashed", color="magenta", weight=3]; 2226 -> 1456[label="",style="dashed", color="red", weight=0]; 2226[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2226 -> 2338[label="",style="dashed", color="magenta", weight=3]; 2226 -> 2339[label="",style="dashed", color="magenta", weight=3]; 2227 -> 1457[label="",style="dashed", color="red", weight=0]; 2227[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2227 -> 2340[label="",style="dashed", color="magenta", weight=3]; 2227 -> 2341[label="",style="dashed", color="magenta", weight=3]; 2228 -> 1458[label="",style="dashed", color="red", weight=0]; 2228[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2228 -> 2342[label="",style="dashed", color="magenta", weight=3]; 2228 -> 2343[label="",style="dashed", color="magenta", weight=3]; 2229 -> 1459[label="",style="dashed", color="red", weight=0]; 2229[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2229 -> 2344[label="",style="dashed", color="magenta", weight=3]; 2229 -> 2345[label="",style="dashed", color="magenta", weight=3]; 2230 -> 1460[label="",style="dashed", color="red", weight=0]; 2230[label="xwv4411 < xwv4611",fontsize=16,color="magenta"];2230 -> 2346[label="",style="dashed", color="magenta", weight=3]; 2230 -> 2347[label="",style="dashed", color="magenta", weight=3]; 2231[label="xwv4412 <= xwv4612",fontsize=16,color="blue",shape="box"];4312[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4312[label="",style="solid", color="blue", weight=9]; 4312 -> 2348[label="",style="solid", color="blue", weight=3]; 4313[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4313[label="",style="solid", color="blue", weight=9]; 4313 -> 2349[label="",style="solid", color="blue", weight=3]; 4314[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4314[label="",style="solid", color="blue", weight=9]; 4314 -> 2350[label="",style="solid", color="blue", weight=3]; 4315[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4315[label="",style="solid", color="blue", weight=9]; 4315 -> 2351[label="",style="solid", color="blue", weight=3]; 4316[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4316[label="",style="solid", color="blue", weight=9]; 4316 -> 2352[label="",style="solid", color="blue", weight=3]; 4317[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4317[label="",style="solid", color="blue", weight=9]; 4317 -> 2353[label="",style="solid", color="blue", weight=3]; 4318[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4318[label="",style="solid", color="blue", weight=9]; 4318 -> 2354[label="",style="solid", color="blue", weight=3]; 4319[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4319[label="",style="solid", color="blue", weight=9]; 4319 -> 2355[label="",style="solid", color="blue", weight=3]; 4320[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4320[label="",style="solid", color="blue", weight=9]; 4320 -> 2356[label="",style="solid", color="blue", weight=3]; 4321[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4321[label="",style="solid", color="blue", weight=9]; 4321 -> 2357[label="",style="solid", color="blue", weight=3]; 4322[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4322[label="",style="solid", color="blue", weight=9]; 4322 -> 2358[label="",style="solid", color="blue", weight=3]; 4323[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4323[label="",style="solid", color="blue", weight=9]; 4323 -> 2359[label="",style="solid", color="blue", weight=3]; 4324[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4324[label="",style="solid", color="blue", weight=9]; 4324 -> 2360[label="",style="solid", color="blue", weight=3]; 4325[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2231 -> 4325[label="",style="solid", color="blue", weight=9]; 4325 -> 2361[label="",style="solid", color="blue", weight=3]; 2232[label="xwv4411 == xwv4611",fontsize=16,color="blue",shape="box"];4326[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4326[label="",style="solid", color="blue", weight=9]; 4326 -> 2362[label="",style="solid", color="blue", weight=3]; 4327[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4327[label="",style="solid", color="blue", weight=9]; 4327 -> 2363[label="",style="solid", color="blue", weight=3]; 4328[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4328[label="",style="solid", color="blue", weight=9]; 4328 -> 2364[label="",style="solid", color="blue", weight=3]; 4329[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4329[label="",style="solid", color="blue", weight=9]; 4329 -> 2365[label="",style="solid", color="blue", weight=3]; 4330[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4330[label="",style="solid", color="blue", weight=9]; 4330 -> 2366[label="",style="solid", color="blue", weight=3]; 4331[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4331[label="",style="solid", color="blue", weight=9]; 4331 -> 2367[label="",style="solid", color="blue", weight=3]; 4332[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4332[label="",style="solid", color="blue", weight=9]; 4332 -> 2368[label="",style="solid", color="blue", weight=3]; 4333[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4333[label="",style="solid", color="blue", weight=9]; 4333 -> 2369[label="",style="solid", color="blue", weight=3]; 4334[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4334[label="",style="solid", color="blue", weight=9]; 4334 -> 2370[label="",style="solid", color="blue", weight=3]; 4335[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4335[label="",style="solid", color="blue", weight=9]; 4335 -> 2371[label="",style="solid", color="blue", weight=3]; 4336[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4336[label="",style="solid", color="blue", weight=9]; 4336 -> 2372[label="",style="solid", color="blue", weight=3]; 4337[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4337[label="",style="solid", color="blue", weight=9]; 4337 -> 2373[label="",style="solid", color="blue", weight=3]; 4338[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4338[label="",style="solid", color="blue", weight=9]; 4338 -> 2374[label="",style="solid", color="blue", weight=3]; 4339[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2232 -> 4339[label="",style="solid", color="blue", weight=9]; 4339 -> 2375[label="",style="solid", color="blue", weight=3]; 2233[label="xwv4610",fontsize=16,color="green",shape="box"];2234[label="xwv4410",fontsize=16,color="green",shape="box"];2235[label="xwv4610",fontsize=16,color="green",shape="box"];2236[label="xwv4410",fontsize=16,color="green",shape="box"];2237[label="xwv4610",fontsize=16,color="green",shape="box"];2238[label="xwv4410",fontsize=16,color="green",shape="box"];2239[label="xwv4610",fontsize=16,color="green",shape="box"];2240[label="xwv4410",fontsize=16,color="green",shape="box"];2241[label="xwv4610",fontsize=16,color="green",shape="box"];2242[label="xwv4410",fontsize=16,color="green",shape="box"];2243[label="xwv4610",fontsize=16,color="green",shape="box"];2244[label="xwv4410",fontsize=16,color="green",shape="box"];2245[label="xwv4610",fontsize=16,color="green",shape="box"];2246[label="xwv4410",fontsize=16,color="green",shape="box"];2247[label="xwv4610",fontsize=16,color="green",shape="box"];2248[label="xwv4410",fontsize=16,color="green",shape="box"];2249[label="xwv4610",fontsize=16,color="green",shape="box"];2250[label="xwv4410",fontsize=16,color="green",shape="box"];2251[label="xwv4610",fontsize=16,color="green",shape="box"];2252[label="xwv4410",fontsize=16,color="green",shape="box"];2253[label="xwv4610",fontsize=16,color="green",shape="box"];2254[label="xwv4410",fontsize=16,color="green",shape="box"];2255[label="xwv4610",fontsize=16,color="green",shape="box"];2256[label="xwv4410",fontsize=16,color="green",shape="box"];2257[label="xwv4610",fontsize=16,color="green",shape="box"];2258[label="xwv4410",fontsize=16,color="green",shape="box"];2259[label="xwv4610",fontsize=16,color="green",shape="box"];2260[label="xwv4410",fontsize=16,color="green",shape="box"];2265[label="xwv4400",fontsize=16,color="green",shape="box"];2266[label="xwv4601",fontsize=16,color="green",shape="box"];2267[label="xwv4600",fontsize=16,color="green",shape="box"];2268[label="xwv4401",fontsize=16,color="green",shape="box"];2269[label="Integer xwv44000 * xwv4601",fontsize=16,color="burlywood",shape="box"];4340[label="xwv4601/Integer xwv46010",fontsize=10,color="white",style="solid",shape="box"];2269 -> 4340[label="",style="solid", color="burlywood", weight=9]; 4340 -> 2380[label="",style="solid", color="burlywood", weight=3]; 2270[label="xwv4401",fontsize=16,color="green",shape="box"];2271[label="xwv4600",fontsize=16,color="green",shape="box"];2273 -> 1483[label="",style="dashed", color="red", weight=0]; 2273[label="xwv440 <= xwv460",fontsize=16,color="magenta"];2273 -> 2381[label="",style="dashed", color="magenta", weight=3]; 2273 -> 2382[label="",style="dashed", color="magenta", weight=3]; 2272[label="compare1 xwv440 xwv460 xwv138",fontsize=16,color="burlywood",shape="triangle"];4341[label="xwv138/False",fontsize=10,color="white",style="solid",shape="box"];2272 -> 4341[label="",style="solid", color="burlywood", weight=9]; 4341 -> 2383[label="",style="solid", color="burlywood", weight=3]; 4342[label="xwv138/True",fontsize=10,color="white",style="solid",shape="box"];2272 -> 4342[label="",style="solid", color="burlywood", weight=9]; 4342 -> 2384[label="",style="solid", color="burlywood", weight=3]; 2275 -> 1484[label="",style="dashed", color="red", weight=0]; 2275[label="xwv440 <= xwv460",fontsize=16,color="magenta"];2275 -> 2385[label="",style="dashed", color="magenta", weight=3]; 2275 -> 2386[label="",style="dashed", color="magenta", weight=3]; 2274[label="compare1 xwv440 xwv460 xwv139",fontsize=16,color="burlywood",shape="triangle"];4343[label="xwv139/False",fontsize=10,color="white",style="solid",shape="box"];2274 -> 4343[label="",style="solid", color="burlywood", weight=9]; 4343 -> 2387[label="",style="solid", color="burlywood", weight=3]; 4344[label="xwv139/True",fontsize=10,color="white",style="solid",shape="box"];2274 -> 4344[label="",style="solid", color="burlywood", weight=9]; 4344 -> 2388[label="",style="solid", color="burlywood", weight=3]; 2276 -> 1038[label="",style="dashed", color="red", weight=0]; 2276[label="compare (xwv4400 * Pos xwv46010) (Pos xwv44010 * xwv4600)",fontsize=16,color="magenta"];2276 -> 2389[label="",style="dashed", color="magenta", weight=3]; 2276 -> 2390[label="",style="dashed", color="magenta", weight=3]; 2277 -> 1038[label="",style="dashed", color="red", weight=0]; 2277[label="compare (xwv4400 * Pos xwv46010) (Neg xwv44010 * xwv4600)",fontsize=16,color="magenta"];2277 -> 2391[label="",style="dashed", color="magenta", weight=3]; 2277 -> 2392[label="",style="dashed", color="magenta", weight=3]; 2278 -> 1038[label="",style="dashed", color="red", weight=0]; 2278[label="compare (xwv4400 * Neg xwv46010) (Pos xwv44010 * xwv4600)",fontsize=16,color="magenta"];2278 -> 2393[label="",style="dashed", color="magenta", weight=3]; 2278 -> 2394[label="",style="dashed", color="magenta", weight=3]; 2279 -> 1038[label="",style="dashed", color="red", weight=0]; 2279[label="compare (xwv4400 * Neg xwv46010) (Neg xwv44010 * xwv4600)",fontsize=16,color="magenta"];2279 -> 2395[label="",style="dashed", color="magenta", weight=3]; 2279 -> 2396[label="",style="dashed", color="magenta", weight=3]; 2281 -> 1487[label="",style="dashed", color="red", weight=0]; 2281[label="xwv440 <= xwv460",fontsize=16,color="magenta"];2281 -> 2397[label="",style="dashed", color="magenta", weight=3]; 2281 -> 2398[label="",style="dashed", color="magenta", weight=3]; 2280[label="compare1 xwv440 xwv460 xwv140",fontsize=16,color="burlywood",shape="triangle"];4345[label="xwv140/False",fontsize=10,color="white",style="solid",shape="box"];2280 -> 4345[label="",style="solid", color="burlywood", weight=9]; 4345 -> 2399[label="",style="solid", color="burlywood", weight=3]; 4346[label="xwv140/True",fontsize=10,color="white",style="solid",shape="box"];2280 -> 4346[label="",style="solid", color="burlywood", weight=9]; 4346 -> 2400[label="",style="solid", color="burlywood", weight=3]; 2283 -> 1488[label="",style="dashed", color="red", weight=0]; 2283[label="xwv440 <= xwv460",fontsize=16,color="magenta"];2283 -> 2401[label="",style="dashed", color="magenta", weight=3]; 2283 -> 2402[label="",style="dashed", color="magenta", weight=3]; 2282[label="compare1 xwv440 xwv460 xwv141",fontsize=16,color="burlywood",shape="triangle"];4347[label="xwv141/False",fontsize=10,color="white",style="solid",shape="box"];2282 -> 4347[label="",style="solid", color="burlywood", weight=9]; 4347 -> 2403[label="",style="solid", color="burlywood", weight=3]; 4348[label="xwv141/True",fontsize=10,color="white",style="solid",shape="box"];2282 -> 4348[label="",style="solid", color="burlywood", weight=9]; 4348 -> 2404[label="",style="solid", color="burlywood", weight=3]; 2284 -> 1038[label="",style="dashed", color="red", weight=0]; 2284[label="compare (xwv4400 * Pos xwv46010) (Pos xwv44010 * xwv4600)",fontsize=16,color="magenta"];2284 -> 2405[label="",style="dashed", color="magenta", weight=3]; 2284 -> 2406[label="",style="dashed", color="magenta", weight=3]; 2285 -> 1038[label="",style="dashed", color="red", weight=0]; 2285[label="compare (xwv4400 * Pos xwv46010) (Neg xwv44010 * xwv4600)",fontsize=16,color="magenta"];2285 -> 2407[label="",style="dashed", color="magenta", weight=3]; 2285 -> 2408[label="",style="dashed", color="magenta", weight=3]; 2286 -> 1038[label="",style="dashed", color="red", weight=0]; 2286[label="compare (xwv4400 * Neg xwv46010) (Pos xwv44010 * xwv4600)",fontsize=16,color="magenta"];2286 -> 2409[label="",style="dashed", color="magenta", weight=3]; 2286 -> 2410[label="",style="dashed", color="magenta", weight=3]; 2287 -> 1038[label="",style="dashed", color="red", weight=0]; 2287[label="compare (xwv4400 * Neg xwv46010) (Neg xwv44010 * xwv4600)",fontsize=16,color="magenta"];2287 -> 2411[label="",style="dashed", color="magenta", weight=3]; 2287 -> 2412[label="",style="dashed", color="magenta", weight=3]; 2289 -> 1492[label="",style="dashed", color="red", weight=0]; 2289[label="xwv440 <= xwv460",fontsize=16,color="magenta"];2289 -> 2413[label="",style="dashed", color="magenta", weight=3]; 2289 -> 2414[label="",style="dashed", color="magenta", weight=3]; 2288[label="compare1 xwv440 xwv460 xwv142",fontsize=16,color="burlywood",shape="triangle"];4349[label="xwv142/False",fontsize=10,color="white",style="solid",shape="box"];2288 -> 4349[label="",style="solid", color="burlywood", weight=9]; 4349 -> 2415[label="",style="solid", color="burlywood", weight=3]; 4350[label="xwv142/True",fontsize=10,color="white",style="solid",shape="box"];2288 -> 4350[label="",style="solid", color="burlywood", weight=9]; 4350 -> 2416[label="",style="solid", color="burlywood", weight=3]; 2291[label="xwv136",fontsize=16,color="green",shape="box"];2292[label="compare xwv4400 xwv4600",fontsize=16,color="blue",shape="box"];4351[label="compare :: Char -> Char -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4351[label="",style="solid", color="blue", weight=9]; 4351 -> 2417[label="",style="solid", color="blue", weight=3]; 4352[label="compare :: ((@2) a b) -> ((@2) a b) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4352[label="",style="solid", color="blue", weight=9]; 4352 -> 2418[label="",style="solid", color="blue", weight=3]; 4353[label="compare :: (Ratio a) -> (Ratio a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4353[label="",style="solid", color="blue", weight=9]; 4353 -> 2419[label="",style="solid", color="blue", weight=3]; 4354[label="compare :: Bool -> Bool -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4354[label="",style="solid", color="blue", weight=9]; 4354 -> 2420[label="",style="solid", color="blue", weight=3]; 4355[label="compare :: (Either a b) -> (Either a b) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4355[label="",style="solid", color="blue", weight=9]; 4355 -> 2421[label="",style="solid", color="blue", weight=3]; 4356[label="compare :: Float -> Float -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4356[label="",style="solid", color="blue", weight=9]; 4356 -> 2422[label="",style="solid", color="blue", weight=3]; 4357[label="compare :: Int -> Int -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4357[label="",style="solid", color="blue", weight=9]; 4357 -> 2423[label="",style="solid", color="blue", weight=3]; 4358[label="compare :: (Maybe a) -> (Maybe a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4358[label="",style="solid", color="blue", weight=9]; 4358 -> 2424[label="",style="solid", color="blue", weight=3]; 4359[label="compare :: ((@3) a b c) -> ((@3) a b c) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4359[label="",style="solid", color="blue", weight=9]; 4359 -> 2425[label="",style="solid", color="blue", weight=3]; 4360[label="compare :: Integer -> Integer -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4360[label="",style="solid", color="blue", weight=9]; 4360 -> 2426[label="",style="solid", color="blue", weight=3]; 4361[label="compare :: () -> () -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4361[label="",style="solid", color="blue", weight=9]; 4361 -> 2427[label="",style="solid", color="blue", weight=3]; 4362[label="compare :: Double -> Double -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4362[label="",style="solid", color="blue", weight=9]; 4362 -> 2428[label="",style="solid", color="blue", weight=3]; 4363[label="compare :: Ordering -> Ordering -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4363[label="",style="solid", color="blue", weight=9]; 4363 -> 2429[label="",style="solid", color="blue", weight=3]; 4364[label="compare :: ([] a) -> ([] a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];2292 -> 4364[label="",style="solid", color="blue", weight=9]; 4364 -> 2430[label="",style="solid", color="blue", weight=3]; 2290[label="primCompAux0 xwv146 xwv147",fontsize=16,color="burlywood",shape="triangle"];4365[label="xwv147/LT",fontsize=10,color="white",style="solid",shape="box"];2290 -> 4365[label="",style="solid", color="burlywood", weight=9]; 4365 -> 2431[label="",style="solid", color="burlywood", weight=3]; 4366[label="xwv147/EQ",fontsize=10,color="white",style="solid",shape="box"];2290 -> 4366[label="",style="solid", color="burlywood", weight=9]; 4366 -> 2432[label="",style="solid", color="burlywood", weight=3]; 4367[label="xwv147/GT",fontsize=10,color="white",style="solid",shape="box"];2290 -> 4367[label="",style="solid", color="burlywood", weight=9]; 4367 -> 2433[label="",style="solid", color="burlywood", weight=3]; 2828 -> 3366[label="",style="dashed", color="red", weight=0]; 2828[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.findMax (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194))",fontsize=16,color="magenta"];2828 -> 3367[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3368[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3369[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3370[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3371[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3372[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3373[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3374[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3375[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3376[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3377[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3378[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3379[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3380[label="",style="dashed", color="magenta", weight=3]; 2828 -> 3381[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3471[label="",style="dashed", color="red", weight=0]; 2829[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch xwv200 xwv201 xwv202 xwv203 xwv204) (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194) (FiniteMap.findMax (FiniteMap.Branch xwv190 xwv191 xwv192 xwv193 xwv194))",fontsize=16,color="magenta"];2829 -> 3472[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3473[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3474[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3475[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3476[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3477[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3478[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3479[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3480[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3481[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3482[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3483[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3484[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3485[label="",style="dashed", color="magenta", weight=3]; 2829 -> 3486[label="",style="dashed", color="magenta", weight=3]; 2830[label="xwv193",fontsize=16,color="green",shape="box"];2831 -> 2788[label="",style="dashed", color="red", weight=0]; 2831[label="FiniteMap.mkBalBranch xwv190 xwv191 xwv193 (FiniteMap.deleteMax (FiniteMap.Branch xwv1940 xwv1941 xwv1942 xwv1943 xwv1944))",fontsize=16,color="magenta"];2831 -> 2847[label="",style="dashed", color="magenta", weight=3]; 2831 -> 2848[label="",style="dashed", color="magenta", weight=3]; 2831 -> 2849[label="",style="dashed", color="magenta", weight=3]; 2831 -> 2850[label="",style="dashed", color="magenta", weight=3]; 3175[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch xwv262 xwv263 xwv264 xwv265 xwv266) (FiniteMap.Branch xwv267 xwv268 xwv269 xwv270 xwv271) (FiniteMap.findMin (FiniteMap.Branch xwv272 xwv273 xwv274 FiniteMap.EmptyFM xwv276))",fontsize=16,color="black",shape="box"];3175 -> 3280[label="",style="solid", color="black", weight=3]; 3176[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch xwv262 xwv263 xwv264 xwv265 xwv266) (FiniteMap.Branch xwv267 xwv268 xwv269 xwv270 xwv271) (FiniteMap.findMin (FiniteMap.Branch xwv272 xwv273 xwv274 (FiniteMap.Branch xwv2750 xwv2751 xwv2752 xwv2753 xwv2754) xwv276))",fontsize=16,color="black",shape="box"];3176 -> 3281[label="",style="solid", color="black", weight=3]; 2856[label="xwv2030",fontsize=16,color="green",shape="box"];2857[label="xwv2034",fontsize=16,color="green",shape="box"];2858[label="xwv2031",fontsize=16,color="green",shape="box"];2859[label="xwv2032",fontsize=16,color="green",shape="box"];2860[label="xwv2033",fontsize=16,color="green",shape="box"];3278[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch xwv278 xwv279 xwv280 xwv281 xwv282) (FiniteMap.Branch xwv283 xwv284 xwv285 xwv286 xwv287) (FiniteMap.findMin (FiniteMap.Branch xwv288 xwv289 xwv290 FiniteMap.EmptyFM xwv292))",fontsize=16,color="black",shape="box"];3278 -> 3295[label="",style="solid", color="black", weight=3]; 3279[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch xwv278 xwv279 xwv280 xwv281 xwv282) (FiniteMap.Branch xwv283 xwv284 xwv285 xwv286 xwv287) (FiniteMap.findMin (FiniteMap.Branch xwv288 xwv289 xwv290 (FiniteMap.Branch xwv2910 xwv2911 xwv2912 xwv2913 xwv2914) xwv292))",fontsize=16,color="black",shape="box"];3279 -> 3296[label="",style="solid", color="black", weight=3]; 2628 -> 1718[label="",style="dashed", color="red", weight=0]; 2628[label="primPlusNat xwv19200 xwv9700",fontsize=16,color="magenta"];2628 -> 2700[label="",style="dashed", color="magenta", weight=3]; 2628 -> 2701[label="",style="dashed", color="magenta", weight=3]; 2376 -> 1983[label="",style="dashed", color="red", weight=0]; 2376[label="primCmpNat xwv44000 xwv46000",fontsize=16,color="magenta"];2376 -> 2516[label="",style="dashed", color="magenta", weight=3]; 2376 -> 2517[label="",style="dashed", color="magenta", weight=3]; 2377[label="GT",fontsize=16,color="green",shape="box"];2378[label="LT",fontsize=16,color="green",shape="box"];2379[label="EQ",fontsize=16,color="green",shape="box"];3078[label="xwv2404",fontsize=16,color="green",shape="box"];3079[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];3080 -> 1206[label="",style="dashed", color="red", weight=0]; 3080[label="FiniteMap.sizeFM xwv2403",fontsize=16,color="magenta"];3080 -> 3183[label="",style="dashed", color="magenta", weight=3]; 3081[label="FiniteMap.mkBalBranch6MkBalBranch10 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 xwv2400 xwv2401 xwv2402 xwv2403 xwv2404 otherwise",fontsize=16,color="black",shape="box"];3081 -> 3184[label="",style="solid", color="black", weight=3]; 3082[label="FiniteMap.mkBalBranch6Single_R xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204",fontsize=16,color="black",shape="box"];3082 -> 3185[label="",style="solid", color="black", weight=3]; 3177[label="FiniteMap.mkBalBranch6Double_L xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 FiniteMap.EmptyFM xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 FiniteMap.EmptyFM xwv2044)",fontsize=16,color="black",shape="box"];3177 -> 3282[label="",style="solid", color="black", weight=3]; 3178[label="FiniteMap.mkBalBranch6Double_L xwv200 xwv201 xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 (FiniteMap.Branch xwv20430 xwv20431 xwv20432 xwv20433 xwv20434) xwv2044) xwv240 (FiniteMap.Branch xwv2040 xwv2041 xwv2042 (FiniteMap.Branch xwv20430 xwv20431 xwv20432 xwv20433 xwv20434) xwv2044)",fontsize=16,color="black",shape="box"];3178 -> 3283[label="",style="solid", color="black", weight=3]; 3625[label="xwv201",fontsize=16,color="green",shape="box"];3626[label="xwv2043",fontsize=16,color="green",shape="box"];3627[label="Succ (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];3628[label="xwv200",fontsize=16,color="green",shape="box"];3629[label="xwv240",fontsize=16,color="green",shape="box"];3693[label="Pos Zero",fontsize=16,color="green",shape="box"];3694[label="xwv3602",fontsize=16,color="green",shape="box"];2320[label="xwv4411",fontsize=16,color="green",shape="box"];2321[label="xwv4611",fontsize=16,color="green",shape="box"];2322[label="xwv4411",fontsize=16,color="green",shape="box"];2323[label="xwv4611",fontsize=16,color="green",shape="box"];2324[label="xwv4411",fontsize=16,color="green",shape="box"];2325[label="xwv4611",fontsize=16,color="green",shape="box"];2326[label="xwv4411",fontsize=16,color="green",shape="box"];2327[label="xwv4611",fontsize=16,color="green",shape="box"];2328[label="xwv4411",fontsize=16,color="green",shape="box"];2329[label="xwv4611",fontsize=16,color="green",shape="box"];2330[label="xwv4411",fontsize=16,color="green",shape="box"];2331[label="xwv4611",fontsize=16,color="green",shape="box"];2332[label="xwv4411",fontsize=16,color="green",shape="box"];2333[label="xwv4611",fontsize=16,color="green",shape="box"];2334[label="xwv4411",fontsize=16,color="green",shape="box"];2335[label="xwv4611",fontsize=16,color="green",shape="box"];2336[label="xwv4411",fontsize=16,color="green",shape="box"];2337[label="xwv4611",fontsize=16,color="green",shape="box"];2338[label="xwv4411",fontsize=16,color="green",shape="box"];2339[label="xwv4611",fontsize=16,color="green",shape="box"];2340[label="xwv4411",fontsize=16,color="green",shape="box"];2341[label="xwv4611",fontsize=16,color="green",shape="box"];2342[label="xwv4411",fontsize=16,color="green",shape="box"];2343[label="xwv4611",fontsize=16,color="green",shape="box"];2344[label="xwv4411",fontsize=16,color="green",shape="box"];2345[label="xwv4611",fontsize=16,color="green",shape="box"];2346[label="xwv4411",fontsize=16,color="green",shape="box"];2347[label="xwv4611",fontsize=16,color="green",shape="box"];2348 -> 1480[label="",style="dashed", color="red", weight=0]; 2348[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2348 -> 2460[label="",style="dashed", color="magenta", weight=3]; 2348 -> 2461[label="",style="dashed", color="magenta", weight=3]; 2349 -> 1481[label="",style="dashed", color="red", weight=0]; 2349[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2349 -> 2462[label="",style="dashed", color="magenta", weight=3]; 2349 -> 2463[label="",style="dashed", color="magenta", weight=3]; 2350 -> 1482[label="",style="dashed", color="red", weight=0]; 2350[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2350 -> 2464[label="",style="dashed", color="magenta", weight=3]; 2350 -> 2465[label="",style="dashed", color="magenta", weight=3]; 2351 -> 1483[label="",style="dashed", color="red", weight=0]; 2351[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2351 -> 2466[label="",style="dashed", color="magenta", weight=3]; 2351 -> 2467[label="",style="dashed", color="magenta", weight=3]; 2352 -> 1484[label="",style="dashed", color="red", weight=0]; 2352[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2352 -> 2468[label="",style="dashed", color="magenta", weight=3]; 2352 -> 2469[label="",style="dashed", color="magenta", weight=3]; 2353 -> 1485[label="",style="dashed", color="red", weight=0]; 2353[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2353 -> 2470[label="",style="dashed", color="magenta", weight=3]; 2353 -> 2471[label="",style="dashed", color="magenta", weight=3]; 2354 -> 1486[label="",style="dashed", color="red", weight=0]; 2354[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2354 -> 2472[label="",style="dashed", color="magenta", weight=3]; 2354 -> 2473[label="",style="dashed", color="magenta", weight=3]; 2355 -> 1487[label="",style="dashed", color="red", weight=0]; 2355[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2355 -> 2474[label="",style="dashed", color="magenta", weight=3]; 2355 -> 2475[label="",style="dashed", color="magenta", weight=3]; 2356 -> 1488[label="",style="dashed", color="red", weight=0]; 2356[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2356 -> 2476[label="",style="dashed", color="magenta", weight=3]; 2356 -> 2477[label="",style="dashed", color="magenta", weight=3]; 2357 -> 1489[label="",style="dashed", color="red", weight=0]; 2357[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2357 -> 2478[label="",style="dashed", color="magenta", weight=3]; 2357 -> 2479[label="",style="dashed", color="magenta", weight=3]; 2358 -> 1490[label="",style="dashed", color="red", weight=0]; 2358[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2358 -> 2480[label="",style="dashed", color="magenta", weight=3]; 2358 -> 2481[label="",style="dashed", color="magenta", weight=3]; 2359 -> 1491[label="",style="dashed", color="red", weight=0]; 2359[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2359 -> 2482[label="",style="dashed", color="magenta", weight=3]; 2359 -> 2483[label="",style="dashed", color="magenta", weight=3]; 2360 -> 1492[label="",style="dashed", color="red", weight=0]; 2360[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2360 -> 2484[label="",style="dashed", color="magenta", weight=3]; 2360 -> 2485[label="",style="dashed", color="magenta", weight=3]; 2361 -> 1493[label="",style="dashed", color="red", weight=0]; 2361[label="xwv4412 <= xwv4612",fontsize=16,color="magenta"];2361 -> 2486[label="",style="dashed", color="magenta", weight=3]; 2361 -> 2487[label="",style="dashed", color="magenta", weight=3]; 2362 -> 132[label="",style="dashed", color="red", weight=0]; 2362[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2362 -> 2488[label="",style="dashed", color="magenta", weight=3]; 2362 -> 2489[label="",style="dashed", color="magenta", weight=3]; 2363 -> 134[label="",style="dashed", color="red", weight=0]; 2363[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2363 -> 2490[label="",style="dashed", color="magenta", weight=3]; 2363 -> 2491[label="",style="dashed", color="magenta", weight=3]; 2364 -> 130[label="",style="dashed", color="red", weight=0]; 2364[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2364 -> 2492[label="",style="dashed", color="magenta", weight=3]; 2364 -> 2493[label="",style="dashed", color="magenta", weight=3]; 2365 -> 140[label="",style="dashed", color="red", weight=0]; 2365[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2365 -> 2494[label="",style="dashed", color="magenta", weight=3]; 2365 -> 2495[label="",style="dashed", color="magenta", weight=3]; 2366 -> 133[label="",style="dashed", color="red", weight=0]; 2366[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2366 -> 2496[label="",style="dashed", color="magenta", weight=3]; 2366 -> 2497[label="",style="dashed", color="magenta", weight=3]; 2367 -> 129[label="",style="dashed", color="red", weight=0]; 2367[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2367 -> 2498[label="",style="dashed", color="magenta", weight=3]; 2367 -> 2499[label="",style="dashed", color="magenta", weight=3]; 2368 -> 138[label="",style="dashed", color="red", weight=0]; 2368[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2368 -> 2500[label="",style="dashed", color="magenta", weight=3]; 2368 -> 2501[label="",style="dashed", color="magenta", weight=3]; 2369 -> 136[label="",style="dashed", color="red", weight=0]; 2369[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2369 -> 2502[label="",style="dashed", color="magenta", weight=3]; 2369 -> 2503[label="",style="dashed", color="magenta", weight=3]; 2370 -> 142[label="",style="dashed", color="red", weight=0]; 2370[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2370 -> 2504[label="",style="dashed", color="magenta", weight=3]; 2370 -> 2505[label="",style="dashed", color="magenta", weight=3]; 2371 -> 131[label="",style="dashed", color="red", weight=0]; 2371[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2371 -> 2506[label="",style="dashed", color="magenta", weight=3]; 2371 -> 2507[label="",style="dashed", color="magenta", weight=3]; 2372 -> 141[label="",style="dashed", color="red", weight=0]; 2372[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2372 -> 2508[label="",style="dashed", color="magenta", weight=3]; 2372 -> 2509[label="",style="dashed", color="magenta", weight=3]; 2373 -> 137[label="",style="dashed", color="red", weight=0]; 2373[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2373 -> 2510[label="",style="dashed", color="magenta", weight=3]; 2373 -> 2511[label="",style="dashed", color="magenta", weight=3]; 2374 -> 135[label="",style="dashed", color="red", weight=0]; 2374[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2374 -> 2512[label="",style="dashed", color="magenta", weight=3]; 2374 -> 2513[label="",style="dashed", color="magenta", weight=3]; 2375 -> 139[label="",style="dashed", color="red", weight=0]; 2375[label="xwv4411 == xwv4611",fontsize=16,color="magenta"];2375 -> 2514[label="",style="dashed", color="magenta", weight=3]; 2375 -> 2515[label="",style="dashed", color="magenta", weight=3]; 2380[label="Integer xwv44000 * Integer xwv46010",fontsize=16,color="black",shape="box"];2380 -> 2518[label="",style="solid", color="black", weight=3]; 2381[label="xwv460",fontsize=16,color="green",shape="box"];2382[label="xwv440",fontsize=16,color="green",shape="box"];2383[label="compare1 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2383 -> 2519[label="",style="solid", color="black", weight=3]; 2384[label="compare1 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2384 -> 2520[label="",style="solid", color="black", weight=3]; 2385[label="xwv460",fontsize=16,color="green",shape="box"];2386[label="xwv440",fontsize=16,color="green",shape="box"];2387[label="compare1 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2387 -> 2521[label="",style="solid", color="black", weight=3]; 2388[label="compare1 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2388 -> 2522[label="",style="solid", color="black", weight=3]; 2389 -> 372[label="",style="dashed", color="red", weight=0]; 2389[label="xwv4400 * Pos xwv46010",fontsize=16,color="magenta"];2389 -> 2523[label="",style="dashed", color="magenta", weight=3]; 2389 -> 2524[label="",style="dashed", color="magenta", weight=3]; 2390 -> 372[label="",style="dashed", color="red", weight=0]; 2390[label="Pos xwv44010 * xwv4600",fontsize=16,color="magenta"];2390 -> 2525[label="",style="dashed", color="magenta", weight=3]; 2390 -> 2526[label="",style="dashed", color="magenta", weight=3]; 2391 -> 372[label="",style="dashed", color="red", weight=0]; 2391[label="xwv4400 * Pos xwv46010",fontsize=16,color="magenta"];2391 -> 2527[label="",style="dashed", color="magenta", weight=3]; 2391 -> 2528[label="",style="dashed", color="magenta", weight=3]; 2392 -> 372[label="",style="dashed", color="red", weight=0]; 2392[label="Neg xwv44010 * xwv4600",fontsize=16,color="magenta"];2392 -> 2529[label="",style="dashed", color="magenta", weight=3]; 2392 -> 2530[label="",style="dashed", color="magenta", weight=3]; 2393 -> 372[label="",style="dashed", color="red", weight=0]; 2393[label="xwv4400 * Neg xwv46010",fontsize=16,color="magenta"];2393 -> 2531[label="",style="dashed", color="magenta", weight=3]; 2393 -> 2532[label="",style="dashed", color="magenta", weight=3]; 2394 -> 372[label="",style="dashed", color="red", weight=0]; 2394[label="Pos xwv44010 * xwv4600",fontsize=16,color="magenta"];2394 -> 2533[label="",style="dashed", color="magenta", weight=3]; 2394 -> 2534[label="",style="dashed", color="magenta", weight=3]; 2395 -> 372[label="",style="dashed", color="red", weight=0]; 2395[label="xwv4400 * Neg xwv46010",fontsize=16,color="magenta"];2395 -> 2535[label="",style="dashed", color="magenta", weight=3]; 2395 -> 2536[label="",style="dashed", color="magenta", weight=3]; 2396 -> 372[label="",style="dashed", color="red", weight=0]; 2396[label="Neg xwv44010 * xwv4600",fontsize=16,color="magenta"];2396 -> 2537[label="",style="dashed", color="magenta", weight=3]; 2396 -> 2538[label="",style="dashed", color="magenta", weight=3]; 2397[label="xwv460",fontsize=16,color="green",shape="box"];2398[label="xwv440",fontsize=16,color="green",shape="box"];2399[label="compare1 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2399 -> 2539[label="",style="solid", color="black", weight=3]; 2400[label="compare1 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2400 -> 2540[label="",style="solid", color="black", weight=3]; 2401[label="xwv460",fontsize=16,color="green",shape="box"];2402[label="xwv440",fontsize=16,color="green",shape="box"];2403[label="compare1 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2403 -> 2541[label="",style="solid", color="black", weight=3]; 2404[label="compare1 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2404 -> 2542[label="",style="solid", color="black", weight=3]; 2405 -> 372[label="",style="dashed", color="red", weight=0]; 2405[label="xwv4400 * Pos xwv46010",fontsize=16,color="magenta"];2405 -> 2543[label="",style="dashed", color="magenta", weight=3]; 2405 -> 2544[label="",style="dashed", color="magenta", weight=3]; 2406 -> 372[label="",style="dashed", color="red", weight=0]; 2406[label="Pos xwv44010 * xwv4600",fontsize=16,color="magenta"];2406 -> 2545[label="",style="dashed", color="magenta", weight=3]; 2406 -> 2546[label="",style="dashed", color="magenta", weight=3]; 2407 -> 372[label="",style="dashed", color="red", weight=0]; 2407[label="xwv4400 * Pos xwv46010",fontsize=16,color="magenta"];2407 -> 2547[label="",style="dashed", color="magenta", weight=3]; 2407 -> 2548[label="",style="dashed", color="magenta", weight=3]; 2408 -> 372[label="",style="dashed", color="red", weight=0]; 2408[label="Neg xwv44010 * xwv4600",fontsize=16,color="magenta"];2408 -> 2549[label="",style="dashed", color="magenta", weight=3]; 2408 -> 2550[label="",style="dashed", color="magenta", weight=3]; 2409 -> 372[label="",style="dashed", color="red", weight=0]; 2409[label="xwv4400 * Neg xwv46010",fontsize=16,color="magenta"];2409 -> 2551[label="",style="dashed", color="magenta", weight=3]; 2409 -> 2552[label="",style="dashed", color="magenta", weight=3]; 2410 -> 372[label="",style="dashed", color="red", weight=0]; 2410[label="Pos xwv44010 * xwv4600",fontsize=16,color="magenta"];2410 -> 2553[label="",style="dashed", color="magenta", weight=3]; 2410 -> 2554[label="",style="dashed", color="magenta", weight=3]; 2411 -> 372[label="",style="dashed", color="red", weight=0]; 2411[label="xwv4400 * Neg xwv46010",fontsize=16,color="magenta"];2411 -> 2555[label="",style="dashed", color="magenta", weight=3]; 2411 -> 2556[label="",style="dashed", color="magenta", weight=3]; 2412 -> 372[label="",style="dashed", color="red", weight=0]; 2412[label="Neg xwv44010 * xwv4600",fontsize=16,color="magenta"];2412 -> 2557[label="",style="dashed", color="magenta", weight=3]; 2412 -> 2558[label="",style="dashed", color="magenta", weight=3]; 2413[label="xwv460",fontsize=16,color="green",shape="box"];2414[label="xwv440",fontsize=16,color="green",shape="box"];2415[label="compare1 xwv440 xwv460 False",fontsize=16,color="black",shape="box"];2415 -> 2559[label="",style="solid", color="black", weight=3]; 2416[label="compare1 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2416 -> 2560[label="",style="solid", color="black", weight=3]; 2417 -> 1586[label="",style="dashed", color="red", weight=0]; 2417[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2417 -> 2561[label="",style="dashed", color="magenta", weight=3]; 2417 -> 2562[label="",style="dashed", color="magenta", weight=3]; 2418 -> 1588[label="",style="dashed", color="red", weight=0]; 2418[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2418 -> 2563[label="",style="dashed", color="magenta", weight=3]; 2418 -> 2564[label="",style="dashed", color="magenta", weight=3]; 2419 -> 1590[label="",style="dashed", color="red", weight=0]; 2419[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2419 -> 2565[label="",style="dashed", color="magenta", weight=3]; 2419 -> 2566[label="",style="dashed", color="magenta", weight=3]; 2420 -> 1592[label="",style="dashed", color="red", weight=0]; 2420[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2420 -> 2567[label="",style="dashed", color="magenta", weight=3]; 2420 -> 2568[label="",style="dashed", color="magenta", weight=3]; 2421 -> 1594[label="",style="dashed", color="red", weight=0]; 2421[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2421 -> 2569[label="",style="dashed", color="magenta", weight=3]; 2421 -> 2570[label="",style="dashed", color="magenta", weight=3]; 2422 -> 1596[label="",style="dashed", color="red", weight=0]; 2422[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2422 -> 2571[label="",style="dashed", color="magenta", weight=3]; 2422 -> 2572[label="",style="dashed", color="magenta", weight=3]; 2423 -> 1038[label="",style="dashed", color="red", weight=0]; 2423[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2423 -> 2573[label="",style="dashed", color="magenta", weight=3]; 2423 -> 2574[label="",style="dashed", color="magenta", weight=3]; 2424 -> 1600[label="",style="dashed", color="red", weight=0]; 2424[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2424 -> 2575[label="",style="dashed", color="magenta", weight=3]; 2424 -> 2576[label="",style="dashed", color="magenta", weight=3]; 2425 -> 1602[label="",style="dashed", color="red", weight=0]; 2425[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2425 -> 2577[label="",style="dashed", color="magenta", weight=3]; 2425 -> 2578[label="",style="dashed", color="magenta", weight=3]; 2426 -> 1604[label="",style="dashed", color="red", weight=0]; 2426[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2426 -> 2579[label="",style="dashed", color="magenta", weight=3]; 2426 -> 2580[label="",style="dashed", color="magenta", weight=3]; 2427 -> 1606[label="",style="dashed", color="red", weight=0]; 2427[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2427 -> 2581[label="",style="dashed", color="magenta", weight=3]; 2427 -> 2582[label="",style="dashed", color="magenta", weight=3]; 2428 -> 1608[label="",style="dashed", color="red", weight=0]; 2428[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2428 -> 2583[label="",style="dashed", color="magenta", weight=3]; 2428 -> 2584[label="",style="dashed", color="magenta", weight=3]; 2429 -> 1610[label="",style="dashed", color="red", weight=0]; 2429[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2429 -> 2585[label="",style="dashed", color="magenta", weight=3]; 2429 -> 2586[label="",style="dashed", color="magenta", weight=3]; 2430 -> 1612[label="",style="dashed", color="red", weight=0]; 2430[label="compare xwv4400 xwv4600",fontsize=16,color="magenta"];2430 -> 2587[label="",style="dashed", color="magenta", weight=3]; 2430 -> 2588[label="",style="dashed", color="magenta", weight=3]; 2431[label="primCompAux0 xwv146 LT",fontsize=16,color="black",shape="box"];2431 -> 2589[label="",style="solid", color="black", weight=3]; 2432[label="primCompAux0 xwv146 EQ",fontsize=16,color="black",shape="box"];2432 -> 2590[label="",style="solid", color="black", weight=3]; 2433[label="primCompAux0 xwv146 GT",fontsize=16,color="black",shape="box"];2433 -> 2591[label="",style="solid", color="black", weight=3]; 3367[label="xwv193",fontsize=16,color="green",shape="box"];3368[label="xwv200",fontsize=16,color="green",shape="box"];3369[label="xwv203",fontsize=16,color="green",shape="box"];3370[label="xwv193",fontsize=16,color="green",shape="box"];3371[label="xwv194",fontsize=16,color="green",shape="box"];3372[label="xwv202",fontsize=16,color="green",shape="box"];3373[label="xwv191",fontsize=16,color="green",shape="box"];3374[label="xwv192",fontsize=16,color="green",shape="box"];3375[label="xwv204",fontsize=16,color="green",shape="box"];3376[label="xwv201",fontsize=16,color="green",shape="box"];3377[label="xwv191",fontsize=16,color="green",shape="box"];3378[label="xwv194",fontsize=16,color="green",shape="box"];3379[label="xwv190",fontsize=16,color="green",shape="box"];3380[label="xwv192",fontsize=16,color="green",shape="box"];3381[label="xwv190",fontsize=16,color="green",shape="box"];3366[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch xwv325 xwv326 xwv327 xwv328 xwv329) (FiniteMap.Branch xwv330 xwv331 xwv332 xwv333 xwv334) (FiniteMap.findMax (FiniteMap.Branch xwv335 xwv336 xwv337 xwv338 xwv339))",fontsize=16,color="burlywood",shape="triangle"];4368[label="xwv339/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3366 -> 4368[label="",style="solid", color="burlywood", weight=9]; 4368 -> 3457[label="",style="solid", color="burlywood", weight=3]; 4369[label="xwv339/FiniteMap.Branch xwv3390 xwv3391 xwv3392 xwv3393 xwv3394",fontsize=10,color="white",style="solid",shape="box"];3366 -> 4369[label="",style="solid", color="burlywood", weight=9]; 4369 -> 3458[label="",style="solid", color="burlywood", weight=3]; 3472[label="xwv190",fontsize=16,color="green",shape="box"];3473[label="xwv191",fontsize=16,color="green",shape="box"];3474[label="xwv194",fontsize=16,color="green",shape="box"];3475[label="xwv193",fontsize=16,color="green",shape="box"];3476[label="xwv204",fontsize=16,color="green",shape="box"];3477[label="xwv203",fontsize=16,color="green",shape="box"];3478[label="xwv190",fontsize=16,color="green",shape="box"];3479[label="xwv202",fontsize=16,color="green",shape="box"];3480[label="xwv192",fontsize=16,color="green",shape="box"];3481[label="xwv201",fontsize=16,color="green",shape="box"];3482[label="xwv191",fontsize=16,color="green",shape="box"];3483[label="xwv193",fontsize=16,color="green",shape="box"];3484[label="xwv192",fontsize=16,color="green",shape="box"];3485[label="xwv194",fontsize=16,color="green",shape="box"];3486[label="xwv200",fontsize=16,color="green",shape="box"];3471[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch xwv341 xwv342 xwv343 xwv344 xwv345) (FiniteMap.Branch xwv346 xwv347 xwv348 xwv349 xwv350) (FiniteMap.findMax (FiniteMap.Branch xwv351 xwv352 xwv353 xwv354 xwv355))",fontsize=16,color="burlywood",shape="triangle"];4370[label="xwv355/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3471 -> 4370[label="",style="solid", color="burlywood", weight=9]; 4370 -> 3562[label="",style="solid", color="burlywood", weight=3]; 4371[label="xwv355/FiniteMap.Branch xwv3550 xwv3551 xwv3552 xwv3553 xwv3554",fontsize=10,color="white",style="solid",shape="box"];3471 -> 4371[label="",style="solid", color="burlywood", weight=9]; 4371 -> 3563[label="",style="solid", color="burlywood", weight=3]; 2847[label="xwv190",fontsize=16,color="green",shape="box"];2848 -> 2808[label="",style="dashed", color="red", weight=0]; 2848[label="FiniteMap.deleteMax (FiniteMap.Branch xwv1940 xwv1941 xwv1942 xwv1943 xwv1944)",fontsize=16,color="magenta"];2848 -> 2867[label="",style="dashed", color="magenta", weight=3]; 2848 -> 2868[label="",style="dashed", color="magenta", weight=3]; 2848 -> 2869[label="",style="dashed", color="magenta", weight=3]; 2848 -> 2870[label="",style="dashed", color="magenta", weight=3]; 2848 -> 2871[label="",style="dashed", color="magenta", weight=3]; 2849[label="xwv191",fontsize=16,color="green",shape="box"];2850[label="xwv193",fontsize=16,color="green",shape="box"];3280[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch xwv262 xwv263 xwv264 xwv265 xwv266) (FiniteMap.Branch xwv267 xwv268 xwv269 xwv270 xwv271) (xwv272,xwv273)",fontsize=16,color="black",shape="box"];3280 -> 3297[label="",style="solid", color="black", weight=3]; 3281 -> 3084[label="",style="dashed", color="red", weight=0]; 3281[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch xwv262 xwv263 xwv264 xwv265 xwv266) (FiniteMap.Branch xwv267 xwv268 xwv269 xwv270 xwv271) (FiniteMap.findMin (FiniteMap.Branch xwv2750 xwv2751 xwv2752 xwv2753 xwv2754))",fontsize=16,color="magenta"];3281 -> 3298[label="",style="dashed", color="magenta", weight=3]; 3281 -> 3299[label="",style="dashed", color="magenta", weight=3]; 3281 -> 3300[label="",style="dashed", color="magenta", weight=3]; 3281 -> 3301[label="",style="dashed", color="magenta", weight=3]; 3281 -> 3302[label="",style="dashed", color="magenta", weight=3]; 3295[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch xwv278 xwv279 xwv280 xwv281 xwv282) (FiniteMap.Branch xwv283 xwv284 xwv285 xwv286 xwv287) (xwv288,xwv289)",fontsize=16,color="black",shape="box"];3295 -> 3315[label="",style="solid", color="black", weight=3]; 3296 -> 3187[label="",style="dashed", color="red", weight=0]; 3296[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch xwv278 xwv279 xwv280 xwv281 xwv282) (FiniteMap.Branch xwv283 xwv284 xwv285 xwv286 xwv287) (FiniteMap.findMin (FiniteMap.Branch xwv2910 xwv2911 xwv2912 xwv2913 xwv2914))",fontsize=16,color="magenta"];3296 -> 3316[label="",style="dashed", color="magenta", weight=3]; 3296 -> 3317[label="",style="dashed", color="magenta", weight=3]; 3296 -> 3318[label="",style="dashed", color="magenta", weight=3]; 3296 -> 3319[label="",style="dashed", color="magenta", weight=3]; 3296 -> 3320[label="",style="dashed", color="magenta", weight=3]; 2700[label="xwv19200",fontsize=16,color="green",shape="box"];2701[label="xwv9700",fontsize=16,color="green",shape="box"];2516[label="xwv44000",fontsize=16,color="green",shape="box"];2517[label="xwv46000",fontsize=16,color="green",shape="box"];3183[label="xwv2403",fontsize=16,color="green",shape="box"];3184[label="FiniteMap.mkBalBranch6MkBalBranch10 xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 xwv2400 xwv2401 xwv2402 xwv2403 xwv2404 True",fontsize=16,color="black",shape="box"];3184 -> 3285[label="",style="solid", color="black", weight=3]; 3185 -> 3568[label="",style="dashed", color="red", weight=0]; 3185[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) xwv2400 xwv2401 xwv2403 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) xwv200 xwv201 xwv2404 xwv204)",fontsize=16,color="magenta"];3185 -> 3589[label="",style="dashed", color="magenta", weight=3]; 3185 -> 3590[label="",style="dashed", color="magenta", weight=3]; 3185 -> 3591[label="",style="dashed", color="magenta", weight=3]; 3185 -> 3592[label="",style="dashed", color="magenta", weight=3]; 3185 -> 3593[label="",style="dashed", color="magenta", weight=3]; 3282[label="error []",fontsize=16,color="red",shape="box"];3283 -> 3568[label="",style="dashed", color="red", weight=0]; 3283[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) xwv20430 xwv20431 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) xwv200 xwv201 xwv240 xwv20433) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xwv2040 xwv2041 xwv20434 xwv2044)",fontsize=16,color="magenta"];3283 -> 3594[label="",style="dashed", color="magenta", weight=3]; 3283 -> 3595[label="",style="dashed", color="magenta", weight=3]; 3283 -> 3596[label="",style="dashed", color="magenta", weight=3]; 3283 -> 3597[label="",style="dashed", color="magenta", weight=3]; 3283 -> 3598[label="",style="dashed", color="magenta", weight=3]; 2460[label="xwv4612",fontsize=16,color="green",shape="box"];2461[label="xwv4412",fontsize=16,color="green",shape="box"];2462[label="xwv4612",fontsize=16,color="green",shape="box"];2463[label="xwv4412",fontsize=16,color="green",shape="box"];2464[label="xwv4612",fontsize=16,color="green",shape="box"];2465[label="xwv4412",fontsize=16,color="green",shape="box"];2466[label="xwv4612",fontsize=16,color="green",shape="box"];2467[label="xwv4412",fontsize=16,color="green",shape="box"];2468[label="xwv4612",fontsize=16,color="green",shape="box"];2469[label="xwv4412",fontsize=16,color="green",shape="box"];2470[label="xwv4612",fontsize=16,color="green",shape="box"];2471[label="xwv4412",fontsize=16,color="green",shape="box"];2472[label="xwv4612",fontsize=16,color="green",shape="box"];2473[label="xwv4412",fontsize=16,color="green",shape="box"];2474[label="xwv4612",fontsize=16,color="green",shape="box"];2475[label="xwv4412",fontsize=16,color="green",shape="box"];2476[label="xwv4612",fontsize=16,color="green",shape="box"];2477[label="xwv4412",fontsize=16,color="green",shape="box"];2478[label="xwv4612",fontsize=16,color="green",shape="box"];2479[label="xwv4412",fontsize=16,color="green",shape="box"];2480[label="xwv4612",fontsize=16,color="green",shape="box"];2481[label="xwv4412",fontsize=16,color="green",shape="box"];2482[label="xwv4612",fontsize=16,color="green",shape="box"];2483[label="xwv4412",fontsize=16,color="green",shape="box"];2484[label="xwv4612",fontsize=16,color="green",shape="box"];2485[label="xwv4412",fontsize=16,color="green",shape="box"];2486[label="xwv4612",fontsize=16,color="green",shape="box"];2487[label="xwv4412",fontsize=16,color="green",shape="box"];2488[label="xwv4611",fontsize=16,color="green",shape="box"];2489[label="xwv4411",fontsize=16,color="green",shape="box"];2490[label="xwv4611",fontsize=16,color="green",shape="box"];2491[label="xwv4411",fontsize=16,color="green",shape="box"];2492[label="xwv4611",fontsize=16,color="green",shape="box"];2493[label="xwv4411",fontsize=16,color="green",shape="box"];2494[label="xwv4611",fontsize=16,color="green",shape="box"];2495[label="xwv4411",fontsize=16,color="green",shape="box"];2496[label="xwv4611",fontsize=16,color="green",shape="box"];2497[label="xwv4411",fontsize=16,color="green",shape="box"];2498[label="xwv4611",fontsize=16,color="green",shape="box"];2499[label="xwv4411",fontsize=16,color="green",shape="box"];2500[label="xwv4611",fontsize=16,color="green",shape="box"];2501[label="xwv4411",fontsize=16,color="green",shape="box"];2502[label="xwv4611",fontsize=16,color="green",shape="box"];2503[label="xwv4411",fontsize=16,color="green",shape="box"];2504[label="xwv4611",fontsize=16,color="green",shape="box"];2505[label="xwv4411",fontsize=16,color="green",shape="box"];2506[label="xwv4611",fontsize=16,color="green",shape="box"];2507[label="xwv4411",fontsize=16,color="green",shape="box"];2508[label="xwv4611",fontsize=16,color="green",shape="box"];2509[label="xwv4411",fontsize=16,color="green",shape="box"];2510[label="xwv4611",fontsize=16,color="green",shape="box"];2511[label="xwv4411",fontsize=16,color="green",shape="box"];2512[label="xwv4611",fontsize=16,color="green",shape="box"];2513[label="xwv4411",fontsize=16,color="green",shape="box"];2514[label="xwv4611",fontsize=16,color="green",shape="box"];2515[label="xwv4411",fontsize=16,color="green",shape="box"];2518[label="Integer (primMulInt xwv44000 xwv46010)",fontsize=16,color="green",shape="box"];2518 -> 2629[label="",style="dashed", color="green", weight=3]; 2519[label="compare0 xwv440 xwv460 otherwise",fontsize=16,color="black",shape="box"];2519 -> 2630[label="",style="solid", color="black", weight=3]; 2520[label="LT",fontsize=16,color="green",shape="box"];2521[label="compare0 xwv440 xwv460 otherwise",fontsize=16,color="black",shape="box"];2521 -> 2631[label="",style="solid", color="black", weight=3]; 2522[label="LT",fontsize=16,color="green",shape="box"];2523[label="xwv4400",fontsize=16,color="green",shape="box"];2524[label="Pos xwv46010",fontsize=16,color="green",shape="box"];2525[label="Pos xwv44010",fontsize=16,color="green",shape="box"];2526[label="xwv4600",fontsize=16,color="green",shape="box"];2527[label="xwv4400",fontsize=16,color="green",shape="box"];2528[label="Pos xwv46010",fontsize=16,color="green",shape="box"];2529[label="Neg xwv44010",fontsize=16,color="green",shape="box"];2530[label="xwv4600",fontsize=16,color="green",shape="box"];2531[label="xwv4400",fontsize=16,color="green",shape="box"];2532[label="Neg xwv46010",fontsize=16,color="green",shape="box"];2533[label="Pos xwv44010",fontsize=16,color="green",shape="box"];2534[label="xwv4600",fontsize=16,color="green",shape="box"];2535[label="xwv4400",fontsize=16,color="green",shape="box"];2536[label="Neg xwv46010",fontsize=16,color="green",shape="box"];2537[label="Neg xwv44010",fontsize=16,color="green",shape="box"];2538[label="xwv4600",fontsize=16,color="green",shape="box"];2539[label="compare0 xwv440 xwv460 otherwise",fontsize=16,color="black",shape="box"];2539 -> 2632[label="",style="solid", color="black", weight=3]; 2540[label="LT",fontsize=16,color="green",shape="box"];2541[label="compare0 xwv440 xwv460 otherwise",fontsize=16,color="black",shape="box"];2541 -> 2633[label="",style="solid", color="black", weight=3]; 2542[label="LT",fontsize=16,color="green",shape="box"];2543[label="xwv4400",fontsize=16,color="green",shape="box"];2544[label="Pos xwv46010",fontsize=16,color="green",shape="box"];2545[label="Pos xwv44010",fontsize=16,color="green",shape="box"];2546[label="xwv4600",fontsize=16,color="green",shape="box"];2547[label="xwv4400",fontsize=16,color="green",shape="box"];2548[label="Pos xwv46010",fontsize=16,color="green",shape="box"];2549[label="Neg xwv44010",fontsize=16,color="green",shape="box"];2550[label="xwv4600",fontsize=16,color="green",shape="box"];2551[label="xwv4400",fontsize=16,color="green",shape="box"];2552[label="Neg xwv46010",fontsize=16,color="green",shape="box"];2553[label="Pos xwv44010",fontsize=16,color="green",shape="box"];2554[label="xwv4600",fontsize=16,color="green",shape="box"];2555[label="xwv4400",fontsize=16,color="green",shape="box"];2556[label="Neg xwv46010",fontsize=16,color="green",shape="box"];2557[label="Neg xwv44010",fontsize=16,color="green",shape="box"];2558[label="xwv4600",fontsize=16,color="green",shape="box"];2559[label="compare0 xwv440 xwv460 otherwise",fontsize=16,color="black",shape="box"];2559 -> 2634[label="",style="solid", color="black", weight=3]; 2560[label="LT",fontsize=16,color="green",shape="box"];2561[label="xwv4400",fontsize=16,color="green",shape="box"];2562[label="xwv4600",fontsize=16,color="green",shape="box"];2563[label="xwv4400",fontsize=16,color="green",shape="box"];2564[label="xwv4600",fontsize=16,color="green",shape="box"];2565[label="xwv4400",fontsize=16,color="green",shape="box"];2566[label="xwv4600",fontsize=16,color="green",shape="box"];2567[label="xwv4400",fontsize=16,color="green",shape="box"];2568[label="xwv4600",fontsize=16,color="green",shape="box"];2569[label="xwv4400",fontsize=16,color="green",shape="box"];2570[label="xwv4600",fontsize=16,color="green",shape="box"];2571[label="xwv4400",fontsize=16,color="green",shape="box"];2572[label="xwv4600",fontsize=16,color="green",shape="box"];2573[label="xwv4400",fontsize=16,color="green",shape="box"];2574[label="xwv4600",fontsize=16,color="green",shape="box"];2575[label="xwv4400",fontsize=16,color="green",shape="box"];2576[label="xwv4600",fontsize=16,color="green",shape="box"];2577[label="xwv4400",fontsize=16,color="green",shape="box"];2578[label="xwv4600",fontsize=16,color="green",shape="box"];2579[label="xwv4400",fontsize=16,color="green",shape="box"];2580[label="xwv4600",fontsize=16,color="green",shape="box"];2581[label="xwv4400",fontsize=16,color="green",shape="box"];2582[label="xwv4600",fontsize=16,color="green",shape="box"];2583[label="xwv4400",fontsize=16,color="green",shape="box"];2584[label="xwv4600",fontsize=16,color="green",shape="box"];2585[label="xwv4400",fontsize=16,color="green",shape="box"];2586[label="xwv4600",fontsize=16,color="green",shape="box"];2587[label="xwv4400",fontsize=16,color="green",shape="box"];2588[label="xwv4600",fontsize=16,color="green",shape="box"];2589[label="LT",fontsize=16,color="green",shape="box"];2590[label="xwv146",fontsize=16,color="green",shape="box"];2591[label="GT",fontsize=16,color="green",shape="box"];3457[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch xwv325 xwv326 xwv327 xwv328 xwv329) (FiniteMap.Branch xwv330 xwv331 xwv332 xwv333 xwv334) (FiniteMap.findMax (FiniteMap.Branch xwv335 xwv336 xwv337 xwv338 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];3457 -> 3564[label="",style="solid", color="black", weight=3]; 3458[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch xwv325 xwv326 xwv327 xwv328 xwv329) (FiniteMap.Branch xwv330 xwv331 xwv332 xwv333 xwv334) (FiniteMap.findMax (FiniteMap.Branch xwv335 xwv336 xwv337 xwv338 (FiniteMap.Branch xwv3390 xwv3391 xwv3392 xwv3393 xwv3394)))",fontsize=16,color="black",shape="box"];3458 -> 3565[label="",style="solid", color="black", weight=3]; 3562[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch xwv341 xwv342 xwv343 xwv344 xwv345) (FiniteMap.Branch xwv346 xwv347 xwv348 xwv349 xwv350) (FiniteMap.findMax (FiniteMap.Branch xwv351 xwv352 xwv353 xwv354 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];3562 -> 3630[label="",style="solid", color="black", weight=3]; 3563[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch xwv341 xwv342 xwv343 xwv344 xwv345) (FiniteMap.Branch xwv346 xwv347 xwv348 xwv349 xwv350) (FiniteMap.findMax (FiniteMap.Branch xwv351 xwv352 xwv353 xwv354 (FiniteMap.Branch xwv3550 xwv3551 xwv3552 xwv3553 xwv3554)))",fontsize=16,color="black",shape="box"];3563 -> 3631[label="",style="solid", color="black", weight=3]; 2867[label="xwv1940",fontsize=16,color="green",shape="box"];2868[label="xwv1941",fontsize=16,color="green",shape="box"];2869[label="xwv1942",fontsize=16,color="green",shape="box"];2870[label="xwv1943",fontsize=16,color="green",shape="box"];2871[label="xwv1944",fontsize=16,color="green",shape="box"];3297[label="xwv272",fontsize=16,color="green",shape="box"];3298[label="xwv2753",fontsize=16,color="green",shape="box"];3299[label="xwv2754",fontsize=16,color="green",shape="box"];3300[label="xwv2750",fontsize=16,color="green",shape="box"];3301[label="xwv2751",fontsize=16,color="green",shape="box"];3302[label="xwv2752",fontsize=16,color="green",shape="box"];3315[label="xwv289",fontsize=16,color="green",shape="box"];3316[label="xwv2913",fontsize=16,color="green",shape="box"];3317[label="xwv2910",fontsize=16,color="green",shape="box"];3318[label="xwv2914",fontsize=16,color="green",shape="box"];3319[label="xwv2911",fontsize=16,color="green",shape="box"];3320[label="xwv2912",fontsize=16,color="green",shape="box"];3285[label="FiniteMap.mkBalBranch6Double_R xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 xwv2404) xwv204",fontsize=16,color="burlywood",shape="box"];4372[label="xwv2404/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3285 -> 4372[label="",style="solid", color="burlywood", weight=9]; 4372 -> 3322[label="",style="solid", color="burlywood", weight=3]; 4373[label="xwv2404/FiniteMap.Branch xwv24040 xwv24041 xwv24042 xwv24043 xwv24044",fontsize=10,color="white",style="solid",shape="box"];3285 -> 4373[label="",style="solid", color="burlywood", weight=9]; 4373 -> 3323[label="",style="solid", color="burlywood", weight=3]; 3589[label="xwv2401",fontsize=16,color="green",shape="box"];3590 -> 3568[label="",style="dashed", color="red", weight=0]; 3590[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) xwv200 xwv201 xwv2404 xwv204",fontsize=16,color="magenta"];3590 -> 3632[label="",style="dashed", color="magenta", weight=3]; 3590 -> 3633[label="",style="dashed", color="magenta", weight=3]; 3590 -> 3634[label="",style="dashed", color="magenta", weight=3]; 3590 -> 3635[label="",style="dashed", color="magenta", weight=3]; 3590 -> 3636[label="",style="dashed", color="magenta", weight=3]; 3591[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))",fontsize=16,color="green",shape="box"];3592[label="xwv2400",fontsize=16,color="green",shape="box"];3593[label="xwv2403",fontsize=16,color="green",shape="box"];3594[label="xwv20431",fontsize=16,color="green",shape="box"];3595 -> 3568[label="",style="dashed", color="red", weight=0]; 3595[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) xwv2040 xwv2041 xwv20434 xwv2044",fontsize=16,color="magenta"];3595 -> 3637[label="",style="dashed", color="magenta", weight=3]; 3595 -> 3638[label="",style="dashed", color="magenta", weight=3]; 3595 -> 3639[label="",style="dashed", color="magenta", weight=3]; 3595 -> 3640[label="",style="dashed", color="magenta", weight=3]; 3595 -> 3641[label="",style="dashed", color="magenta", weight=3]; 3596[label="Succ (Succ (Succ (Succ Zero)))",fontsize=16,color="green",shape="box"];3597[label="xwv20430",fontsize=16,color="green",shape="box"];3598 -> 3568[label="",style="dashed", color="red", weight=0]; 3598[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) xwv200 xwv201 xwv240 xwv20433",fontsize=16,color="magenta"];3598 -> 3642[label="",style="dashed", color="magenta", weight=3]; 3598 -> 3643[label="",style="dashed", color="magenta", weight=3]; 3598 -> 3644[label="",style="dashed", color="magenta", weight=3]; 3598 -> 3645[label="",style="dashed", color="magenta", weight=3]; 3598 -> 3646[label="",style="dashed", color="magenta", weight=3]; 2629 -> 600[label="",style="dashed", color="red", weight=0]; 2629[label="primMulInt xwv44000 xwv46010",fontsize=16,color="magenta"];2629 -> 2663[label="",style="dashed", color="magenta", weight=3]; 2629 -> 2664[label="",style="dashed", color="magenta", weight=3]; 2630[label="compare0 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2630 -> 2665[label="",style="solid", color="black", weight=3]; 2631[label="compare0 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2631 -> 2666[label="",style="solid", color="black", weight=3]; 2632[label="compare0 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2632 -> 2667[label="",style="solid", color="black", weight=3]; 2633[label="compare0 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2633 -> 2668[label="",style="solid", color="black", weight=3]; 2634[label="compare0 xwv440 xwv460 True",fontsize=16,color="black",shape="box"];2634 -> 2669[label="",style="solid", color="black", weight=3]; 3564[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch xwv325 xwv326 xwv327 xwv328 xwv329) (FiniteMap.Branch xwv330 xwv331 xwv332 xwv333 xwv334) (xwv335,xwv336)",fontsize=16,color="black",shape="box"];3564 -> 3647[label="",style="solid", color="black", weight=3]; 3565 -> 3366[label="",style="dashed", color="red", weight=0]; 3565[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch xwv325 xwv326 xwv327 xwv328 xwv329) (FiniteMap.Branch xwv330 xwv331 xwv332 xwv333 xwv334) (FiniteMap.findMax (FiniteMap.Branch xwv3390 xwv3391 xwv3392 xwv3393 xwv3394))",fontsize=16,color="magenta"];3565 -> 3648[label="",style="dashed", color="magenta", weight=3]; 3565 -> 3649[label="",style="dashed", color="magenta", weight=3]; 3565 -> 3650[label="",style="dashed", color="magenta", weight=3]; 3565 -> 3651[label="",style="dashed", color="magenta", weight=3]; 3565 -> 3652[label="",style="dashed", color="magenta", weight=3]; 3630[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch xwv341 xwv342 xwv343 xwv344 xwv345) (FiniteMap.Branch xwv346 xwv347 xwv348 xwv349 xwv350) (xwv351,xwv352)",fontsize=16,color="black",shape="box"];3630 -> 3664[label="",style="solid", color="black", weight=3]; 3631 -> 3471[label="",style="dashed", color="red", weight=0]; 3631[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch xwv341 xwv342 xwv343 xwv344 xwv345) (FiniteMap.Branch xwv346 xwv347 xwv348 xwv349 xwv350) (FiniteMap.findMax (FiniteMap.Branch xwv3550 xwv3551 xwv3552 xwv3553 xwv3554))",fontsize=16,color="magenta"];3631 -> 3665[label="",style="dashed", color="magenta", weight=3]; 3631 -> 3666[label="",style="dashed", color="magenta", weight=3]; 3631 -> 3667[label="",style="dashed", color="magenta", weight=3]; 3631 -> 3668[label="",style="dashed", color="magenta", weight=3]; 3631 -> 3669[label="",style="dashed", color="magenta", weight=3]; 3322[label="FiniteMap.mkBalBranch6Double_R xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 FiniteMap.EmptyFM) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 FiniteMap.EmptyFM) xwv204",fontsize=16,color="black",shape="box"];3322 -> 3363[label="",style="solid", color="black", weight=3]; 3323[label="FiniteMap.mkBalBranch6Double_R xwv200 xwv201 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 (FiniteMap.Branch xwv24040 xwv24041 xwv24042 xwv24043 xwv24044)) xwv204 (FiniteMap.Branch xwv2400 xwv2401 xwv2402 xwv2403 (FiniteMap.Branch xwv24040 xwv24041 xwv24042 xwv24043 xwv24044)) xwv204",fontsize=16,color="black",shape="box"];3323 -> 3364[label="",style="solid", color="black", weight=3]; 3632[label="xwv201",fontsize=16,color="green",shape="box"];3633[label="xwv204",fontsize=16,color="green",shape="box"];3634[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))",fontsize=16,color="green",shape="box"];3635[label="xwv200",fontsize=16,color="green",shape="box"];3636[label="xwv2404",fontsize=16,color="green",shape="box"];3637[label="xwv2041",fontsize=16,color="green",shape="box"];3638[label="xwv2044",fontsize=16,color="green",shape="box"];3639[label="Succ (Succ (Succ (Succ (Succ (Succ Zero)))))",fontsize=16,color="green",shape="box"];3640[label="xwv2040",fontsize=16,color="green",shape="box"];3641[label="xwv20434",fontsize=16,color="green",shape="box"];3642[label="xwv201",fontsize=16,color="green",shape="box"];3643[label="xwv20433",fontsize=16,color="green",shape="box"];3644[label="Succ (Succ (Succ (Succ (Succ Zero))))",fontsize=16,color="green",shape="box"];3645[label="xwv200",fontsize=16,color="green",shape="box"];3646[label="xwv240",fontsize=16,color="green",shape="box"];2663[label="xwv44000",fontsize=16,color="green",shape="box"];2664[label="xwv46010",fontsize=16,color="green",shape="box"];2665[label="GT",fontsize=16,color="green",shape="box"];2666[label="GT",fontsize=16,color="green",shape="box"];2667[label="GT",fontsize=16,color="green",shape="box"];2668[label="GT",fontsize=16,color="green",shape="box"];2669[label="GT",fontsize=16,color="green",shape="box"];3647[label="xwv335",fontsize=16,color="green",shape="box"];3648[label="xwv3393",fontsize=16,color="green",shape="box"];3649[label="xwv3391",fontsize=16,color="green",shape="box"];3650[label="xwv3394",fontsize=16,color="green",shape="box"];3651[label="xwv3390",fontsize=16,color="green",shape="box"];3652[label="xwv3392",fontsize=16,color="green",shape="box"];3664[label="xwv352",fontsize=16,color="green",shape="box"];3665[label="xwv3550",fontsize=16,color="green",shape="box"];3666[label="xwv3551",fontsize=16,color="green",shape="box"];3667[label="xwv3553",fontsize=16,color="green",shape="box"];3668[label="xwv3552",fontsize=16,color="green",shape="box"];3669[label="xwv3554",fontsize=16,color="green",shape="box"];3363[label="error []",fontsize=16,color="red",shape="box"];3364 -> 3568[label="",style="dashed", color="red", weight=0]; 3364[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) xwv24040 xwv24041 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) xwv2400 xwv2401 xwv2403 xwv24043) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) xwv200 xwv201 xwv24044 xwv204)",fontsize=16,color="magenta"];3364 -> 3609[label="",style="dashed", color="magenta", weight=3]; 3364 -> 3610[label="",style="dashed", color="magenta", weight=3]; 3364 -> 3611[label="",style="dashed", color="magenta", weight=3]; 3364 -> 3612[label="",style="dashed", color="magenta", weight=3]; 3364 -> 3613[label="",style="dashed", color="magenta", weight=3]; 3609[label="xwv24041",fontsize=16,color="green",shape="box"];3610 -> 3568[label="",style="dashed", color="red", weight=0]; 3610[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) xwv200 xwv201 xwv24044 xwv204",fontsize=16,color="magenta"];3610 -> 3653[label="",style="dashed", color="magenta", weight=3]; 3610 -> 3654[label="",style="dashed", color="magenta", weight=3]; 3610 -> 3655[label="",style="dashed", color="magenta", weight=3]; 3610 -> 3656[label="",style="dashed", color="magenta", weight=3]; 3610 -> 3657[label="",style="dashed", color="magenta", weight=3]; 3611[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))",fontsize=16,color="green",shape="box"];3612[label="xwv24040",fontsize=16,color="green",shape="box"];3613 -> 3568[label="",style="dashed", color="red", weight=0]; 3613[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) xwv2400 xwv2401 xwv2403 xwv24043",fontsize=16,color="magenta"];3613 -> 3658[label="",style="dashed", color="magenta", weight=3]; 3613 -> 3659[label="",style="dashed", color="magenta", weight=3]; 3613 -> 3660[label="",style="dashed", color="magenta", weight=3]; 3613 -> 3661[label="",style="dashed", color="magenta", weight=3]; 3613 -> 3662[label="",style="dashed", color="magenta", weight=3]; 3653[label="xwv201",fontsize=16,color="green",shape="box"];3654[label="xwv204",fontsize=16,color="green",shape="box"];3655[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))",fontsize=16,color="green",shape="box"];3656[label="xwv200",fontsize=16,color="green",shape="box"];3657[label="xwv24044",fontsize=16,color="green",shape="box"];3658[label="xwv2401",fontsize=16,color="green",shape="box"];3659[label="xwv24043",fontsize=16,color="green",shape="box"];3660[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))",fontsize=16,color="green",shape="box"];3661[label="xwv2400",fontsize=16,color="green",shape="box"];3662[label="xwv2403",fontsize=16,color="green",shape="box"];} ---------------------------------------- (16) Complex Obligation (AND) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: new_primCmpNat(Succ(xwv44000), Succ(xwv46000)) -> new_primCmpNat(xwv44000, xwv46000) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primCmpNat(Succ(xwv44000), Succ(xwv46000)) -> new_primCmpNat(xwv44000, xwv46000) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: new_primMulNat(Succ(xwv400100), Succ(xwv300000)) -> new_primMulNat(xwv400100, Succ(xwv300000)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primMulNat(Succ(xwv400100), Succ(xwv300000)) -> new_primMulNat(xwv400100, Succ(xwv300000)) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(ty_[], gg), fh) -> new_lt3(xwv4410, xwv4610, gg) new_primCompAux(xwv4400, xwv4600, xwv136, app(ty_Maybe, bfa)) -> new_compare4(xwv4400, xwv4600, bfa) new_primCompAux(xwv4400, xwv4600, xwv136, app(ty_[], bfe)) -> new_compare0(xwv4400, xwv4600, bfe) new_primCompAux(xwv4400, xwv4600, xwv136, app(app(app(ty_@3, bfb), bfc), bfd)) -> new_compare5(xwv4400, xwv4600, bfb, bfc, bfd) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(app(ty_@2, ha), hb))) -> new_ltEs0(xwv4411, xwv4611, ha, hb) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(ty_Maybe, dd)), bf)) -> new_lt1(xwv4411, xwv4611, dd) new_lt0(xwv440, xwv460, bea, beb) -> new_compare21(xwv440, xwv460, new_esEs5(xwv440, xwv460, bea, beb), bea, beb) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(ty_Maybe, ca), be, bf) -> new_lt1(xwv4410, xwv4610, ca) new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(app(ty_Either, bbg), bbh))) -> new_ltEs1(xwv4410, xwv4610, bbg, bbh) new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(app(ty_@2, bab), bac)), bad)) -> new_ltEs0(xwv4410, xwv4610, bab, bac) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(app(app(ty_@3, hf), hg), hh)) -> new_ltEs(xwv4411, xwv4611, hf, hg, hh) new_ltEs2(Just(xwv4410), Just(xwv4610), app(app(ty_@2, bcf), bcg)) -> new_ltEs0(xwv4410, xwv4610, bcf, bcg) new_compare(xwv440, xwv460, fb, fc) -> new_compare20(xwv440, xwv460, new_esEs4(xwv440, xwv460, fb, fc), fb, fc) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(app(ty_@2, ha), hb)) -> new_ltEs0(xwv4411, xwv4611, ha, hb) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(app(ty_@2, ea), eb)) -> new_ltEs0(xwv4412, xwv4612, ea, eb) new_ltEs1(Left(xwv4410), Left(xwv4610), app(ty_Maybe, bag), bad) -> new_ltEs2(xwv4410, xwv4610, bag) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(ty_[], ce), be, bf) -> new_lt3(xwv4410, xwv4610, ce) new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(app(ty_@2, bcf), bcg))) -> new_ltEs0(xwv4410, xwv4610, bcf, bcg) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(app(ty_@2, ea), eb))) -> new_ltEs0(xwv4412, xwv4612, ea, eb) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(ty_[], baa)) -> new_ltEs3(xwv4411, xwv4611, baa) new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(app(ty_Either, bbg), bbh)) -> new_ltEs1(xwv4410, xwv4610, bbg, bbh) new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(app(app(ty_@3, bcb), bcc), bcd))) -> new_ltEs(xwv4410, xwv4610, bcb, bcc, bcd) new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(ty_[], bce)) -> new_ltEs3(xwv4410, xwv4610, bce) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(ty_[], ce)), be), bf)) -> new_lt3(xwv4410, xwv4610, ce) new_lt2(xwv440, xwv460, h, ba, bb) -> new_compare2(xwv440, xwv460, new_esEs7(xwv440, xwv460, h, ba, bb), h, ba, bb) new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(ty_[], bbc)), bad)) -> new_ltEs3(xwv4410, xwv4610, bbc) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(app(app(ty_@3, de), df), dg), bf) -> new_lt2(xwv4411, xwv4611, de, df, dg) new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(app(ty_@2, fb), fc), bdh) -> new_compare20(xwv440, xwv460, new_esEs4(xwv440, xwv460, fb, fc), fb, fc) new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(ty_[], bce))) -> new_ltEs3(xwv4410, xwv4610, bce) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(ty_Maybe, ee))) -> new_ltEs2(xwv4412, xwv4612, ee) new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(ty_Maybe, bca)) -> new_ltEs2(xwv4410, xwv4610, bca) new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(ty_[], bdf))) -> new_ltEs3(xwv4410, xwv4610, bdf) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(app(ty_Either, hc), hd)) -> new_ltEs1(xwv4411, xwv4611, hc, hd) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(ty_[], fa)) -> new_ltEs3(xwv4412, xwv4612, fa) new_compare22(xwv440, xwv460, False, bec) -> new_ltEs2(xwv440, xwv460, bec) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(app(ty_@2, cg), da), bf) -> new_lt(xwv4411, xwv4611, cg, da) new_ltEs3(xwv441, xwv461, bdg) -> new_compare0(xwv441, xwv461, bdg) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(ty_Maybe, he))) -> new_ltEs2(xwv4411, xwv4611, he) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(ty_[], dh), bf) -> new_lt3(xwv4411, xwv4611, dh) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(ty_Maybe, gc), fh) -> new_lt1(xwv4410, xwv4610, gc) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(app(app(ty_@3, ef), eg), eh)) -> new_ltEs(xwv4412, xwv4612, ef, eg, eh) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(app(ty_Either, hc), hd))) -> new_ltEs1(xwv4411, xwv4611, hc, hd) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(ty_Maybe, ee)) -> new_ltEs2(xwv4412, xwv4612, ee) new_compare0(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_compare0(xwv4401, xwv4601, bed) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(ty_[], dh)), bf)) -> new_lt3(xwv4411, xwv4611, dh) new_lt3(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_compare0(xwv4401, xwv4601, bed) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(app(ty_@2, bc), bd), be, bf) -> new_lt(xwv4410, xwv4610, bc, bd) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(app(ty_Either, bg), bh), be, bf) -> new_lt0(xwv4410, xwv4610, bg, bh) new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(app(app(ty_@3, bdc), bdd), bde))) -> new_ltEs(xwv4410, xwv4610, bdc, bdd, bde) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(app(ty_@2, cg), da)), bf)) -> new_lt(xwv4411, xwv4611, cg, da) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(app(app(ty_@3, gd), ge), gf)), fh)) -> new_lt2(xwv4410, xwv4610, gd, ge, gf) new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(ty_Maybe, bdb))) -> new_ltEs2(xwv4410, xwv4610, bdb) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(app(ty_@2, ff), fg)), fh)) -> new_lt(xwv4410, xwv4610, ff, fg) new_ltEs2(Just(xwv4410), Just(xwv4610), app(ty_Maybe, bdb)) -> new_ltEs2(xwv4410, xwv4610, bdb) new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(ty_Maybe, bag)), bad)) -> new_ltEs2(xwv4410, xwv4610, bag) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(ty_[], baa))) -> new_ltEs3(xwv4411, xwv4611, baa) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(app(ty_@2, bc), bd)), be), bf)) -> new_lt(xwv4410, xwv4610, bc, bd) new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(app(app(ty_@3, h), ba), bb), bdh) -> new_compare2(xwv440, xwv460, new_esEs7(xwv440, xwv460, h, ba, bb), h, ba, bb) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(ty_Maybe, dd), bf) -> new_lt1(xwv4411, xwv4611, dd) new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(app(ty_Either, bea), beb), bdh) -> new_compare21(xwv440, xwv460, new_esEs5(xwv440, xwv460, bea, beb), bea, beb) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(ty_Maybe, he)) -> new_ltEs2(xwv4411, xwv4611, he) new_compare21(xwv440, xwv460, False, bea, beb) -> new_ltEs1(xwv440, xwv460, bea, beb) new_ltEs2(Just(xwv4410), Just(xwv4610), app(ty_[], bdf)) -> new_ltEs3(xwv4410, xwv4610, bdf) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(ty_[], gg)), fh)) -> new_lt3(xwv4410, xwv4610, gg) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(app(app(ty_@3, de), df), dg)), bf)) -> new_lt2(xwv4411, xwv4611, de, df, dg) new_compare20(@2(:(xwv4400, xwv4401), xwv441), @2(:(xwv4600, xwv4601), xwv461), False, app(ty_[], bed), bdh) -> new_primCompAux(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bed), bed) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(app(ty_Either, ec), ed))) -> new_ltEs1(xwv4412, xwv4612, ec, ed) new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(ty_Maybe, bec), bdh) -> new_compare22(xwv440, xwv460, new_esEs6(xwv440, xwv460, bec), bec) new_ltEs1(Left(xwv4410), Left(xwv4610), app(app(ty_@2, bab), bac), bad) -> new_ltEs0(xwv4410, xwv4610, bab, bac) new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(app(ty_@2, bbe), bbf)) -> new_ltEs0(xwv4410, xwv4610, bbe, bbf) new_lt3(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_primCompAux(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bed), bed) new_primCompAux(xwv4400, xwv4600, xwv136, app(app(ty_@2, bee), bef)) -> new_compare(xwv4400, xwv4600, bee, bef) new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(app(app(ty_@3, bah), bba), bbb)), bad)) -> new_ltEs(xwv4410, xwv4610, bah, bba, bbb) new_ltEs1(Left(xwv4410), Left(xwv4610), app(app(app(ty_@3, bah), bba), bbb), bad) -> new_ltEs(xwv4410, xwv4610, bah, bba, bbb) new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_ltEs(xwv4410, xwv4610, bcb, bcc, bcd) new_ltEs2(Just(xwv4410), Just(xwv4610), app(app(ty_Either, bch), bda)) -> new_ltEs1(xwv4410, xwv4610, bch, bda) new_compare0(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_primCompAux(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bed), bed) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(ty_[], fa))) -> new_ltEs3(xwv4412, xwv4612, fa) new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(ty_Maybe, bca))) -> new_ltEs2(xwv4410, xwv4610, bca) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(app(ty_Either, ga), gb), fh) -> new_lt0(xwv4410, xwv4610, ga, gb) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(app(app(ty_@3, ef), eg), eh))) -> new_ltEs(xwv4412, xwv4612, ef, eg, eh) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(app(ty_Either, db), dc), bf) -> new_lt0(xwv4411, xwv4611, db, dc) new_compare2(xwv440, xwv460, False, h, ba, bb) -> new_ltEs(xwv440, xwv460, h, ba, bb) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(app(app(ty_@3, cb), cc), cd), be, bf) -> new_lt2(xwv4410, xwv4610, cb, cc, cd) new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, fd, app(ty_[], bdg)) -> new_compare0(xwv441, xwv461, bdg) new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(app(ty_@2, bbe), bbf))) -> new_ltEs0(xwv4410, xwv4610, bbe, bbf) new_ltEs1(Left(xwv4410), Left(xwv4610), app(app(ty_Either, bae), baf), bad) -> new_ltEs1(xwv4410, xwv4610, bae, baf) new_lt(xwv440, xwv460, fb, fc) -> new_compare20(xwv440, xwv460, new_esEs4(xwv440, xwv460, fb, fc), fb, fc) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(app(ty_Either, db), dc)), bf)) -> new_lt0(xwv4411, xwv4611, db, dc) new_compare4(xwv440, xwv460, bec) -> new_compare22(xwv440, xwv460, new_esEs6(xwv440, xwv460, bec), bec) new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(app(ty_Either, ec), ed)) -> new_ltEs1(xwv4412, xwv4612, ec, ed) new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(app(ty_Either, bae), baf)), bad)) -> new_ltEs1(xwv4410, xwv4610, bae, baf) new_compare5(xwv440, xwv460, h, ba, bb) -> new_compare2(xwv440, xwv460, new_esEs7(xwv440, xwv460, h, ba, bb), h, ba, bb) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(app(ty_@2, ff), fg), fh) -> new_lt(xwv4410, xwv4610, ff, fg) new_ltEs1(Left(xwv4410), Left(xwv4610), app(ty_[], bbc), bad) -> new_ltEs3(xwv4410, xwv4610, bbc) new_ltEs2(Just(xwv4410), Just(xwv4610), app(app(app(ty_@3, bdc), bdd), bde)) -> new_ltEs(xwv4410, xwv4610, bdc, bdd, bde) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(ty_Maybe, gc)), fh)) -> new_lt1(xwv4410, xwv4610, gc) new_primCompAux(xwv4400, xwv4600, xwv136, app(app(ty_Either, beg), beh)) -> new_compare3(xwv4400, xwv4600, beg, beh) new_lt1(xwv440, xwv460, bec) -> new_compare22(xwv440, xwv460, new_esEs6(xwv440, xwv460, bec), bec) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(app(ty_Either, ga), gb)), fh)) -> new_lt0(xwv4410, xwv4610, ga, gb) new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(app(app(ty_@3, gd), ge), gf), fh) -> new_lt2(xwv4410, xwv4610, gd, ge, gf) new_compare3(xwv440, xwv460, bea, beb) -> new_compare21(xwv440, xwv460, new_esEs5(xwv440, xwv460, bea, beb), bea, beb) new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(app(app(ty_@3, hf), hg), hh))) -> new_ltEs(xwv4411, xwv4611, hf, hg, hh) new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(app(ty_Either, bch), bda))) -> new_ltEs1(xwv4410, xwv4610, bch, bda) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(app(ty_Either, bg), bh)), be), bf)) -> new_lt0(xwv4410, xwv4610, bg, bh) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(ty_Maybe, ca)), be), bf)) -> new_lt1(xwv4410, xwv4610, ca) new_compare20(@2(:(xwv4400, xwv4401), xwv441), @2(:(xwv4600, xwv4601), xwv461), False, app(ty_[], bed), bdh) -> new_compare0(xwv4401, xwv4601, bed) new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(app(app(ty_@3, cb), cc), cd)), be), bf)) -> new_lt2(xwv4410, xwv4610, cb, cc, cd) The TRS R consists of the following rules: new_ltEs18(xwv4411, xwv4611, ty_Integer) -> new_ltEs17(xwv4411, xwv4611) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, app(ty_Maybe, bca)) -> new_ltEs8(xwv4410, xwv4610, bca) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xwv4400)), Pos(xwv460)) -> LT new_ltEs18(xwv4411, xwv4611, app(app(ty_@2, ha), hb)) -> new_ltEs10(xwv4411, xwv4611, ha, hb) new_pePe(True, xwv135) -> True new_esEs23(xwv440, xwv460, app(ty_Maybe, bec)) -> new_esEs6(xwv440, xwv460, bec) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Float, bhe) -> new_esEs13(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, app(app(app(ty_@3, de), df), dg)) -> new_lt5(xwv4411, xwv4611, de, df, dg) new_primCmpInt(Neg(Succ(xwv4400)), Neg(Zero)) -> LT new_ltEs7(xwv441, xwv461) -> new_fsEs(new_compare17(xwv441, xwv461)) new_esEs21(xwv4000, xwv3000, app(app(app(ty_@3, cga), cgb), cgc)) -> new_esEs7(xwv4000, xwv3000, cga, cgb, cgc) new_compare24(xwv440, xwv460, False, h, ba, bb) -> new_compare110(xwv440, xwv460, new_ltEs16(xwv440, xwv460, h, ba, bb), h, ba, bb) new_compare23(xwv440, xwv460, True, bec) -> EQ new_esEs23(xwv440, xwv460, ty_Int) -> new_esEs17(xwv440, xwv460) new_esEs22(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, app(ty_[], dbf)) -> new_esEs11(xwv4001, xwv3001, dbf) new_lt20(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_compare6(xwv4400, xwv4600, ty_Bool) -> new_compare10(xwv4400, xwv4600) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt(Pos(Zero), Neg(Succ(xwv4600))) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_compare19(xwv440, xwv460) -> new_compare25(xwv440, xwv460, new_esEs9(xwv440, xwv460)) new_esEs23(xwv440, xwv460, ty_Double) -> new_esEs16(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(ty_[], bfe)) -> new_compare1(xwv4400, xwv4600, bfe) new_esEs9(LT, EQ) -> False new_esEs9(EQ, LT) -> False new_esEs18(@0, @0) -> True new_compare113(xwv110, xwv111, xwv112, xwv113, True, cgd, cge) -> LT new_esEs24(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt6(xwv440, xwv460) -> new_esEs9(new_compare16(xwv440, xwv460), LT) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_Either, che), chf)) -> new_esEs5(xwv4000, xwv3000, che, chf) new_esEs20(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_@0, bad) -> new_ltEs7(xwv4410, xwv4610) new_compare15(xwv440, xwv460, h, ba, bb) -> new_compare24(xwv440, xwv460, new_esEs7(xwv440, xwv460, h, ba, bb), h, ba, bb) new_esEs23(xwv440, xwv460, app(app(ty_Either, bea), beb)) -> new_esEs5(xwv440, xwv460, bea, beb) new_ltEs20(xwv4412, xwv4612, ty_Bool) -> new_ltEs12(xwv4412, xwv4612) new_esEs28(xwv4411, xwv4611, ty_Integer) -> new_esEs10(xwv4411, xwv4611) new_compare26(xwv440, xwv460, True) -> EQ new_primEqInt(Pos(Succ(xwv40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xwv30000))) -> False new_esEs27(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs25(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_ltEs4(GT, EQ) -> False new_esEs28(xwv4411, xwv4611, ty_@0) -> new_esEs18(xwv4411, xwv4611) new_ltEs19(xwv441, xwv461, app(ty_[], bdg)) -> new_ltEs6(xwv441, xwv461, bdg) new_esEs24(xwv4001, xwv3001, app(app(ty_@2, dbc), dbd)) -> new_esEs4(xwv4001, xwv3001, dbc, dbd) new_esEs19(xwv4002, xwv3002, ty_Ordering) -> new_esEs9(xwv4002, xwv3002) new_esEs28(xwv4411, xwv4611, app(ty_[], dh)) -> new_esEs11(xwv4411, xwv4611, dh) new_esEs28(xwv4411, xwv4611, app(ty_Ratio, ddf)) -> new_esEs14(xwv4411, xwv4611, ddf) new_esEs8(False, True) -> False new_esEs8(True, False) -> False new_esEs12(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_compare1(:(xwv4400, xwv4401), [], bed) -> GT new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Maybe, cac), bhe) -> new_esEs6(xwv4000, xwv3000, cac) new_primEqNat0(Succ(xwv40000), Succ(xwv30000)) -> new_primEqNat0(xwv40000, xwv30000) new_esEs23(xwv440, xwv460, app(ty_Ratio, bfg)) -> new_esEs14(xwv440, xwv460, bfg) new_esEs29(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_esEs5(Right(xwv4000), Right(xwv3000), cah, app(app(ty_@2, cbd), cbe)) -> new_esEs4(xwv4000, xwv3000, cbd, cbe) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Ratio, chd)) -> new_esEs14(xwv4000, xwv3000, chd) new_esEs12(xwv4000, xwv3000, app(app(ty_Either, bgd), bge)) -> new_esEs5(xwv4000, xwv3000, bgd, bge) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Maybe, bag), bad) -> new_ltEs8(xwv4410, xwv4610, bag) new_not(True) -> False new_ltEs19(xwv441, xwv461, ty_Double) -> new_ltEs5(xwv441, xwv461) new_lt21(xwv4411, xwv4611, app(app(ty_@2, cg), da)) -> new_lt14(xwv4411, xwv4611, cg, da) new_ltEs20(xwv4412, xwv4612, app(app(ty_@2, ea), eb)) -> new_ltEs10(xwv4412, xwv4612, ea, eb) new_esEs25(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_primCompAux00(xwv146, LT) -> LT new_primCmpNat0(Zero, Zero) -> EQ new_esEs12(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Integer) -> new_ltEs17(xwv4412, xwv4612) new_lt21(xwv4411, xwv4611, ty_Float) -> new_lt10(xwv4411, xwv4611) new_esEs28(xwv4411, xwv4611, ty_Float) -> new_esEs13(xwv4411, xwv4611) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Ratio, bhf), bhe) -> new_esEs14(xwv4000, xwv3000, bhf) new_esEs5(Right(xwv4000), Right(xwv3000), cah, app(ty_Ratio, cba)) -> new_esEs14(xwv4000, xwv3000, cba) new_ltEs16(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, bf) -> new_pePe(new_lt20(xwv4410, xwv4610, cf), new_asAs(new_esEs29(xwv4410, xwv4610, cf), new_pePe(new_lt21(xwv4411, xwv4611, be), new_asAs(new_esEs28(xwv4411, xwv4611, be), new_ltEs20(xwv4412, xwv4612, bf))))) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Float, bad) -> new_ltEs14(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(ty_[], cef)) -> new_esEs11(xwv4001, xwv3001, cef) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs16(Double(xwv4000, xwv4001), Double(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_esEs25(xwv4000, xwv3000, app(app(app(ty_@3, dda), ddb), ddc)) -> new_esEs7(xwv4000, xwv3000, dda, ddb, ddc) new_compare6(xwv4400, xwv4600, ty_@0) -> new_compare17(xwv4400, xwv4600) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_esEs28(xwv4411, xwv4611, ty_Double) -> new_esEs16(xwv4411, xwv4611) new_esEs19(xwv4002, xwv3002, app(app(ty_@2, cda), cdb)) -> new_esEs4(xwv4002, xwv3002, cda, cdb) new_primEqNat0(Succ(xwv40000), Zero) -> False new_primEqNat0(Zero, Succ(xwv30000)) -> False new_ltEs19(xwv441, xwv461, ty_Bool) -> new_ltEs12(xwv441, xwv461) new_esEs19(xwv4002, xwv3002, app(app(app(ty_@3, cde), cdf), cdg)) -> new_esEs7(xwv4002, xwv3002, cde, cdf, cdg) new_compare112(xwv440, xwv460, False) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_esEs23(xwv440, xwv460, ty_@0) -> new_esEs18(xwv440, xwv460) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Double) -> new_esEs16(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, app(ty_Maybe, ee)) -> new_ltEs8(xwv4412, xwv4612, ee) new_esEs12(xwv4000, xwv3000, app(ty_Ratio, bgc)) -> new_esEs14(xwv4000, xwv3000, bgc) new_primCompAux00(xwv146, GT) -> GT new_lt17(xwv440, xwv460) -> new_esEs9(new_compare18(xwv440, xwv460), LT) new_lt18(xwv440, xwv460, bed) -> new_esEs9(new_compare1(xwv440, xwv460, bed), LT) new_lt19(xwv440, xwv460, ty_Bool) -> new_lt15(xwv440, xwv460) new_ltEs18(xwv4411, xwv4611, ty_Bool) -> new_ltEs12(xwv4411, xwv4611) new_compare115(xwv110, xwv111, xwv112, xwv113, True, xwv115, cgd, cge) -> new_compare113(xwv110, xwv111, xwv112, xwv113, True, cgd, cge) new_lt21(xwv4411, xwv4611, app(ty_Maybe, dd)) -> new_lt9(xwv4411, xwv4611, dd) new_compare6(xwv4400, xwv4600, app(ty_Maybe, bfa)) -> new_compare14(xwv4400, xwv4600, bfa) new_compare23(xwv440, xwv460, False, bec) -> new_compare116(xwv440, xwv460, new_ltEs8(xwv440, xwv460, bec), bec) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Integer) -> new_compare16(new_sr0(xwv4400, xwv4601), new_sr0(xwv4600, xwv4401)) new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_@0, bhe) -> new_esEs18(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(ty_Ratio, dah)) -> new_esEs14(xwv4001, xwv3001, dah) new_primCmpInt(Pos(Succ(xwv4400)), Neg(xwv460)) -> GT new_esEs20(xwv4001, xwv3001, app(app(ty_@2, cec), ced)) -> new_esEs4(xwv4001, xwv3001, cec, ced) new_lt13(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Double, bad) -> new_ltEs5(xwv4410, xwv4610) new_ltEs19(xwv441, xwv461, ty_Float) -> new_ltEs14(xwv441, xwv461) new_esEs24(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_lt4(xwv440, xwv460, bfg) -> new_esEs9(new_compare9(xwv440, xwv460, bfg), LT) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt13(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_Float) -> new_ltEs14(xwv4412, xwv4612) new_ltEs20(xwv4412, xwv4612, ty_Double) -> new_ltEs5(xwv4412, xwv4612) new_primPlusNat1(Succ(xwv19200), Succ(xwv9700)) -> Succ(Succ(new_primPlusNat1(xwv19200, xwv9700))) new_ltEs14(xwv441, xwv461) -> new_fsEs(new_compare12(xwv441, xwv461)) new_primCmpNat0(Zero, Succ(xwv46000)) -> LT new_compare6(xwv4400, xwv4600, app(app(ty_@2, bee), bef)) -> new_compare8(xwv4400, xwv4600, bee, bef) new_compare25(xwv440, xwv460, False) -> new_compare111(xwv440, xwv460, new_ltEs4(xwv440, xwv460)) new_esEs29(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs28(xwv4411, xwv4611, ty_Int) -> new_esEs17(xwv4411, xwv4611) new_esEs22(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_@0) -> new_esEs18(xwv4002, xwv3002) new_primCmpNat0(Succ(xwv44000), Zero) -> GT new_compare110(xwv440, xwv460, False, h, ba, bb) -> GT new_lt13(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_lt20(xwv4410, xwv4610, app(app(ty_Either, bg), bh)) -> new_lt11(xwv4410, xwv4610, bg, bh) new_pePe(False, xwv135) -> xwv135 new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_[], bbc), bad) -> new_ltEs6(xwv4410, xwv4610, bbc) new_esEs22(xwv4410, xwv4610, app(ty_Ratio, cgf)) -> new_esEs14(xwv4410, xwv4610, cgf) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_[], dab)) -> new_esEs11(xwv4000, xwv3000, dab) new_ltEs13(Left(xwv4410), Right(xwv4610), bbd, bad) -> True new_ltEs19(xwv441, xwv461, ty_@0) -> new_ltEs7(xwv441, xwv461) new_esEs7(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), ccc, ccd, cce) -> new_asAs(new_esEs21(xwv4000, xwv3000, ccc), new_asAs(new_esEs20(xwv4001, xwv3001, ccd), new_esEs19(xwv4002, xwv3002, cce))) new_compare114(xwv440, xwv460, True, bea, beb) -> LT new_esEs11(:(xwv4000, xwv4001), [], bgb) -> False new_esEs11([], :(xwv3000, xwv3001), bgb) -> False new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_esEs25(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Zero)) -> GT new_ltEs19(xwv441, xwv461, app(app(ty_@2, gh), fh)) -> new_ltEs10(xwv441, xwv461, gh, fh) new_ltEs19(xwv441, xwv461, ty_Integer) -> new_ltEs17(xwv441, xwv461) new_compare27(xwv440, xwv460, False, bea, beb) -> new_compare114(xwv440, xwv460, new_ltEs13(xwv440, xwv460, bea, beb), bea, beb) new_lt20(xwv4410, xwv4610, app(ty_Maybe, ca)) -> new_lt9(xwv4410, xwv4610, ca) new_esEs6(Just(xwv4000), Just(xwv3000), ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_Either, bae), baf), bad) -> new_ltEs13(xwv4410, xwv4610, bae, baf) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_@2, caa), cab), bhe) -> new_esEs4(xwv4000, xwv3000, caa, cab) new_lt11(xwv440, xwv460, bea, beb) -> new_esEs9(new_compare11(xwv440, xwv460, bea, beb), LT) new_esEs22(xwv4410, xwv4610, app(ty_Maybe, gc)) -> new_esEs6(xwv4410, xwv4610, gc) new_esEs21(xwv4000, xwv3000, app(app(ty_@2, cfe), cff)) -> new_esEs4(xwv4000, xwv3000, cfe, cff) new_lt19(xwv440, xwv460, app(ty_Maybe, bec)) -> new_lt9(xwv440, xwv460, bec) new_lt21(xwv4411, xwv4611, ty_Bool) -> new_lt15(xwv4411, xwv4611) new_primEqInt(Pos(Zero), Neg(Succ(xwv30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xwv30000))) -> False new_lt19(xwv440, xwv460, ty_Ordering) -> new_lt12(xwv440, xwv460) new_esEs23(xwv440, xwv460, app(ty_[], bed)) -> new_esEs11(xwv440, xwv460, bed) new_ltEs13(Right(xwv4410), Left(xwv4610), bbd, bad) -> False new_esEs25(xwv4000, xwv3000, app(app(ty_@2, dce), dcf)) -> new_esEs4(xwv4000, xwv3000, dce, dcf) new_ltEs4(LT, GT) -> True new_lt21(xwv4411, xwv4611, ty_Int) -> new_lt7(xwv4411, xwv4611) new_esEs20(xwv4001, xwv3001, app(ty_Ratio, cdh)) -> new_esEs14(xwv4001, xwv3001, cdh) new_esEs21(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs29(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs12(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(app(ty_Either, dba), dbb)) -> new_esEs5(xwv4001, xwv3001, dba, dbb) new_primEqInt(Neg(Succ(xwv40000)), Neg(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_lt5(xwv440, xwv460, h, ba, bb) -> new_esEs9(new_compare15(xwv440, xwv460, h, ba, bb), LT) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Char, bad) -> new_ltEs9(xwv4410, xwv4610) new_primCmpInt(Neg(Zero), Pos(Succ(xwv4600))) -> LT new_ltEs20(xwv4412, xwv4612, app(app(ty_Either, ec), ed)) -> new_ltEs13(xwv4412, xwv4612, ec, ed) new_ltEs4(LT, LT) -> True new_compare114(xwv440, xwv460, False, bea, beb) -> GT new_ltEs4(EQ, LT) -> False new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_ltEs18(xwv4411, xwv4611, app(app(app(ty_@3, hf), hg), hh)) -> new_ltEs16(xwv4411, xwv4611, hf, hg, hh) new_primMulInt(Pos(xwv40010), Pos(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_lt13(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_@2, bab), bac), bad) -> new_ltEs10(xwv4410, xwv4610, bab, bac) new_compare6(xwv4400, xwv4600, app(app(ty_Either, beg), beh)) -> new_compare11(xwv4400, xwv4600, beg, beh) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs8(False, False) -> True new_lt19(xwv440, xwv460, app(app(ty_Either, bea), beb)) -> new_lt11(xwv440, xwv460, bea, beb) new_esEs11(:(xwv4000, xwv4001), :(xwv3000, xwv3001), bgb) -> new_asAs(new_esEs12(xwv4000, xwv3000, bgb), new_esEs11(xwv4001, xwv3001, bgb)) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Double) -> new_ltEs5(xwv4411, xwv4611) new_esEs22(xwv4410, xwv4610, app(app(app(ty_@3, gd), ge), gf)) -> new_esEs7(xwv4410, xwv4610, gd, ge, gf) new_esEs24(xwv4001, xwv3001, app(ty_Maybe, dbe)) -> new_esEs6(xwv4001, xwv3001, dbe) new_esEs14(:%(xwv4000, xwv4001), :%(xwv3000, xwv3001), ddd) -> new_asAs(new_esEs27(xwv4000, xwv3000, ddd), new_esEs26(xwv4001, xwv3001, ddd)) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Int, bhe) -> new_esEs17(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, ty_Integer) -> new_esEs10(xwv440, xwv460) new_ltEs19(xwv441, xwv461, app(ty_Maybe, bfh)) -> new_ltEs8(xwv441, xwv461, bfh) new_primMulNat0(Succ(xwv400100), Zero) -> Zero new_primMulNat0(Zero, Succ(xwv300000)) -> Zero new_primPlusNat0(Zero, xwv300000) -> Succ(xwv300000) new_lt13(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(ty_[], dch)) -> new_esEs11(xwv4000, xwv3000, dch) new_esEs22(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_@0) -> new_ltEs7(xwv4412, xwv4612) new_lt13(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_ltEs19(xwv441, xwv461, app(app(ty_Either, bbd), bad)) -> new_ltEs13(xwv441, xwv461, bbd, bad) new_esEs24(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_esEs4(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), daf, dag) -> new_asAs(new_esEs25(xwv4000, xwv3000, daf), new_esEs24(xwv4001, xwv3001, dag)) new_ltEs12(False, True) -> True new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_Either, bhg), bhh), bhe) -> new_esEs5(xwv4000, xwv3000, bhg, bhh) new_lt13(xwv4410, xwv4610, app(ty_[], gg)) -> new_lt18(xwv4410, xwv4610, gg) new_esEs5(Right(xwv4000), Right(xwv3000), cah, app(ty_Maybe, cbf)) -> new_esEs6(xwv4000, xwv3000, cbf) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), cah, app(app(app(ty_@3, cbh), cca), ccb)) -> new_esEs7(xwv4000, xwv3000, cbh, cca, ccb) new_esEs21(xwv4000, xwv3000, app(app(ty_Either, cfc), cfd)) -> new_esEs5(xwv4000, xwv3000, cfc, cfd) new_compare116(xwv440, xwv460, False, bec) -> GT new_compare116(xwv440, xwv460, True, bec) -> LT new_esEs12(xwv4000, xwv3000, app(ty_Maybe, bgh)) -> new_esEs6(xwv4000, xwv3000, bgh) new_esEs19(xwv4002, xwv3002, ty_Double) -> new_esEs16(xwv4002, xwv3002) new_esEs22(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs12(xwv4000, xwv3000, app(ty_[], bha)) -> new_esEs11(xwv4000, xwv3000, bha) new_esEs23(xwv440, xwv460, ty_Ordering) -> new_esEs9(xwv440, xwv460) new_compare1([], [], bed) -> EQ new_esEs6(Just(xwv4000), Just(xwv3000), app(app(app(ty_@3, dac), dad), dae)) -> new_esEs7(xwv4000, xwv3000, dac, dad, dae) new_compare111(xwv440, xwv460, True) -> LT new_esEs28(xwv4411, xwv4611, ty_Char) -> new_esEs15(xwv4411, xwv4611) new_esEs20(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt13(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_esEs20(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_primPlusNat1(Succ(xwv19200), Zero) -> Succ(xwv19200) new_primPlusNat1(Zero, Succ(xwv9700)) -> Succ(xwv9700) new_esEs24(xwv4001, xwv3001, app(app(app(ty_@3, dbg), dbh), dca)) -> new_esEs7(xwv4001, xwv3001, dbg, dbh, dca) new_esEs9(LT, LT) -> True new_compare10(xwv440, xwv460) -> new_compare26(xwv440, xwv460, new_esEs8(xwv440, xwv460)) new_lt13(xwv4410, xwv4610, app(app(ty_@2, ff), fg)) -> new_lt14(xwv4410, xwv4610, ff, fg) new_esEs5(Right(xwv4000), Right(xwv3000), cah, app(ty_[], cbg)) -> new_esEs11(xwv4000, xwv3000, cbg) new_esEs12(xwv4000, xwv3000, app(app(ty_@2, bgf), bgg)) -> new_esEs4(xwv4000, xwv3000, bgf, bgg) new_esEs17(xwv400, xwv300) -> new_primEqInt(xwv400, xwv300) new_lt21(xwv4411, xwv4611, ty_Ordering) -> new_lt12(xwv4411, xwv4611) new_ltEs12(True, True) -> True new_ltEs18(xwv4411, xwv4611, app(app(ty_Either, hc), hd)) -> new_ltEs13(xwv4411, xwv4611, hc, hd) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_@2, chg), chh)) -> new_esEs4(xwv4000, xwv3000, chg, chh) new_esEs24(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_esEs26(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_ltEs4(LT, EQ) -> True new_fsEs(xwv123) -> new_not(new_esEs9(xwv123, GT)) new_esEs19(xwv4002, xwv3002, ty_Float) -> new_esEs13(xwv4002, xwv3002) new_esEs23(xwv440, xwv460, app(app(app(ty_@3, h), ba), bb)) -> new_esEs7(xwv440, xwv460, h, ba, bb) new_esEs23(xwv440, xwv460, ty_Bool) -> new_esEs8(xwv440, xwv460) new_ltEs20(xwv4412, xwv4612, app(app(app(ty_@3, ef), eg), eh)) -> new_ltEs16(xwv4412, xwv4612, ef, eg, eh) new_esEs20(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_ltEs18(xwv4411, xwv4611, app(ty_Maybe, he)) -> new_ltEs8(xwv4411, xwv4611, he) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Bool, bhe) -> new_esEs8(xwv4000, xwv3000) new_primMulInt(Neg(xwv40010), Neg(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_primCmpInt(Pos(Zero), Pos(Succ(xwv4600))) -> new_primCmpNat0(Zero, Succ(xwv4600)) new_lt20(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Integer, bhe) -> new_esEs10(xwv4000, xwv3000) new_compare115(xwv110, xwv111, xwv112, xwv113, False, xwv115, cgd, cge) -> new_compare113(xwv110, xwv111, xwv112, xwv113, xwv115, cgd, cge) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_[], bdf)) -> new_ltEs6(xwv4410, xwv4610, bdf) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Maybe, daa)) -> new_esEs6(xwv4000, xwv3000, daa) new_ltEs4(EQ, EQ) -> True new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs6(Nothing, Just(xwv3000), chc) -> False new_esEs6(Just(xwv4000), Nothing, chc) -> False new_esEs6(Nothing, Nothing, chc) -> True new_esEs12(xwv4000, xwv3000, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs7(xwv4000, xwv3000, bhb, bhc, bhd) new_ltEs18(xwv4411, xwv4611, ty_Char) -> new_ltEs9(xwv4411, xwv4611) new_esEs22(xwv4410, xwv4610, app(app(ty_Either, ga), gb)) -> new_esEs5(xwv4410, xwv4610, ga, gb) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs24(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_lt21(xwv4411, xwv4611, app(app(ty_Either, db), dc)) -> new_lt11(xwv4411, xwv4611, db, dc) new_esEs21(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, app(app(ty_@2, fb), fc)) -> new_esEs4(xwv440, xwv460, fb, fc) new_esEs12(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_compare112(xwv440, xwv460, True) -> LT new_esEs5(Left(xwv4000), Left(xwv3000), ty_Ordering, bhe) -> new_esEs9(xwv4000, xwv3000) new_esEs13(Float(xwv4000, xwv4001), Float(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Char, bhe) -> new_esEs15(xwv4000, xwv3000) new_lt13(xwv4410, xwv4610, app(app(ty_Either, ga), gb)) -> new_lt11(xwv4410, xwv4610, ga, gb) new_ltEs19(xwv441, xwv461, ty_Char) -> new_ltEs9(xwv441, xwv461) new_compare6(xwv4400, xwv4600, app(ty_Ratio, bff)) -> new_compare9(xwv4400, xwv4600, bff) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, app(ty_Ratio, chb)) -> new_ltEs11(xwv4410, xwv4610, chb) new_lt20(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_ltEs18(xwv4411, xwv4611, ty_@0) -> new_ltEs7(xwv4411, xwv4611) new_esEs26(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, app(app(ty_@2, bbe), bbf)) -> new_ltEs10(xwv4410, xwv4610, bbe, bbf) new_ltEs20(xwv4412, xwv4612, ty_Int) -> new_ltEs15(xwv4412, xwv4612) new_primMulInt(Pos(xwv40010), Neg(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_primMulInt(Neg(xwv40010), Pos(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_esEs19(xwv4002, xwv3002, app(app(ty_Either, ccg), cch)) -> new_esEs5(xwv4002, xwv3002, ccg, cch) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs22(xwv4410, xwv4610, app(app(ty_@2, ff), fg)) -> new_esEs4(xwv4410, xwv4610, ff, fg) new_esEs24(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_esEs25(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_compare28(@2(xwv440, xwv441), @2(xwv460, xwv461), False, fd, bdh) -> new_compare115(xwv440, xwv441, xwv460, xwv461, new_lt19(xwv440, xwv460, fd), new_asAs(new_esEs23(xwv440, xwv460, fd), new_ltEs19(xwv441, xwv461, bdh)), fd, bdh) new_lt13(xwv4410, xwv4610, app(app(app(ty_@3, gd), ge), gf)) -> new_lt5(xwv4410, xwv4610, gd, ge, gf) new_sr0(Integer(xwv44000), Integer(xwv46010)) -> Integer(new_primMulInt(xwv44000, xwv46010)) new_esEs12(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Ratio, cfb)) -> new_esEs14(xwv4000, xwv3000, cfb) new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs19(xwv441, xwv461, app(app(app(ty_@3, cf), be), bf)) -> new_ltEs16(xwv441, xwv461, cf, be, bf) new_compare24(xwv440, xwv460, True, h, ba, bb) -> EQ new_ltEs18(xwv4411, xwv4611, ty_Ordering) -> new_ltEs4(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Ratio, cha), bad) -> new_ltEs11(xwv4410, xwv4610, cha) new_ltEs5(xwv441, xwv461) -> new_fsEs(new_compare18(xwv441, xwv461)) new_lt19(xwv440, xwv460, app(ty_Ratio, bfg)) -> new_lt4(xwv440, xwv460, bfg) new_ltEs6(xwv441, xwv461, bdg) -> new_fsEs(new_compare1(xwv441, xwv461, bdg)) new_esEs28(xwv4411, xwv4611, app(app(app(ty_@3, de), df), dg)) -> new_esEs7(xwv4411, xwv4611, de, df, dg) new_compare8(xwv440, xwv460, fb, fc) -> new_compare28(xwv440, xwv460, new_esEs4(xwv440, xwv460, fb, fc), fb, fc) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_asAs(True, xwv62) -> xwv62 new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Integer, bad) -> new_ltEs17(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(ty_Ratio, dcb)) -> new_esEs14(xwv4000, xwv3000, dcb) new_esEs10(Integer(xwv4000), Integer(xwv3000)) -> new_primEqInt(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Maybe, cfg)) -> new_esEs6(xwv4000, xwv3000, cfg) new_esEs28(xwv4411, xwv4611, ty_Bool) -> new_esEs8(xwv4411, xwv4611) new_lt19(xwv440, xwv460, ty_Double) -> new_lt17(xwv440, xwv460) new_ltEs19(xwv441, xwv461, ty_Int) -> new_ltEs15(xwv441, xwv461) new_lt20(xwv4410, xwv4610, app(ty_Ratio, dde)) -> new_lt4(xwv4410, xwv4610, dde) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, app(app(ty_Either, bbg), bbh)) -> new_ltEs13(xwv4410, xwv4610, bbg, bbh) new_compare6(xwv4400, xwv4600, ty_Int) -> new_compare13(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, app(ty_[], gg)) -> new_esEs11(xwv4410, xwv4610, gg) new_lt10(xwv440, xwv460) -> new_esEs9(new_compare12(xwv440, xwv460), LT) new_esEs21(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_lt15(xwv440, xwv460) -> new_esEs9(new_compare10(xwv440, xwv460), LT) new_ltEs10(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, fh) -> new_pePe(new_lt13(xwv4410, xwv4610, gh), new_asAs(new_esEs22(xwv4410, xwv4610, gh), new_ltEs18(xwv4411, xwv4611, fh))) new_esEs21(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Char) -> new_ltEs9(xwv4412, xwv4612) new_lt21(xwv4411, xwv4611, ty_Char) -> new_lt8(xwv4411, xwv4611) new_lt21(xwv4411, xwv4611, app(ty_[], dh)) -> new_lt18(xwv4411, xwv4611, dh) new_ltEs20(xwv4412, xwv4612, app(ty_Ratio, ddg)) -> new_ltEs11(xwv4412, xwv4612, ddg) new_lt19(xwv440, xwv460, ty_Integer) -> new_lt6(xwv440, xwv460) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, app(ty_Maybe, gc)) -> new_lt9(xwv4410, xwv4610, gc) new_esEs29(xwv4410, xwv4610, app(app(ty_Either, bg), bh)) -> new_esEs5(xwv4410, xwv4610, bg, bh) new_esEs12(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_lt14(xwv440, xwv460, fb, fc) -> new_esEs9(new_compare8(xwv440, xwv460, fb, fc), LT) new_esEs29(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_primCompAux00(xwv146, EQ) -> xwv146 new_compare113(xwv110, xwv111, xwv112, xwv113, False, cgd, cge) -> GT new_sr(xwv4001, xwv3000) -> new_primMulInt(xwv4001, xwv3000) new_compare26(xwv440, xwv460, False) -> new_compare112(xwv440, xwv460, new_ltEs12(xwv440, xwv460)) new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_@2, bcf), bcg)) -> new_ltEs10(xwv4410, xwv4610, bcf, bcg) new_compare6(xwv4400, xwv4600, ty_Double) -> new_compare18(xwv4400, xwv4600) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Bool, bad) -> new_ltEs12(xwv4410, xwv4610) new_compare13(xwv44, xwv46) -> new_primCmpInt(xwv44, xwv46) new_primMulNat0(Zero, Zero) -> Zero new_esEs22(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_esEs21(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_lt19(xwv440, xwv460, ty_Char) -> new_lt8(xwv440, xwv460) new_esEs29(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_lt9(xwv440, xwv460, bec) -> new_esEs9(new_compare14(xwv440, xwv460, bec), LT) new_compare111(xwv440, xwv460, False) -> GT new_ltEs12(True, False) -> False new_compare1(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_primCompAux0(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bed), bed) new_lt20(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(app(ty_Either, cea), ceb)) -> new_esEs5(xwv4001, xwv3001, cea, ceb) new_esEs5(Right(xwv4000), Right(xwv3000), cah, app(app(ty_Either, cbb), cbc)) -> new_esEs5(xwv4000, xwv3000, cbb, cbc) new_ltEs19(xwv441, xwv461, app(ty_Ratio, cgh)) -> new_ltEs11(xwv441, xwv461, cgh) new_esEs19(xwv4002, xwv3002, app(ty_Ratio, ccf)) -> new_esEs14(xwv4002, xwv3002, ccf) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Int) -> new_compare13(new_sr(xwv4400, xwv4601), new_sr(xwv4600, xwv4401)) new_ltEs18(xwv4411, xwv4611, ty_Int) -> new_ltEs15(xwv4411, xwv4611) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Succ(xwv4600))) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_esEs29(xwv4410, xwv4610, app(ty_Ratio, dde)) -> new_esEs14(xwv4410, xwv4610, dde) new_lt21(xwv4411, xwv4611, app(ty_Ratio, ddf)) -> new_lt4(xwv4411, xwv4611, ddf) new_esEs9(EQ, EQ) -> True new_ltEs18(xwv4411, xwv4611, app(ty_Ratio, cgg)) -> new_ltEs11(xwv4411, xwv4611, cgg) new_esEs12(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs12(False, False) -> True new_lt19(xwv440, xwv460, ty_Int) -> new_lt7(xwv440, xwv460) new_lt20(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Maybe, bdb)) -> new_ltEs8(xwv4410, xwv4610, bdb) new_esEs20(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_ltEs16(xwv4410, xwv4610, bcb, bcc, bcd) new_primEqInt(Neg(Succ(xwv40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xwv30000))) -> False new_esEs25(xwv4000, xwv3000, app(ty_Maybe, dcg)) -> new_esEs6(xwv4000, xwv3000, dcg) new_ltEs8(Nothing, Just(xwv4610), bfh) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_Either, bch), bda)) -> new_ltEs13(xwv4410, xwv4610, bch, bda) new_primEqInt(Pos(Succ(xwv40000)), Pos(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_ltEs18(xwv4411, xwv4611, app(ty_[], baa)) -> new_ltEs6(xwv4411, xwv4611, baa) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(app(ty_Either, dcc), dcd)) -> new_esEs5(xwv4000, xwv3000, dcc, dcd) new_esEs20(xwv4001, xwv3001, app(ty_Maybe, cee)) -> new_esEs6(xwv4001, xwv3001, cee) new_lt20(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_primEqInt(Pos(Succ(xwv40000)), Neg(xwv3000)) -> False new_primEqInt(Neg(Succ(xwv40000)), Pos(xwv3000)) -> False new_esEs19(xwv4002, xwv3002, app(ty_Maybe, cdc)) -> new_esEs6(xwv4002, xwv3002, cdc) new_ltEs4(EQ, GT) -> True new_primCmpInt(Neg(Zero), Neg(Succ(xwv4600))) -> new_primCmpNat0(Succ(xwv4600), Zero) new_esEs22(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_lt16(xwv440, xwv460) -> new_esEs9(new_compare17(xwv440, xwv460), LT) new_esEs27(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs19(xwv4002, xwv3002, ty_Char) -> new_esEs15(xwv4002, xwv3002) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_esEs21(xwv4000, xwv3000, app(ty_[], cfh)) -> new_esEs11(xwv4000, xwv3000, cfh) new_esEs25(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, ty_Char) -> new_esEs15(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(app(app(ty_@3, bfb), bfc), bfd)) -> new_compare15(xwv4400, xwv4600, bfb, bfc, bfd) new_ltEs15(xwv441, xwv461) -> new_fsEs(new_compare13(xwv441, xwv461)) new_lt19(xwv440, xwv460, ty_Float) -> new_lt10(xwv440, xwv460) new_esEs19(xwv4002, xwv3002, ty_Integer) -> new_esEs10(xwv4002, xwv3002) new_compare110(xwv440, xwv460, True, h, ba, bb) -> LT new_primCompAux0(xwv4400, xwv4600, xwv136, bed) -> new_primCompAux00(xwv136, new_compare6(xwv4400, xwv4600, bed)) new_esEs23(xwv440, xwv460, ty_Float) -> new_esEs13(xwv440, xwv460) new_esEs29(xwv4410, xwv4610, app(app(app(ty_@3, cb), cc), cd)) -> new_esEs7(xwv4410, xwv4610, cb, cc, cd) new_compare16(Integer(xwv4400), Integer(xwv4600)) -> new_primCmpInt(xwv4400, xwv4600) new_lt12(xwv440, xwv460) -> new_esEs9(new_compare19(xwv440, xwv460), LT) new_lt7(xwv440, xwv460) -> new_esEs9(new_compare13(xwv440, xwv460), LT) new_not(False) -> True new_esEs6(Just(xwv4000), Just(xwv3000), ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Double, bhe) -> new_esEs16(xwv4000, xwv3000) new_compare11(xwv440, xwv460, bea, beb) -> new_compare27(xwv440, xwv460, new_esEs5(xwv440, xwv460, bea, beb), bea, beb) new_compare1([], :(xwv4600, xwv4601), bed) -> LT new_esEs20(xwv4001, xwv3001, app(app(app(ty_@3, ceg), ceh), cfa)) -> new_esEs7(xwv4001, xwv3001, ceg, ceh, cfa) new_esEs20(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_esEs9(GT, GT) -> True new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, app(ty_[], bce)) -> new_ltEs6(xwv4410, xwv4610, bce) new_esEs5(Left(xwv4000), Right(xwv3000), cah, bhe) -> False new_esEs5(Right(xwv4000), Left(xwv3000), cah, bhe) -> False new_esEs22(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare25(xwv440, xwv460, True) -> EQ new_compare27(xwv440, xwv460, True, bea, beb) -> EQ new_lt19(xwv440, xwv460, ty_@0) -> new_lt16(xwv440, xwv460) new_ltEs4(GT, LT) -> False new_esEs24(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_esEs9(EQ, GT) -> False new_esEs9(GT, EQ) -> False new_primPlusNat0(Succ(xwv1010), xwv300000) -> Succ(Succ(new_primPlusNat1(xwv1010, xwv300000))) new_ltEs20(xwv4412, xwv4612, app(ty_[], fa)) -> new_ltEs6(xwv4412, xwv4612, fa) new_esEs8(True, True) -> True new_esEs29(xwv4410, xwv4610, app(ty_Maybe, ca)) -> new_esEs6(xwv4410, xwv4610, ca) new_ltEs13(Right(xwv4410), Right(xwv4610), bbd, ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Int, bad) -> new_ltEs15(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_Bool) -> new_esEs8(xwv4002, xwv3002) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt20(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_primPlusNat1(Zero, Zero) -> Zero new_esEs20(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_esEs12(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Float) -> new_ltEs14(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(app(ty_@3, bah), bba), bbb), bad) -> new_ltEs16(xwv4410, xwv4610, bah, bba, bbb) new_ltEs9(xwv441, xwv461) -> new_fsEs(new_compare7(xwv441, xwv461)) new_esEs19(xwv4002, xwv3002, app(ty_[], cdd)) -> new_esEs11(xwv4002, xwv3002, cdd) new_esEs28(xwv4411, xwv4611, ty_Ordering) -> new_esEs9(xwv4411, xwv4611) new_esEs25(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs29(xwv4410, xwv4610, app(ty_[], ce)) -> new_esEs11(xwv4410, xwv4610, ce) new_esEs28(xwv4411, xwv4611, app(ty_Maybe, dd)) -> new_esEs6(xwv4411, xwv4611, dd) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_lt19(xwv440, xwv460, app(app(app(ty_@3, h), ba), bb)) -> new_lt5(xwv440, xwv460, h, ba, bb) new_lt20(xwv4410, xwv4610, app(ty_[], ce)) -> new_lt18(xwv4410, xwv4610, ce) new_compare17(@0, @0) -> EQ new_primMulNat0(Succ(xwv400100), Succ(xwv300000)) -> new_primPlusNat0(new_primMulNat0(xwv400100, Succ(xwv300000)), xwv300000) new_esEs28(xwv4411, xwv4611, app(app(ty_@2, cg), da)) -> new_esEs4(xwv4411, xwv4611, cg, da) new_compare7(Char(xwv4400), Char(xwv4600)) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Ordering, bad) -> new_ltEs4(xwv4410, xwv4610) new_primCmpNat0(Succ(xwv44000), Succ(xwv46000)) -> new_primCmpNat0(xwv44000, xwv46000) new_lt8(xwv440, xwv460) -> new_esEs9(new_compare7(xwv440, xwv460), LT) new_lt20(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_ltEs8(Nothing, Nothing, bfh) -> True new_ltEs8(Just(xwv4410), Nothing, bfh) -> False new_compare14(xwv440, xwv460, bec) -> new_compare23(xwv440, xwv460, new_esEs6(xwv440, xwv460, bec), bec) new_lt20(xwv4410, xwv4610, app(app(ty_@2, bc), bd)) -> new_lt14(xwv4410, xwv4610, bc, bd) new_ltEs20(xwv4412, xwv4612, ty_Ordering) -> new_ltEs4(xwv4412, xwv4612) new_compare6(xwv4400, xwv4600, ty_Ordering) -> new_compare19(xwv4400, xwv4600) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Ratio, bga)) -> new_ltEs11(xwv4410, xwv4610, bga) new_esEs29(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_esEs29(xwv4410, xwv4610, app(app(ty_@2, bc), bd)) -> new_esEs4(xwv4410, xwv4610, bc, bd) new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, ty_@0) -> new_lt16(xwv4411, xwv4611) new_ltEs19(xwv441, xwv461, ty_Ordering) -> new_ltEs4(xwv441, xwv461) new_primEqNat0(Zero, Zero) -> True new_esEs28(xwv4411, xwv4611, app(app(ty_Either, db), dc)) -> new_esEs5(xwv4411, xwv4611, db, dc) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs15(Char(xwv4000), Char(xwv3000)) -> new_primEqNat0(xwv4000, xwv3000) new_esEs11([], [], bgb) -> True new_lt21(xwv4411, xwv4611, ty_Double) -> new_lt17(xwv4411, xwv4611) new_primCmpInt(Neg(Succ(xwv4400)), Neg(Succ(xwv4600))) -> new_primCmpNat0(xwv4600, xwv4400) new_ltEs4(GT, GT) -> True new_esEs9(LT, GT) -> False new_esEs9(GT, LT) -> False new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(app(ty_@3, bdc), bdd), bde)) -> new_ltEs16(xwv4410, xwv4610, bdc, bdd, bde) new_esEs5(Right(xwv4000), Right(xwv3000), cah, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_asAs(False, xwv62) -> False new_ltEs17(xwv441, xwv461) -> new_fsEs(new_compare16(xwv441, xwv461)) new_esEs19(xwv4002, xwv3002, ty_Int) -> new_esEs17(xwv4002, xwv3002) new_compare6(xwv4400, xwv4600, ty_Char) -> new_compare7(xwv4400, xwv4600) new_esEs29(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_lt21(xwv4411, xwv4611, ty_Integer) -> new_lt6(xwv4411, xwv4611) new_lt19(xwv440, xwv460, app(ty_[], bed)) -> new_lt18(xwv440, xwv460, bed) new_compare28(xwv44, xwv46, True, fd, bdh) -> EQ new_esEs25(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Integer) -> new_compare16(xwv4400, xwv4600) new_lt20(xwv4410, xwv4610, app(app(app(ty_@3, cb), cc), cd)) -> new_lt5(xwv4410, xwv4610, cb, cc, cd) new_esEs29(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, app(ty_Ratio, cgf)) -> new_lt4(xwv4410, xwv4610, cgf) new_esEs25(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Float) -> new_compare12(xwv4400, xwv4600) new_lt19(xwv440, xwv460, app(app(ty_@2, fb), fc)) -> new_lt14(xwv440, xwv460, fb, fc) new_esEs20(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(app(ty_@3, cae), caf), cag), bhe) -> new_esEs7(xwv4000, xwv3000, cae, caf, cag) new_ltEs11(xwv441, xwv461, cgh) -> new_fsEs(new_compare9(xwv441, xwv461, cgh)) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_[], cad), bhe) -> new_esEs11(xwv4000, xwv3000, cad) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs21(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_esEs22(x0, x1, ty_Integer) new_primCompAux00(x0, LT) new_ltEs13(Left(x0), Right(x1), x2, x3) new_primCmpInt(Pos(Succ(x0)), Pos(Zero)) new_ltEs13(Right(x0), Left(x1), x2, x3) new_compare25(x0, x1, True) new_primCmpInt(Neg(Succ(x0)), Neg(Zero)) new_esEs6(Just(x0), Nothing, x1) new_ltEs13(Right(x0), Right(x1), x2, ty_Bool) new_esEs12(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs24(x0, x1, ty_Int) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, ty_Int) new_ltEs8(Just(x0), Just(x1), app(ty_[], x2)) new_lt13(x0, x1, ty_Int) new_lt13(x0, x1, ty_Ordering) new_ltEs4(LT, LT) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_primPlusNat1(Zero, Zero) new_ltEs20(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_sr0(Integer(x0), Integer(x1)) new_compare6(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Int) new_esEs24(x0, x1, ty_Double) new_esEs14(:%(x0, x1), :%(x2, x3), x4) new_compare6(x0, x1, ty_Bool) new_ltEs13(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_ltEs13(Right(x0), Right(x1), x2, ty_@0) new_sr(x0, x1) new_lt11(x0, x1, x2, x3) new_esEs26(x0, x1, ty_Int) new_lt13(x0, x1, ty_Double) new_esEs24(x0, x1, ty_Char) new_ltEs8(Just(x0), Just(x1), ty_Integer) new_primEqInt(Pos(Zero), Pos(Zero)) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, ty_Integer) new_ltEs7(x0, x1) new_ltEs8(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_compare110(x0, x1, True, x2, x3, x4) new_ltEs19(x0, x1, ty_Float) new_esEs12(x0, x1, ty_Bool) new_esEs25(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Bool) new_ltEs8(Just(x0), Just(x1), ty_@0) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Ordering) new_compare17(@0, @0) new_esEs24(x0, x1, app(ty_[], x2)) new_lt20(x0, x1, app(ty_[], x2)) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_compare28(x0, x1, True, x2, x3) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_lt13(x0, x1, ty_Char) new_esEs21(x0, x1, ty_Int) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs10(Integer(x0), Integer(x1)) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_compare8(x0, x1, x2, x3) new_ltEs8(Nothing, Nothing, x0) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs9(LT, LT) new_primMulInt(Neg(x0), Neg(x1)) new_esEs20(x0, x1, ty_@0) new_compare6(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Char) new_compare6(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Int) new_esEs9(EQ, GT) new_esEs9(GT, EQ) new_esEs22(x0, x1, ty_@0) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_ltEs6(x0, x1, x2) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs8(False, True) new_esEs8(True, False) new_lt19(x0, x1, ty_Double) new_esEs12(x0, x1, ty_@0) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Char) new_esEs8(True, True) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare112(x0, x1, False) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_compare28(@2(x0, x1), @2(x2, x3), False, x4, x5) new_esEs23(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Bool) new_ltEs20(x0, x1, ty_@0) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_lt14(x0, x1, x2, x3) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_esEs22(x0, x1, ty_Float) new_ltEs13(Left(x0), Left(x1), ty_Float, x2) new_pePe(False, x0) new_compare10(x0, x1) new_ltEs4(GT, EQ) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs12(x0, x1, ty_Float) new_ltEs4(EQ, GT) new_esEs19(x0, x1, ty_Ordering) new_compare9(:%(x0, x1), :%(x2, x3), ty_Int) new_compare6(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs28(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Double) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_compare6(x0, x1, ty_Double) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_esEs24(x0, x1, ty_Ordering) new_esEs29(x0, x1, app(ty_[], x2)) new_compare113(x0, x1, x2, x3, True, x4, x5) new_esEs20(x0, x1, ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_esEs20(x0, x1, ty_Char) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_ltEs20(x0, x1, ty_Double) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_lt5(x0, x1, x2, x3, x4) new_compare6(x0, x1, ty_Char) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_ltEs5(x0, x1) new_ltEs20(x0, x1, ty_Char) new_ltEs20(x0, x1, app(ty_[], x2)) new_ltEs19(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Double) new_ltEs13(Left(x0), Left(x1), ty_Integer, x2) new_esEs12(x0, x1, app(ty_Ratio, x2)) new_ltEs8(Just(x0), Just(x1), ty_Ordering) new_esEs22(x0, x1, ty_Int) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs8(Just(x0), Just(x1), ty_Float) new_compare113(x0, x1, x2, x3, False, x4, x5) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs21(x0, x1, ty_@0) new_esEs12(x0, x1, ty_Int) new_ltEs13(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_lt18(x0, x1, x2) new_esEs28(x0, x1, ty_Int) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_compare27(x0, x1, True, x2, x3) new_ltEs20(x0, x1, ty_Bool) new_esEs29(x0, x1, ty_Ordering) new_ltEs4(EQ, LT) new_ltEs4(LT, EQ) new_compare6(x0, x1, ty_Float) new_ltEs13(Right(x0), Right(x1), x2, ty_Int) new_lt13(x0, x1, ty_Bool) new_ltEs13(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt20(x0, x1, ty_Float) new_ltEs4(GT, GT) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs13(Right(x0), Right(x1), x2, ty_Ordering) new_ltEs18(x0, x1, ty_Double) new_compare26(x0, x1, False) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_lt12(x0, x1) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs16(Double(x0, x1), Double(x2, x3)) new_ltEs8(Just(x0), Just(x1), ty_Int) new_esEs12(x0, x1, app(ty_[], x2)) new_lt4(x0, x1, x2) new_primCompAux00(x0, EQ) new_ltEs20(x0, x1, ty_Integer) new_compare18(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_ltEs13(Left(x0), Left(x1), ty_Bool, x2) new_esEs28(x0, x1, ty_Float) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, ty_Float) new_compare111(x0, x1, False) new_lt6(x0, x1) new_ltEs8(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_compare1([], :(x0, x1), x2) new_esEs22(x0, x1, ty_Char) new_compare6(x0, x1, app(app(ty_Either, x2), x3)) new_esEs12(x0, x1, ty_Char) new_compare25(x0, x1, False) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_primPlusNat1(Zero, Succ(x0)) new_lt19(x0, x1, ty_Ordering) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs25(x0, x1, ty_Int) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_lt17(x0, x1) new_compare115(x0, x1, x2, x3, True, x4, x5, x6) new_compare23(x0, x1, False, x2) new_ltEs17(x0, x1) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_lt19(x0, x1, app(ty_Maybe, x2)) new_lt21(x0, x1, app(ty_[], x2)) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_ltEs13(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_primPlusNat0(Succ(x0), x1) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_compare116(x0, x1, True, x2) new_primEqNat0(Succ(x0), Zero) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_lt20(x0, x1, app(ty_Ratio, x2)) new_compare1(:(x0, x1), [], x2) new_esEs28(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs8(Just(x0), Just(x1), ty_Char) new_esEs28(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(x0, x1) new_compare16(Integer(x0), Integer(x1)) new_esEs6(Nothing, Just(x0), x1) new_esEs12(x0, x1, ty_Ordering) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Double) new_ltEs13(Left(x0), Left(x1), ty_Ordering, x2) new_esEs25(x0, x1, ty_Bool) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_primPlusNat1(Succ(x0), Zero) new_esEs22(x0, x1, ty_Ordering) new_esEs13(Float(x0, x1), Float(x2, x3)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_@0) new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs13(Left(x0), Left(x1), app(ty_[], x2), x3) new_ltEs13(Right(x0), Right(x1), x2, ty_Char) new_compare6(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, ty_Float) new_compare112(x0, x1, True) new_ltEs13(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs25(x0, x1, ty_Char) new_lt21(x0, x1, ty_Double) new_esEs19(x0, x1, ty_@0) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_lt21(x0, x1, ty_@0) new_esEs28(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs17(x0, x1) new_esEs11([], [], x0) new_compare24(x0, x1, False, x2, x3, x4) new_primMulInt(Pos(x0), Pos(x1)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_ltEs8(Just(x0), Just(x1), ty_Bool) new_compare27(x0, x1, False, x2, x3) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_lt20(x0, x1, ty_@0) new_compare26(x0, x1, True) new_esEs9(EQ, EQ) new_ltEs19(x0, x1, ty_Int) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_lt19(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, ty_@0) new_lt9(x0, x1, x2) new_esEs28(x0, x1, ty_Integer) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt20(x0, x1, ty_Bool) new_primCmpInt(Neg(Succ(x0)), Neg(Succ(x1))) new_primMulNat0(Zero, Zero) new_lt21(x0, x1, ty_Integer) new_ltEs10(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs13(Left(x0), Left(x1), ty_Int, x2) new_lt21(x0, x1, ty_Bool) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_compare12(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare1(:(x0, x1), :(x2, x3), x4) new_compare114(x0, x1, False, x2, x3) new_ltEs13(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs29(x0, x1, ty_Bool) new_compare12(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare12(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_ltEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs15(Char(x0), Char(x1)) new_primCmpNat0(Succ(x0), Succ(x1)) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_ltEs20(x0, x1, ty_Float) new_ltEs13(Left(x0), Left(x1), ty_Double, x2) new_ltEs13(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_pePe(True, x0) new_ltEs13(Left(x0), Left(x1), ty_Char, x2) new_compare1([], [], x0) new_esEs25(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_Float) new_primCompAux00(x0, GT) new_asAs(True, x0) new_esEs25(x0, x1, ty_Float) new_ltEs14(x0, x1) new_ltEs4(LT, GT) new_lt19(x0, x1, ty_@0) new_ltEs4(GT, LT) new_primEqNat0(Zero, Succ(x0)) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_not(True) new_lt13(x0, x1, app(ty_Maybe, x2)) new_lt21(x0, x1, app(ty_Maybe, x2)) new_lt20(x0, x1, ty_Char) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Char) new_lt16(x0, x1) new_esEs21(x0, x1, app(ty_[], x2)) new_ltEs12(True, True) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs21(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Integer) new_ltEs13(Left(x0), Left(x1), ty_@0, x2) new_esEs19(x0, x1, ty_Integer) new_esEs20(x0, x1, ty_Float) new_esEs28(x0, x1, ty_Bool) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs11(:(x0, x1), :(x2, x3), x4) new_esEs28(x0, x1, ty_@0) new_esEs28(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_compare7(Char(x0), Char(x1)) new_esEs23(x0, x1, ty_Bool) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs19(x0, x1, ty_@0) new_ltEs12(False, True) new_ltEs12(True, False) new_ltEs8(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_primMulNat0(Zero, Succ(x0)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs16(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_esEs9(LT, EQ) new_esEs9(EQ, LT) new_esEs28(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs19(x0, x1, ty_Bool) new_esEs23(x0, x1, ty_@0) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_ltEs4(EQ, EQ) new_esEs9(GT, GT) new_compare111(x0, x1, True) new_esEs23(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Double) new_compare19(x0, x1) new_lt20(x0, x1, ty_Int) new_ltEs19(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Float) new_ltEs8(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs27(x0, x1, ty_Integer) new_lt19(x0, x1, ty_Bool) new_lt10(x0, x1) new_esEs11(:(x0, x1), [], x2) new_esEs24(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_Char) new_compare6(x0, x1, app(ty_[], x2)) new_lt20(x0, x1, ty_Double) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, ty_Int) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(LT, GT) new_esEs9(GT, LT) new_primCmpInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primCmpInt(Pos(Zero), Pos(Zero)) new_compare110(x0, x1, False, x2, x3, x4) new_compare12(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs28(x0, x1, ty_Char) new_ltEs19(x0, x1, app(ty_[], x2)) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt19(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Integer) new_asAs(False, x0) new_esEs21(x0, x1, ty_Bool) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs8(Just(x0), Just(x1), ty_Double) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_primMulNat0(Succ(x0), Zero) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_compare18(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_lt21(x0, x1, ty_Ordering) new_lt13(x0, x1, ty_Integer) new_compare18(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare18(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_esEs7(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt21(x0, x1, ty_Float) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt7(x0, x1) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_esEs28(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_esEs6(Just(x0), Just(x1), ty_Integer) new_compare11(x0, x1, x2, x3) new_lt19(x0, x1, app(ty_[], x2)) new_esEs26(x0, x1, ty_Integer) new_lt13(x0, x1, ty_@0) new_compare114(x0, x1, True, x2, x3) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs29(x0, x1, ty_Int) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs25(x0, x1, ty_@0) new_lt13(x0, x1, app(ty_[], x2)) new_compare14(x0, x1, x2) new_compare15(x0, x1, x2, x3, x4) new_lt19(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Bool) new_compare24(x0, x1, True, x2, x3, x4) new_esEs12(x0, x1, app(app(ty_@2, x2), x3)) new_esEs12(x0, x1, app(app(ty_Either, x2), x3)) new_primCmpNat0(Zero, Succ(x0)) new_lt15(x0, x1) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_fsEs(x0) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(@0, @0) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_compare13(x0, x1) new_primPlusNat0(Zero, x0) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_compare23(x0, x1, True, x2) new_primPlusNat1(Succ(x0), Succ(x1)) new_esEs12(x0, x1, ty_Double) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_primEqNat0(Zero, Zero) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_compare6(x0, x1, ty_Integer) new_ltEs15(x0, x1) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_primCompAux0(x0, x1, x2, x3) new_esEs19(x0, x1, ty_Int) new_lt19(x0, x1, app(ty_Ratio, x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_not(False) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_lt19(x0, x1, ty_Float) new_esEs8(False, False) new_lt21(x0, x1, app(ty_Ratio, x2)) new_compare116(x0, x1, False, x2) new_ltEs12(False, False) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs27(x0, x1, ty_Int) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_lt20(x0, x1, ty_Integer) new_esEs11([], :(x0, x1), x2) new_compare6(x0, x1, app(ty_Ratio, x2)) new_esEs19(x0, x1, ty_Bool) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs8(Nothing, Just(x0), x1) new_esEs19(x0, x1, ty_Float) new_esEs28(x0, x1, ty_Ordering) new_primCmpNat0(Succ(x0), Zero) new_esEs23(x0, x1, ty_Integer) new_compare115(x0, x1, x2, x3, False, x4, x5, x6) new_compare9(:%(x0, x1), :%(x2, x3), ty_Integer) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_lt8(x0, x1) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_lt21(x0, x1, ty_Char) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_esEs20(x0, x1, ty_Ordering) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Char) new_compare6(x0, x1, ty_Ordering) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_lt20(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs8(Just(x0), Just(x1), app(ty_Ratio, x2)) new_esEs23(x0, x1, ty_Ordering) new_esEs12(x0, x1, app(ty_Maybe, x2)) new_ltEs8(Just(x0), Nothing, x1) new_esEs25(x0, x1, ty_Double) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs6(Nothing, Nothing, x0) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs11(x0, x1, x2) new_esEs24(x0, x1, ty_Float) new_ltEs13(Right(x0), Right(x1), x2, ty_Double) new_ltEs18(x0, x1, ty_Ordering) new_lt21(x0, x1, ty_Int) new_primCmpNat0(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Bool) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_ltEs18(x0, x1, app(ty_[], x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_lt3(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_primCompAux(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bed), bed) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 4 *new_lt3(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_compare0(xwv4401, xwv4601, bed) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_compare4(xwv440, xwv460, bec) -> new_compare22(xwv440, xwv460, new_esEs6(xwv440, xwv460, bec), bec) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4 *new_compare0(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_primCompAux(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bed), bed) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 4 *new_compare20(@2(:(xwv4400, xwv4401), xwv441), @2(:(xwv4600, xwv4601), xwv461), False, app(ty_[], bed), bdh) -> new_primCompAux(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bed), bed) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4 *new_compare0(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bed) -> new_compare0(xwv4401, xwv4601, bed) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_compare5(xwv440, xwv460, h, ba, bb) -> new_compare2(xwv440, xwv460, new_esEs7(xwv440, xwv460, h, ba, bb), h, ba, bb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5, 5 >= 6 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(app(ty_@2, ha), hb)) -> new_ltEs0(xwv4411, xwv4611, ha, hb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_lt1(xwv440, xwv460, bec) -> new_compare22(xwv440, xwv460, new_esEs6(xwv440, xwv460, bec), bec) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(app(ty_Either, ga), gb), fh) -> new_lt0(xwv4410, xwv4610, ga, gb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_compare21(xwv440, xwv460, False, bea, beb) -> new_ltEs1(xwv440, xwv460, bea, beb) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3, 5 >= 4 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(app(app(ty_@3, hf), hg), hh)) -> new_ltEs(xwv4411, xwv4611, hf, hg, hh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(app(ty_@2, ea), eb)) -> new_ltEs0(xwv4412, xwv4612, ea, eb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(app(app(ty_@3, ef), eg), eh)) -> new_ltEs(xwv4412, xwv4612, ef, eg, eh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(ty_Maybe, he)) -> new_ltEs2(xwv4411, xwv4611, he) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(ty_Maybe, ee)) -> new_ltEs2(xwv4412, xwv4612, ee) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_ltEs2(Just(xwv4410), Just(xwv4610), app(app(ty_@2, bcf), bcg)) -> new_ltEs0(xwv4410, xwv4610, bcf, bcg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(app(ty_@2, fb), fc), bdh) -> new_compare20(xwv440, xwv460, new_esEs4(xwv440, xwv460, fb, fc), fb, fc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5 *new_primCompAux(xwv4400, xwv4600, xwv136, app(app(ty_@2, bee), bef)) -> new_compare(xwv4400, xwv4600, bee, bef) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(app(ty_Either, hc), hd)) -> new_ltEs1(xwv4411, xwv4611, hc, hd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs2(Just(xwv4410), Just(xwv4610), app(app(app(ty_@3, bdc), bdd), bde)) -> new_ltEs(xwv4410, xwv4610, bdc, bdd, bde) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_compare2(xwv440, xwv460, False, h, ba, bb) -> new_ltEs(xwv440, xwv460, h, ba, bb) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3, 5 >= 4, 6 >= 5 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(app(ty_Either, ec), ed)) -> new_ltEs1(xwv4412, xwv4612, ec, ed) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_ltEs2(Just(xwv4410), Just(xwv4610), app(ty_Maybe, bdb)) -> new_ltEs2(xwv4410, xwv4610, bdb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_compare22(xwv440, xwv460, False, bec) -> new_ltEs2(xwv440, xwv460, bec) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3 *new_ltEs2(Just(xwv4410), Just(xwv4610), app(app(ty_Either, bch), bda)) -> new_ltEs1(xwv4410, xwv4610, bch, bda) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs2(Just(xwv4410), Just(xwv4610), app(ty_[], bdf)) -> new_ltEs3(xwv4410, xwv4610, bdf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs3(xwv441, xwv461, bdg) -> new_compare0(xwv441, xwv461, bdg) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(app(app(ty_@3, gd), ge), gf), fh) -> new_lt2(xwv4410, xwv4610, gd, ge, gf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_lt2(xwv440, xwv460, h, ba, bb) -> new_compare2(xwv440, xwv460, new_esEs7(xwv440, xwv460, h, ba, bb), h, ba, bb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5, 5 >= 6 *new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(ty_Maybe, bec), bdh) -> new_compare22(xwv440, xwv460, new_esEs6(xwv440, xwv460, bec), bec) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4 *new_lt(xwv440, xwv460, fb, fc) -> new_compare20(xwv440, xwv460, new_esEs4(xwv440, xwv460, fb, fc), fb, fc) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_compare(xwv440, xwv460, fb, fc) -> new_compare20(xwv440, xwv460, new_esEs4(xwv440, xwv460, fb, fc), fb, fc) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), gh, app(ty_[], baa)) -> new_ltEs3(xwv4411, xwv4611, baa) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, be, app(ty_[], fa)) -> new_ltEs3(xwv4412, xwv4612, fa) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_primCompAux(xwv4400, xwv4600, xwv136, app(ty_[], bfe)) -> new_compare0(xwv4400, xwv4600, bfe) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(ty_[], gg), fh) -> new_lt3(xwv4410, xwv4610, gg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_lt0(xwv440, xwv460, bea, beb) -> new_compare21(xwv440, xwv460, new_esEs5(xwv440, xwv460, bea, beb), bea, beb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(app(ty_Either, bea), beb), bdh) -> new_compare21(xwv440, xwv460, new_esEs5(xwv440, xwv460, bea, beb), bea, beb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5 *new_compare3(xwv440, xwv460, bea, beb) -> new_compare21(xwv440, xwv460, new_esEs5(xwv440, xwv460, bea, beb), bea, beb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, app(app(app(ty_@3, h), ba), bb), bdh) -> new_compare2(xwv440, xwv460, new_esEs7(xwv440, xwv460, h, ba, bb), h, ba, bb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5, 4 > 6 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(app(ty_@2, ff), fg), fh) -> new_lt(xwv4410, xwv4610, ff, fg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs0(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), app(ty_Maybe, gc), fh) -> new_lt1(xwv4410, xwv4610, gc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_primCompAux(xwv4400, xwv4600, xwv136, app(ty_Maybe, bfa)) -> new_compare4(xwv4400, xwv4600, bfa) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3 *new_primCompAux(xwv4400, xwv4600, xwv136, app(app(app(ty_@3, bfb), bfc), bfd)) -> new_compare5(xwv4400, xwv4600, bfb, bfc, bfd) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4, 4 > 5 *new_primCompAux(xwv4400, xwv4600, xwv136, app(app(ty_Either, beg), beh)) -> new_compare3(xwv4400, xwv4600, beg, beh) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4 *new_ltEs1(Left(xwv4410), Left(xwv4610), app(app(ty_@2, bab), bac), bad) -> new_ltEs0(xwv4410, xwv4610, bab, bac) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(app(ty_@2, bbe), bbf)) -> new_ltEs0(xwv4410, xwv4610, bbe, bbf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(app(ty_@2, ha), hb))) -> new_ltEs0(xwv4411, xwv4611, ha, hb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(app(ty_@2, bab), bac)), bad)) -> new_ltEs0(xwv4410, xwv4610, bab, bac) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(app(ty_@2, bcf), bcg))) -> new_ltEs0(xwv4410, xwv4610, bcf, bcg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(app(ty_@2, ea), eb))) -> new_ltEs0(xwv4412, xwv4612, ea, eb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(app(ty_@2, bbe), bbf))) -> new_ltEs0(xwv4410, xwv4610, bbe, bbf) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(app(ty_Either, bg), bh), be, bf) -> new_lt0(xwv4410, xwv4610, bg, bh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(app(ty_Either, db), dc), bf) -> new_lt0(xwv4411, xwv4611, db, dc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(app(ty_Either, db), dc)), bf)) -> new_lt0(xwv4411, xwv4611, db, dc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(app(ty_Either, ga), gb)), fh)) -> new_lt0(xwv4410, xwv4610, ga, gb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(app(ty_Either, bg), bh)), be), bf)) -> new_lt0(xwv4410, xwv4610, bg, bh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_ltEs1(Left(xwv4410), Left(xwv4610), app(app(app(ty_@3, bah), bba), bbb), bad) -> new_ltEs(xwv4410, xwv4610, bah, bba, bbb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_ltEs(xwv4410, xwv4610, bcb, bcc, bcd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(app(app(ty_@3, bcb), bcc), bcd))) -> new_ltEs(xwv4410, xwv4610, bcb, bcc, bcd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(app(app(ty_@3, bdc), bdd), bde))) -> new_ltEs(xwv4410, xwv4610, bdc, bdd, bde) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(app(app(ty_@3, bah), bba), bbb)), bad)) -> new_ltEs(xwv4410, xwv4610, bah, bba, bbb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(app(app(ty_@3, ef), eg), eh))) -> new_ltEs(xwv4412, xwv4612, ef, eg, eh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(app(app(ty_@3, hf), hg), hh))) -> new_ltEs(xwv4411, xwv4611, hf, hg, hh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_ltEs1(Left(xwv4410), Left(xwv4610), app(ty_Maybe, bag), bad) -> new_ltEs2(xwv4410, xwv4610, bag) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(ty_Maybe, bca)) -> new_ltEs2(xwv4410, xwv4610, bca) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(app(ty_Either, bbg), bbh)) -> new_ltEs1(xwv4410, xwv4610, bbg, bbh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs1(Left(xwv4410), Left(xwv4610), app(app(ty_Either, bae), baf), bad) -> new_ltEs1(xwv4410, xwv4610, bae, baf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs1(Right(xwv4410), Right(xwv4610), bbd, app(ty_[], bce)) -> new_ltEs3(xwv4410, xwv4610, bce) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs1(Left(xwv4410), Left(xwv4610), app(ty_[], bbc), bad) -> new_ltEs3(xwv4410, xwv4610, bbc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(app(app(ty_@3, de), df), dg), bf) -> new_lt2(xwv4411, xwv4611, de, df, dg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(app(app(ty_@3, cb), cc), cd), be, bf) -> new_lt2(xwv4410, xwv4610, cb, cc, cd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(ty_[], ce), be, bf) -> new_lt3(xwv4410, xwv4610, ce) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(ty_[], dh), bf) -> new_lt3(xwv4411, xwv4611, dh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(app(ty_@2, cg), da), bf) -> new_lt(xwv4411, xwv4611, cg, da) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(app(ty_@2, bc), bd), be, bf) -> new_lt(xwv4410, xwv4610, bc, bd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), app(ty_Maybe, ca), be, bf) -> new_lt1(xwv4410, xwv4610, ca) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cf, app(ty_Maybe, dd), bf) -> new_lt1(xwv4411, xwv4611, dd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(ty_Maybe, ee))) -> new_ltEs2(xwv4412, xwv4612, ee) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(ty_Maybe, he))) -> new_ltEs2(xwv4411, xwv4611, he) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(ty_Maybe, bdb))) -> new_ltEs2(xwv4410, xwv4610, bdb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(ty_Maybe, bag)), bad)) -> new_ltEs2(xwv4410, xwv4610, bag) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(ty_Maybe, bca))) -> new_ltEs2(xwv4410, xwv4610, bca) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(app(ty_Either, bbg), bbh))) -> new_ltEs1(xwv4410, xwv4610, bbg, bbh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(app(ty_Either, hc), hd))) -> new_ltEs1(xwv4411, xwv4611, hc, hd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(app(ty_Either, ec), ed))) -> new_ltEs1(xwv4412, xwv4612, ec, ed) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(app(ty_Either, bae), baf)), bad)) -> new_ltEs1(xwv4410, xwv4610, bae, baf) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(app(ty_Either, bch), bda))) -> new_ltEs1(xwv4410, xwv4610, bch, bda) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(app(app(ty_@3, gd), ge), gf)), fh)) -> new_lt2(xwv4410, xwv4610, gd, ge, gf) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(app(app(ty_@3, de), df), dg)), bf)) -> new_lt2(xwv4411, xwv4611, de, df, dg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(app(app(ty_@3, cb), cc), cd)), be), bf)) -> new_lt2(xwv4410, xwv4610, cb, cc, cd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_compare20(@2(xwv440, Left(xwv4410)), @2(xwv460, Left(xwv4610)), False, fd, app(app(ty_Either, app(ty_[], bbc)), bad)) -> new_ltEs3(xwv4410, xwv4610, bbc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, Right(xwv4410)), @2(xwv460, Right(xwv4610)), False, fd, app(app(ty_Either, bbd), app(ty_[], bce))) -> new_ltEs3(xwv4410, xwv4610, bce) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, Just(xwv4410)), @2(xwv460, Just(xwv4610)), False, fd, app(ty_Maybe, app(ty_[], bdf))) -> new_ltEs3(xwv4410, xwv4610, bdf) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, gh), app(ty_[], baa))) -> new_ltEs3(xwv4411, xwv4611, baa) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), be), app(ty_[], fa))) -> new_ltEs3(xwv4412, xwv4612, fa) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, xwv441), @2(xwv460, xwv461), False, fd, app(ty_[], bdg)) -> new_compare0(xwv441, xwv461, bdg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(:(xwv4400, xwv4401), xwv441), @2(:(xwv4600, xwv4601), xwv461), False, app(ty_[], bed), bdh) -> new_compare0(xwv4401, xwv4601, bed) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(ty_[], ce)), be), bf)) -> new_lt3(xwv4410, xwv4610, ce) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(ty_[], dh)), bf)) -> new_lt3(xwv4411, xwv4611, dh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(ty_[], gg)), fh)) -> new_lt3(xwv4410, xwv4610, gg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(app(ty_@2, cg), da)), bf)) -> new_lt(xwv4411, xwv4611, cg, da) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(app(ty_@2, ff), fg)), fh)) -> new_lt(xwv4410, xwv4610, ff, fg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(app(ty_@2, bc), bd)), be), bf)) -> new_lt(xwv4410, xwv4610, bc, bd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, cf), app(ty_Maybe, dd)), bf)) -> new_lt1(xwv4411, xwv4611, dd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @2(xwv4410, xwv4411)), @2(xwv460, @2(xwv4610, xwv4611)), False, fd, app(app(ty_@2, app(ty_Maybe, gc)), fh)) -> new_lt1(xwv4410, xwv4610, gc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_compare20(@2(xwv440, @3(xwv4410, xwv4411, xwv4412)), @2(xwv460, @3(xwv4610, xwv4611, xwv4612)), False, fd, app(app(app(ty_@3, app(ty_Maybe, ca)), be), bf)) -> new_lt1(xwv4410, xwv4610, ca) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, h, ba, bb) -> new_delFromFM(xwv19, @2(xwv21, xwv22), h, ba, bb) new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, h, ba, bb) -> new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs9(new_compare28(@2(xwv21, xwv22), @2(xwv15, xwv16), new_esEs4(@2(xwv21, xwv22), @2(xwv15, xwv16), h, ba), h, ba), LT), h, ba, bb) new_delFromFM(Branch(@2(xwv300, xwv301), xwv31, xwv32, xwv33, xwv34), @2(xwv400, xwv401), bc, bd, be) -> new_delFromFM2(xwv300, xwv301, xwv31, xwv32, xwv33, xwv34, xwv400, xwv401, new_esEs30(xwv400, xwv401, xwv300, xwv301, new_esEs31(xwv400, xwv300, bc), bc, bd), bc, bd, be) new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, h, ba, bb) -> new_delFromFM(xwv20, @2(xwv21, xwv22), h, ba, bb) The TRS R consists of the following rules: new_ltEs18(xwv4411, xwv4611, ty_Integer) -> new_ltEs17(xwv4411, xwv4611) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(ty_Maybe, cfe)) -> new_ltEs8(xwv4410, xwv4610, cfe) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xwv4400)), Pos(xwv460)) -> LT new_ltEs18(xwv4411, xwv4611, app(app(ty_@2, cbb), cbc)) -> new_ltEs10(xwv4411, xwv4611, cbb, cbc) new_pePe(True, xwv135) -> True new_esEs23(xwv440, xwv460, app(ty_Maybe, dc)) -> new_esEs6(xwv440, xwv460, dc) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Float, bac) -> new_esEs13(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, app(app(app(ty_@3, ded), dee), def)) -> new_lt5(xwv4411, xwv4611, ded, dee, def) new_primCmpInt(Neg(Succ(xwv4400)), Neg(Zero)) -> LT new_ltEs7(xwv441, xwv461) -> new_fsEs(new_compare17(xwv441, xwv461)) new_esEs21(xwv4000, xwv3000, app(app(app(ty_@3, bha), bhb), bhc)) -> new_esEs7(xwv4000, xwv3000, bha, bhb, bhc) new_compare24(xwv440, xwv460, False, de, df, dg) -> new_compare110(xwv440, xwv460, new_ltEs16(xwv440, xwv460, de, df, dg), de, df, dg) new_compare23(xwv440, xwv460, True, dc) -> EQ new_esEs23(xwv440, xwv460, ty_Int) -> new_esEs17(xwv440, xwv460) new_esEs22(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, app(ty_[], dae)) -> new_esEs11(xwv4001, xwv3001, dae) new_lt20(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_compare6(xwv4400, xwv4600, ty_Bool) -> new_compare10(xwv4400, xwv4600) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt(Pos(Zero), Neg(Succ(xwv4600))) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_compare19(xwv440, xwv460) -> new_compare25(xwv440, xwv460, new_esEs9(xwv440, xwv460)) new_esEs23(xwv440, xwv460, ty_Double) -> new_esEs16(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(ty_[], da)) -> new_compare1(xwv4400, xwv4600, da) new_esEs9(LT, EQ) -> False new_esEs9(EQ, LT) -> False new_esEs18(@0, @0) -> True new_compare113(xwv110, xwv111, xwv112, xwv113, True, bda, bdb) -> LT new_esEs24(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt6(xwv440, xwv460) -> new_esEs9(new_compare16(xwv440, xwv460), LT) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_Either, cgd), cge)) -> new_esEs5(xwv4000, xwv3000, cgd, cge) new_esEs20(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_@0, cch) -> new_ltEs7(xwv4410, xwv4610) new_compare15(xwv440, xwv460, de, df, dg) -> new_compare24(xwv440, xwv460, new_esEs7(xwv440, xwv460, de, df, dg), de, df, dg) new_esEs23(xwv440, xwv460, app(app(ty_Either, bhd), bhe)) -> new_esEs5(xwv440, xwv460, bhd, bhe) new_ltEs20(xwv4412, xwv4612, ty_Bool) -> new_ltEs12(xwv4412, xwv4612) new_esEs28(xwv4411, xwv4611, ty_Integer) -> new_esEs10(xwv4411, xwv4611) new_compare26(xwv440, xwv460, True) -> EQ new_primEqInt(Pos(Succ(xwv40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xwv30000))) -> False new_esEs27(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs25(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_esEs32(xwv32, xwv34, ty_Char) -> new_esEs15(xwv32, xwv34) new_ltEs4(GT, EQ) -> False new_esEs28(xwv4411, xwv4611, ty_@0) -> new_esEs18(xwv4411, xwv4611) new_esEs31(xwv400, xwv300, app(app(app(ty_@3, bdc), bdd), bde)) -> new_esEs7(xwv400, xwv300, bdc, bdd, bde) new_esEs31(xwv400, xwv300, ty_Ordering) -> new_esEs9(xwv400, xwv300) new_ltEs19(xwv441, xwv461, app(ty_[], dd)) -> new_ltEs6(xwv441, xwv461, dd) new_esEs24(xwv4001, xwv3001, app(app(ty_@2, dab), dac)) -> new_esEs4(xwv4001, xwv3001, dab, dac) new_esEs19(xwv4002, xwv3002, ty_Ordering) -> new_esEs9(xwv4002, xwv3002) new_esEs28(xwv4411, xwv4611, app(ty_[], deg)) -> new_esEs11(xwv4411, xwv4611, deg) new_esEs28(xwv4411, xwv4611, app(ty_Ratio, ddh)) -> new_esEs14(xwv4411, xwv4611, ddh) new_esEs8(False, True) -> False new_esEs8(True, False) -> False new_esEs12(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_compare1(:(xwv4400, xwv4401), [], bf) -> GT new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Maybe, bba), bac) -> new_esEs6(xwv4000, xwv3000, bba) new_primEqNat0(Succ(xwv40000), Succ(xwv30000)) -> new_primEqNat0(xwv40000, xwv30000) new_esEs23(xwv440, xwv460, app(ty_Ratio, db)) -> new_esEs14(xwv440, xwv460, db) new_esEs31(xwv400, xwv300, ty_Bool) -> new_esEs8(xwv400, xwv300) new_esEs29(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(app(ty_@2, bcb), bcc)) -> new_esEs4(xwv4000, xwv3000, bcb, bcc) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Ratio, cgc)) -> new_esEs14(xwv4000, xwv3000, cgc) new_esEs12(xwv4000, xwv3000, app(app(ty_Either, hb), hc)) -> new_esEs5(xwv4000, xwv3000, hb, hc) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Maybe, cec), cch) -> new_ltEs8(xwv4410, xwv4610, cec) new_not(True) -> False new_ltEs19(xwv441, xwv461, ty_Double) -> new_ltEs5(xwv441, xwv461) new_lt21(xwv4411, xwv4611, app(app(ty_@2, ddf), ddg)) -> new_lt14(xwv4411, xwv4611, ddf, ddg) new_ltEs20(xwv4412, xwv4612, app(app(ty_@2, deh), dfa)) -> new_ltEs10(xwv4412, xwv4612, deh, dfa) new_esEs25(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_primCompAux00(xwv146, LT) -> LT new_primCmpNat0(Zero, Zero) -> EQ new_esEs12(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Integer) -> new_ltEs17(xwv4412, xwv4612) new_lt21(xwv4411, xwv4611, ty_Float) -> new_lt10(xwv4411, xwv4611) new_esEs28(xwv4411, xwv4611, ty_Float) -> new_esEs13(xwv4411, xwv4611) new_esEs32(xwv32, xwv34, ty_Bool) -> new_esEs8(xwv32, xwv34) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Ratio, bad), bac) -> new_esEs14(xwv4000, xwv3000, bad) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(ty_Ratio, bbg)) -> new_esEs14(xwv4000, xwv3000, bbg) new_ltEs16(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cda, cdb, cdc) -> new_pePe(new_lt20(xwv4410, xwv4610, cda), new_asAs(new_esEs29(xwv4410, xwv4610, cda), new_pePe(new_lt21(xwv4411, xwv4611, cdb), new_asAs(new_esEs28(xwv4411, xwv4611, cdb), new_ltEs20(xwv4412, xwv4612, cdc))))) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Float, cch) -> new_ltEs14(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(ty_[], bff)) -> new_esEs11(xwv4001, xwv3001, bff) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs16(Double(xwv4000, xwv4001), Double(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_esEs25(xwv4000, xwv3000, app(app(app(ty_@3, dbh), dca), dcb)) -> new_esEs7(xwv4000, xwv3000, dbh, dca, dcb) new_compare6(xwv4400, xwv4600, ty_@0) -> new_compare17(xwv4400, xwv4600) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_esEs28(xwv4411, xwv4611, ty_Double) -> new_esEs16(xwv4411, xwv4611) new_esEs19(xwv4002, xwv3002, app(app(ty_@2, bea), beb)) -> new_esEs4(xwv4002, xwv3002, bea, beb) new_primEqNat0(Succ(xwv40000), Zero) -> False new_primEqNat0(Zero, Succ(xwv30000)) -> False new_ltEs19(xwv441, xwv461, ty_Bool) -> new_ltEs12(xwv441, xwv461) new_esEs19(xwv4002, xwv3002, app(app(app(ty_@3, bee), bef), beg)) -> new_esEs7(xwv4002, xwv3002, bee, bef, beg) new_compare112(xwv440, xwv460, False) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_esEs23(xwv440, xwv460, ty_@0) -> new_esEs18(xwv440, xwv460) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Double) -> new_esEs16(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, app(ty_Maybe, dfe)) -> new_ltEs8(xwv4412, xwv4612, dfe) new_esEs12(xwv4000, xwv3000, app(ty_Ratio, ha)) -> new_esEs14(xwv4000, xwv3000, ha) new_primCompAux00(xwv146, GT) -> GT new_lt17(xwv440, xwv460) -> new_esEs9(new_compare18(xwv440, xwv460), LT) new_lt18(xwv440, xwv460, bf) -> new_esEs9(new_compare1(xwv440, xwv460, bf), LT) new_lt19(xwv440, xwv460, ty_Bool) -> new_lt15(xwv440, xwv460) new_ltEs18(xwv4411, xwv4611, ty_Bool) -> new_ltEs12(xwv4411, xwv4611) new_compare115(xwv110, xwv111, xwv112, xwv113, True, xwv115, bda, bdb) -> new_compare113(xwv110, xwv111, xwv112, xwv113, True, bda, bdb) new_lt21(xwv4411, xwv4611, app(ty_Maybe, dec)) -> new_lt9(xwv4411, xwv4611, dec) new_compare6(xwv4400, xwv4600, app(ty_Maybe, cd)) -> new_compare14(xwv4400, xwv4600, cd) new_compare23(xwv440, xwv460, False, dc) -> new_compare116(xwv440, xwv460, new_ltEs8(xwv440, xwv460, dc), dc) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Integer) -> new_compare16(new_sr0(xwv4400, xwv4601), new_sr0(xwv4600, xwv4401)) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_@0, bac) -> new_esEs18(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(ty_Ratio, chg)) -> new_esEs14(xwv4001, xwv3001, chg) new_primCmpInt(Pos(Succ(xwv4400)), Neg(xwv460)) -> GT new_esEs20(xwv4001, xwv3001, app(app(ty_@2, bfc), bfd)) -> new_esEs4(xwv4001, xwv3001, bfc, bfd) new_lt13(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Double, cch) -> new_ltEs5(xwv4410, xwv4610) new_ltEs19(xwv441, xwv461, ty_Float) -> new_ltEs14(xwv441, xwv461) new_esEs24(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_lt4(xwv440, xwv460, db) -> new_esEs9(new_compare9(xwv440, xwv460, db), LT) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt13(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_Float) -> new_ltEs14(xwv4412, xwv4612) new_ltEs20(xwv4412, xwv4612, ty_Double) -> new_ltEs5(xwv4412, xwv4612) new_primPlusNat1(Succ(xwv19200), Succ(xwv9700)) -> Succ(Succ(new_primPlusNat1(xwv19200, xwv9700))) new_ltEs14(xwv441, xwv461) -> new_fsEs(new_compare12(xwv441, xwv461)) new_primCmpNat0(Zero, Succ(xwv46000)) -> LT new_compare6(xwv4400, xwv4600, app(app(ty_@2, bg), bh)) -> new_compare8(xwv4400, xwv4600, bg, bh) new_compare25(xwv440, xwv460, False) -> new_compare111(xwv440, xwv460, new_ltEs4(xwv440, xwv460)) new_esEs29(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs28(xwv4411, xwv4611, ty_Int) -> new_esEs17(xwv4411, xwv4611) new_esEs30(xwv31, xwv32, xwv33, xwv34, False, fc, fd) -> new_esEs9(new_compare28(@2(xwv31, xwv32), @2(xwv33, xwv34), False, fc, fd), GT) new_esEs32(xwv32, xwv34, app(app(app(ty_@3, ge), gf), gg)) -> new_esEs7(xwv32, xwv34, ge, gf, gg) new_esEs22(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_@0) -> new_esEs18(xwv4002, xwv3002) new_primCmpNat0(Succ(xwv44000), Zero) -> GT new_compare110(xwv440, xwv460, False, de, df, dg) -> GT new_lt13(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_lt20(xwv4410, xwv4610, app(app(ty_Either, dcg), dch)) -> new_lt11(xwv4410, xwv4610, dcg, dch) new_pePe(False, xwv135) -> xwv135 new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_[], ceg), cch) -> new_ltEs6(xwv4410, xwv4610, ceg) new_esEs31(xwv400, xwv300, ty_Float) -> new_esEs13(xwv400, xwv300) new_esEs22(xwv4410, xwv4610, app(ty_Ratio, cab)) -> new_esEs14(xwv4410, xwv4610, cab) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_[], cha)) -> new_esEs11(xwv4000, xwv3000, cha) new_ltEs13(Left(xwv4410), Right(xwv4610), ccg, cch) -> True new_ltEs19(xwv441, xwv461, ty_@0) -> new_ltEs7(xwv441, xwv461) new_esEs7(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bdc, bdd, bde) -> new_asAs(new_esEs21(xwv4000, xwv3000, bdc), new_asAs(new_esEs20(xwv4001, xwv3001, bdd), new_esEs19(xwv4002, xwv3002, bde))) new_compare114(xwv440, xwv460, True, bhd, bhe) -> LT new_esEs11(:(xwv4000, xwv4001), [], gh) -> False new_esEs11([], :(xwv3000, xwv3001), gh) -> False new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_esEs25(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Zero)) -> GT new_ltEs19(xwv441, xwv461, app(app(ty_@2, bhf), bhg)) -> new_ltEs10(xwv441, xwv461, bhf, bhg) new_ltEs19(xwv441, xwv461, ty_Integer) -> new_ltEs17(xwv441, xwv461) new_compare27(xwv440, xwv460, False, bhd, bhe) -> new_compare114(xwv440, xwv460, new_ltEs13(xwv440, xwv460, bhd, bhe), bhd, bhe) new_lt20(xwv4410, xwv4610, app(ty_Maybe, dda)) -> new_lt9(xwv4410, xwv4610, dda) new_esEs6(Just(xwv4000), Just(xwv3000), ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_Either, cea), ceb), cch) -> new_ltEs13(xwv4410, xwv4610, cea, ceb) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_@2, bag), bah), bac) -> new_esEs4(xwv4000, xwv3000, bag, bah) new_lt11(xwv440, xwv460, bhd, bhe) -> new_esEs9(new_compare11(xwv440, xwv460, bhd, bhe), LT) new_esEs22(xwv4410, xwv4610, app(ty_Maybe, cae)) -> new_esEs6(xwv4410, xwv4610, cae) new_esEs32(xwv32, xwv34, app(ty_Maybe, gc)) -> new_esEs6(xwv32, xwv34, gc) new_esEs21(xwv4000, xwv3000, app(app(ty_@2, bge), bgf)) -> new_esEs4(xwv4000, xwv3000, bge, bgf) new_lt19(xwv440, xwv460, app(ty_Maybe, dc)) -> new_lt9(xwv440, xwv460, dc) new_lt21(xwv4411, xwv4611, ty_Bool) -> new_lt15(xwv4411, xwv4611) new_primEqInt(Pos(Zero), Neg(Succ(xwv30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xwv30000))) -> False new_lt19(xwv440, xwv460, ty_Ordering) -> new_lt12(xwv440, xwv460) new_esEs23(xwv440, xwv460, app(ty_[], bf)) -> new_esEs11(xwv440, xwv460, bf) new_ltEs13(Right(xwv4410), Left(xwv4610), ccg, cch) -> False new_esEs25(xwv4000, xwv3000, app(app(ty_@2, dbd), dbe)) -> new_esEs4(xwv4000, xwv3000, dbd, dbe) new_esEs30(xwv31, xwv32, xwv33, xwv34, True, fc, fd) -> new_esEs9(new_compare28(@2(xwv31, xwv32), @2(xwv33, xwv34), new_esEs32(xwv32, xwv34, fd), fc, fd), GT) new_ltEs4(LT, GT) -> True new_lt21(xwv4411, xwv4611, ty_Int) -> new_lt7(xwv4411, xwv4611) new_esEs20(xwv4001, xwv3001, app(ty_Ratio, beh)) -> new_esEs14(xwv4001, xwv3001, beh) new_esEs21(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs29(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs12(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(app(ty_Either, chh), daa)) -> new_esEs5(xwv4001, xwv3001, chh, daa) new_primEqInt(Neg(Succ(xwv40000)), Neg(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_lt5(xwv440, xwv460, de, df, dg) -> new_esEs9(new_compare15(xwv440, xwv460, de, df, dg), LT) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Char, cch) -> new_ltEs9(xwv4410, xwv4610) new_primCmpInt(Neg(Zero), Pos(Succ(xwv4600))) -> LT new_ltEs20(xwv4412, xwv4612, app(app(ty_Either, dfc), dfd)) -> new_ltEs13(xwv4412, xwv4612, dfc, dfd) new_ltEs4(LT, LT) -> True new_compare114(xwv440, xwv460, False, bhd, bhe) -> GT new_ltEs4(EQ, LT) -> False new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_ltEs18(xwv4411, xwv4611, app(app(app(ty_@3, cbh), cca), ccb)) -> new_ltEs16(xwv4411, xwv4611, cbh, cca, ccb) new_esEs32(xwv32, xwv34, ty_Double) -> new_esEs16(xwv32, xwv34) new_primMulInt(Pos(xwv40010), Pos(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_esEs32(xwv32, xwv34, app(ty_Ratio, ff)) -> new_esEs14(xwv32, xwv34, ff) new_lt13(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_@2, cdf), cdg), cch) -> new_ltEs10(xwv4410, xwv4610, cdf, cdg) new_compare6(xwv4400, xwv4600, app(app(ty_Either, cb), cc)) -> new_compare11(xwv4400, xwv4600, cb, cc) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs8(False, False) -> True new_lt19(xwv440, xwv460, app(app(ty_Either, bhd), bhe)) -> new_lt11(xwv440, xwv460, bhd, bhe) new_esEs11(:(xwv4000, xwv4001), :(xwv3000, xwv3001), gh) -> new_asAs(new_esEs12(xwv4000, xwv3000, gh), new_esEs11(xwv4001, xwv3001, gh)) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Double) -> new_ltEs5(xwv4411, xwv4611) new_esEs32(xwv32, xwv34, app(app(ty_Either, fg), fh)) -> new_esEs5(xwv32, xwv34, fg, fh) new_esEs22(xwv4410, xwv4610, app(app(app(ty_@3, caf), cag), cah)) -> new_esEs7(xwv4410, xwv4610, caf, cag, cah) new_esEs24(xwv4001, xwv3001, app(ty_Maybe, dad)) -> new_esEs6(xwv4001, xwv3001, dad) new_esEs14(:%(xwv4000, xwv4001), :%(xwv3000, xwv3001), dcc) -> new_asAs(new_esEs27(xwv4000, xwv3000, dcc), new_esEs26(xwv4001, xwv3001, dcc)) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Int, bac) -> new_esEs17(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, ty_Integer) -> new_esEs10(xwv440, xwv460) new_ltEs19(xwv441, xwv461, app(ty_Maybe, dh)) -> new_ltEs8(xwv441, xwv461, dh) new_primMulNat0(Succ(xwv400100), Zero) -> Zero new_primMulNat0(Zero, Succ(xwv300000)) -> Zero new_primPlusNat0(Zero, xwv300000) -> Succ(xwv300000) new_lt13(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(ty_[], dbg)) -> new_esEs11(xwv4000, xwv3000, dbg) new_esEs22(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_@0) -> new_ltEs7(xwv4412, xwv4612) new_lt13(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_ltEs19(xwv441, xwv461, app(app(ty_Either, ccg), cch)) -> new_ltEs13(xwv441, xwv461, ccg, cch) new_esEs24(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_esEs31(xwv400, xwv300, ty_@0) -> new_esEs18(xwv400, xwv300) new_esEs4(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), che, chf) -> new_asAs(new_esEs25(xwv4000, xwv3000, che), new_esEs24(xwv4001, xwv3001, chf)) new_ltEs12(False, True) -> True new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_Either, bae), baf), bac) -> new_esEs5(xwv4000, xwv3000, bae, baf) new_lt13(xwv4410, xwv4610, app(ty_[], cba)) -> new_lt18(xwv4410, xwv4610, cba) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(ty_Maybe, bcd)) -> new_esEs6(xwv4000, xwv3000, bcd) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(app(app(ty_@3, bcf), bcg), bch)) -> new_esEs7(xwv4000, xwv3000, bcf, bcg, bch) new_esEs21(xwv4000, xwv3000, app(app(ty_Either, bgc), bgd)) -> new_esEs5(xwv4000, xwv3000, bgc, bgd) new_compare116(xwv440, xwv460, False, dc) -> GT new_compare116(xwv440, xwv460, True, dc) -> LT new_esEs12(xwv4000, xwv3000, app(ty_Maybe, hf)) -> new_esEs6(xwv4000, xwv3000, hf) new_esEs19(xwv4002, xwv3002, ty_Double) -> new_esEs16(xwv4002, xwv3002) new_esEs22(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs12(xwv4000, xwv3000, app(ty_[], hg)) -> new_esEs11(xwv4000, xwv3000, hg) new_esEs23(xwv440, xwv460, ty_Ordering) -> new_esEs9(xwv440, xwv460) new_compare1([], [], bf) -> EQ new_esEs6(Just(xwv4000), Just(xwv3000), app(app(app(ty_@3, chb), chc), chd)) -> new_esEs7(xwv4000, xwv3000, chb, chc, chd) new_compare111(xwv440, xwv460, True) -> LT new_esEs28(xwv4411, xwv4611, ty_Char) -> new_esEs15(xwv4411, xwv4611) new_esEs20(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt13(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_esEs20(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_primPlusNat1(Succ(xwv19200), Zero) -> Succ(xwv19200) new_primPlusNat1(Zero, Succ(xwv9700)) -> Succ(xwv9700) new_esEs24(xwv4001, xwv3001, app(app(app(ty_@3, daf), dag), dah)) -> new_esEs7(xwv4001, xwv3001, daf, dag, dah) new_esEs9(LT, LT) -> True new_compare10(xwv440, xwv460) -> new_compare26(xwv440, xwv460, new_esEs8(xwv440, xwv460)) new_lt13(xwv4410, xwv4610, app(app(ty_@2, bhh), caa)) -> new_lt14(xwv4410, xwv4610, bhh, caa) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(ty_[], bce)) -> new_esEs11(xwv4000, xwv3000, bce) new_esEs12(xwv4000, xwv3000, app(app(ty_@2, hd), he)) -> new_esEs4(xwv4000, xwv3000, hd, he) new_esEs17(xwv400, xwv300) -> new_primEqInt(xwv400, xwv300) new_lt21(xwv4411, xwv4611, ty_Ordering) -> new_lt12(xwv4411, xwv4611) new_ltEs12(True, True) -> True new_ltEs18(xwv4411, xwv4611, app(app(ty_Either, cbe), cbf)) -> new_ltEs13(xwv4411, xwv4611, cbe, cbf) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_@2, cgf), cgg)) -> new_esEs4(xwv4000, xwv3000, cgf, cgg) new_esEs24(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_esEs26(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_ltEs4(LT, EQ) -> True new_fsEs(xwv123) -> new_not(new_esEs9(xwv123, GT)) new_esEs19(xwv4002, xwv3002, ty_Float) -> new_esEs13(xwv4002, xwv3002) new_esEs23(xwv440, xwv460, app(app(app(ty_@3, de), df), dg)) -> new_esEs7(xwv440, xwv460, de, df, dg) new_esEs23(xwv440, xwv460, ty_Bool) -> new_esEs8(xwv440, xwv460) new_ltEs20(xwv4412, xwv4612, app(app(app(ty_@3, dff), dfg), dfh)) -> new_ltEs16(xwv4412, xwv4612, dff, dfg, dfh) new_esEs20(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_ltEs18(xwv4411, xwv4611, app(ty_Maybe, cbg)) -> new_ltEs8(xwv4411, xwv4611, cbg) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Bool, bac) -> new_esEs8(xwv4000, xwv3000) new_primMulInt(Neg(xwv40010), Neg(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_primCmpInt(Pos(Zero), Pos(Succ(xwv4600))) -> new_primCmpNat0(Zero, Succ(xwv4600)) new_lt20(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Integer, bac) -> new_esEs10(xwv4000, xwv3000) new_compare115(xwv110, xwv111, xwv112, xwv113, False, xwv115, bda, bdb) -> new_compare113(xwv110, xwv111, xwv112, xwv113, xwv115, bda, bdb) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_[], fb)) -> new_ltEs6(xwv4410, xwv4610, fb) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Maybe, cgh)) -> new_esEs6(xwv4000, xwv3000, cgh) new_ltEs4(EQ, EQ) -> True new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs6(Nothing, Just(xwv3000), cgb) -> False new_esEs6(Just(xwv4000), Nothing, cgb) -> False new_esEs6(Nothing, Nothing, cgb) -> True new_esEs12(xwv4000, xwv3000, app(app(app(ty_@3, hh), baa), bab)) -> new_esEs7(xwv4000, xwv3000, hh, baa, bab) new_ltEs18(xwv4411, xwv4611, ty_Char) -> new_ltEs9(xwv4411, xwv4611) new_esEs22(xwv4410, xwv4610, app(app(ty_Either, cac), cad)) -> new_esEs5(xwv4410, xwv4610, cac, cad) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs31(xwv400, xwv300, ty_Double) -> new_esEs16(xwv400, xwv300) new_esEs24(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_lt21(xwv4411, xwv4611, app(app(ty_Either, dea), deb)) -> new_lt11(xwv4411, xwv4611, dea, deb) new_esEs21(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, app(app(ty_@2, cdd), cde)) -> new_esEs4(xwv440, xwv460, cdd, cde) new_esEs12(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_compare112(xwv440, xwv460, True) -> LT new_esEs5(Left(xwv4000), Left(xwv3000), ty_Ordering, bac) -> new_esEs9(xwv4000, xwv3000) new_esEs13(Float(xwv4000, xwv4001), Float(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Char, bac) -> new_esEs15(xwv4000, xwv3000) new_lt13(xwv4410, xwv4610, app(app(ty_Either, cac), cad)) -> new_lt11(xwv4410, xwv4610, cac, cad) new_ltEs19(xwv441, xwv461, ty_Char) -> new_ltEs9(xwv441, xwv461) new_compare6(xwv4400, xwv4600, app(ty_Ratio, ca)) -> new_compare9(xwv4400, xwv4600, ca) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(ty_Ratio, cfb)) -> new_ltEs11(xwv4410, xwv4610, cfb) new_lt20(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_esEs31(xwv400, xwv300, ty_Int) -> new_esEs17(xwv400, xwv300) new_ltEs18(xwv4411, xwv4611, ty_@0) -> new_ltEs7(xwv4411, xwv4611) new_esEs26(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(app(ty_@2, ceh), cfa)) -> new_ltEs10(xwv4410, xwv4610, ceh, cfa) new_ltEs20(xwv4412, xwv4612, ty_Int) -> new_ltEs15(xwv4412, xwv4612) new_primMulInt(Pos(xwv40010), Neg(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_primMulInt(Neg(xwv40010), Pos(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_esEs19(xwv4002, xwv3002, app(app(ty_Either, bdg), bdh)) -> new_esEs5(xwv4002, xwv3002, bdg, bdh) new_esEs32(xwv32, xwv34, app(ty_[], gd)) -> new_esEs11(xwv32, xwv34, gd) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs22(xwv4410, xwv4610, app(app(ty_@2, bhh), caa)) -> new_esEs4(xwv4410, xwv4610, bhh, caa) new_esEs31(xwv400, xwv300, app(ty_Maybe, cgb)) -> new_esEs6(xwv400, xwv300, cgb) new_esEs24(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_esEs25(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs32(xwv32, xwv34, ty_Integer) -> new_esEs10(xwv32, xwv34) new_compare28(@2(xwv440, xwv441), @2(xwv460, xwv461), False, ccd, cce) -> new_compare115(xwv440, xwv441, xwv460, xwv461, new_lt19(xwv440, xwv460, ccd), new_asAs(new_esEs23(xwv440, xwv460, ccd), new_ltEs19(xwv441, xwv461, cce)), ccd, cce) new_esEs32(xwv32, xwv34, ty_@0) -> new_esEs18(xwv32, xwv34) new_lt13(xwv4410, xwv4610, app(app(app(ty_@3, caf), cag), cah)) -> new_lt5(xwv4410, xwv4610, caf, cag, cah) new_sr0(Integer(xwv44000), Integer(xwv46010)) -> Integer(new_primMulInt(xwv44000, xwv46010)) new_esEs12(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Ratio, bgb)) -> new_esEs14(xwv4000, xwv3000, bgb) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs19(xwv441, xwv461, app(app(app(ty_@3, cda), cdb), cdc)) -> new_ltEs16(xwv441, xwv461, cda, cdb, cdc) new_compare24(xwv440, xwv460, True, de, df, dg) -> EQ new_esEs31(xwv400, xwv300, app(ty_Ratio, dcc)) -> new_esEs14(xwv400, xwv300, dcc) new_ltEs18(xwv4411, xwv4611, ty_Ordering) -> new_ltEs4(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Ratio, cdh), cch) -> new_ltEs11(xwv4410, xwv4610, cdh) new_ltEs5(xwv441, xwv461) -> new_fsEs(new_compare18(xwv441, xwv461)) new_lt19(xwv440, xwv460, app(ty_Ratio, db)) -> new_lt4(xwv440, xwv460, db) new_ltEs6(xwv441, xwv461, dd) -> new_fsEs(new_compare1(xwv441, xwv461, dd)) new_esEs28(xwv4411, xwv4611, app(app(app(ty_@3, ded), dee), def)) -> new_esEs7(xwv4411, xwv4611, ded, dee, def) new_compare8(xwv440, xwv460, cdd, cde) -> new_compare28(xwv440, xwv460, new_esEs4(xwv440, xwv460, cdd, cde), cdd, cde) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_asAs(True, xwv62) -> xwv62 new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Integer, cch) -> new_ltEs17(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(ty_Ratio, dba)) -> new_esEs14(xwv4000, xwv3000, dba) new_esEs10(Integer(xwv4000), Integer(xwv3000)) -> new_primEqInt(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Maybe, bgg)) -> new_esEs6(xwv4000, xwv3000, bgg) new_esEs28(xwv4411, xwv4611, ty_Bool) -> new_esEs8(xwv4411, xwv4611) new_lt19(xwv440, xwv460, ty_Double) -> new_lt17(xwv440, xwv460) new_ltEs19(xwv441, xwv461, ty_Int) -> new_ltEs15(xwv441, xwv461) new_lt20(xwv4410, xwv4610, app(ty_Ratio, dcf)) -> new_lt4(xwv4410, xwv4610, dcf) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(app(ty_Either, cfc), cfd)) -> new_ltEs13(xwv4410, xwv4610, cfc, cfd) new_compare6(xwv4400, xwv4600, ty_Int) -> new_compare13(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, app(ty_[], cba)) -> new_esEs11(xwv4410, xwv4610, cba) new_lt10(xwv440, xwv460) -> new_esEs9(new_compare12(xwv440, xwv460), LT) new_esEs21(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_lt15(xwv440, xwv460) -> new_esEs9(new_compare10(xwv440, xwv460), LT) new_ltEs10(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), bhf, bhg) -> new_pePe(new_lt13(xwv4410, xwv4610, bhf), new_asAs(new_esEs22(xwv4410, xwv4610, bhf), new_ltEs18(xwv4411, xwv4611, bhg))) new_esEs21(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Char) -> new_ltEs9(xwv4412, xwv4612) new_lt21(xwv4411, xwv4611, ty_Char) -> new_lt8(xwv4411, xwv4611) new_lt21(xwv4411, xwv4611, app(ty_[], deg)) -> new_lt18(xwv4411, xwv4611, deg) new_ltEs20(xwv4412, xwv4612, app(ty_Ratio, dfb)) -> new_ltEs11(xwv4412, xwv4612, dfb) new_esEs32(xwv32, xwv34, ty_Float) -> new_esEs13(xwv32, xwv34) new_lt19(xwv440, xwv460, ty_Integer) -> new_lt6(xwv440, xwv460) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, app(ty_Maybe, cae)) -> new_lt9(xwv4410, xwv4610, cae) new_esEs29(xwv4410, xwv4610, app(app(ty_Either, dcg), dch)) -> new_esEs5(xwv4410, xwv4610, dcg, dch) new_esEs12(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_lt14(xwv440, xwv460, cdd, cde) -> new_esEs9(new_compare8(xwv440, xwv460, cdd, cde), LT) new_esEs29(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_primCompAux00(xwv146, EQ) -> xwv146 new_compare113(xwv110, xwv111, xwv112, xwv113, False, bda, bdb) -> GT new_sr(xwv4001, xwv3000) -> new_primMulInt(xwv4001, xwv3000) new_compare26(xwv440, xwv460, False) -> new_compare112(xwv440, xwv460, new_ltEs12(xwv440, xwv460)) new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_@2, ea), eb)) -> new_ltEs10(xwv4410, xwv4610, ea, eb) new_compare6(xwv4400, xwv4600, ty_Double) -> new_compare18(xwv4400, xwv4600) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Bool, cch) -> new_ltEs12(xwv4410, xwv4610) new_compare13(xwv44, xwv46) -> new_primCmpInt(xwv44, xwv46) new_primMulNat0(Zero, Zero) -> Zero new_esEs22(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_esEs21(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_lt19(xwv440, xwv460, ty_Char) -> new_lt8(xwv440, xwv460) new_esEs29(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_lt9(xwv440, xwv460, dc) -> new_esEs9(new_compare14(xwv440, xwv460, dc), LT) new_compare111(xwv440, xwv460, False) -> GT new_ltEs12(True, False) -> False new_compare1(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bf) -> new_primCompAux0(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bf), bf) new_lt20(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(app(ty_Either, bfa), bfb)) -> new_esEs5(xwv4001, xwv3001, bfa, bfb) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(app(ty_Either, bbh), bca)) -> new_esEs5(xwv4000, xwv3000, bbh, bca) new_ltEs19(xwv441, xwv461, app(ty_Ratio, ccf)) -> new_ltEs11(xwv441, xwv461, ccf) new_esEs19(xwv4002, xwv3002, app(ty_Ratio, bdf)) -> new_esEs14(xwv4002, xwv3002, bdf) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Int) -> new_compare13(new_sr(xwv4400, xwv4601), new_sr(xwv4600, xwv4401)) new_ltEs18(xwv4411, xwv4611, ty_Int) -> new_ltEs15(xwv4411, xwv4611) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Succ(xwv4600))) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_esEs29(xwv4410, xwv4610, app(ty_Ratio, dcf)) -> new_esEs14(xwv4410, xwv4610, dcf) new_lt21(xwv4411, xwv4611, app(ty_Ratio, ddh)) -> new_lt4(xwv4411, xwv4611, ddh) new_esEs9(EQ, EQ) -> True new_ltEs18(xwv4411, xwv4611, app(ty_Ratio, cbd)) -> new_ltEs11(xwv4411, xwv4611, cbd) new_esEs12(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs12(False, False) -> True new_lt19(xwv440, xwv460, ty_Int) -> new_lt7(xwv440, xwv460) new_lt20(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Maybe, ef)) -> new_ltEs8(xwv4410, xwv4610, ef) new_esEs20(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(app(app(ty_@3, cff), cfg), cfh)) -> new_ltEs16(xwv4410, xwv4610, cff, cfg, cfh) new_primEqInt(Neg(Succ(xwv40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xwv30000))) -> False new_esEs25(xwv4000, xwv3000, app(ty_Maybe, dbf)) -> new_esEs6(xwv4000, xwv3000, dbf) new_ltEs8(Nothing, Just(xwv4610), dh) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_Either, ed), ee)) -> new_ltEs13(xwv4410, xwv4610, ed, ee) new_primEqInt(Pos(Succ(xwv40000)), Pos(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_esEs32(xwv32, xwv34, app(app(ty_@2, ga), gb)) -> new_esEs4(xwv32, xwv34, ga, gb) new_ltEs18(xwv4411, xwv4611, app(ty_[], ccc)) -> new_ltEs6(xwv4411, xwv4611, ccc) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(app(ty_Either, dbb), dbc)) -> new_esEs5(xwv4000, xwv3000, dbb, dbc) new_esEs20(xwv4001, xwv3001, app(ty_Maybe, bfe)) -> new_esEs6(xwv4001, xwv3001, bfe) new_lt20(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_primEqInt(Pos(Succ(xwv40000)), Neg(xwv3000)) -> False new_primEqInt(Neg(Succ(xwv40000)), Pos(xwv3000)) -> False new_esEs19(xwv4002, xwv3002, app(ty_Maybe, bec)) -> new_esEs6(xwv4002, xwv3002, bec) new_ltEs4(EQ, GT) -> True new_primCmpInt(Neg(Zero), Neg(Succ(xwv4600))) -> new_primCmpNat0(Succ(xwv4600), Zero) new_esEs22(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_lt16(xwv440, xwv460) -> new_esEs9(new_compare17(xwv440, xwv460), LT) new_esEs27(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs31(xwv400, xwv300, app(app(ty_Either, bbf), bac)) -> new_esEs5(xwv400, xwv300, bbf, bac) new_esEs19(xwv4002, xwv3002, ty_Char) -> new_esEs15(xwv4002, xwv3002) new_esEs31(xwv400, xwv300, ty_Char) -> new_esEs15(xwv400, xwv300) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_esEs21(xwv4000, xwv3000, app(ty_[], bgh)) -> new_esEs11(xwv4000, xwv3000, bgh) new_esEs25(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, ty_Char) -> new_esEs15(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(app(app(ty_@3, ce), cf), cg)) -> new_compare15(xwv4400, xwv4600, ce, cf, cg) new_ltEs15(xwv441, xwv461) -> new_fsEs(new_compare13(xwv441, xwv461)) new_lt19(xwv440, xwv460, ty_Float) -> new_lt10(xwv440, xwv460) new_esEs19(xwv4002, xwv3002, ty_Integer) -> new_esEs10(xwv4002, xwv3002) new_compare110(xwv440, xwv460, True, de, df, dg) -> LT new_primCompAux0(xwv4400, xwv4600, xwv136, bf) -> new_primCompAux00(xwv136, new_compare6(xwv4400, xwv4600, bf)) new_esEs23(xwv440, xwv460, ty_Float) -> new_esEs13(xwv440, xwv460) new_esEs29(xwv4410, xwv4610, app(app(app(ty_@3, ddb), ddc), ddd)) -> new_esEs7(xwv4410, xwv4610, ddb, ddc, ddd) new_compare16(Integer(xwv4400), Integer(xwv4600)) -> new_primCmpInt(xwv4400, xwv4600) new_lt12(xwv440, xwv460) -> new_esEs9(new_compare19(xwv440, xwv460), LT) new_esEs31(xwv400, xwv300, app(app(ty_@2, che), chf)) -> new_esEs4(xwv400, xwv300, che, chf) new_esEs32(xwv32, xwv34, ty_Int) -> new_esEs17(xwv32, xwv34) new_lt7(xwv440, xwv460) -> new_esEs9(new_compare13(xwv440, xwv460), LT) new_not(False) -> True new_esEs6(Just(xwv4000), Just(xwv3000), ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Double, bac) -> new_esEs16(xwv4000, xwv3000) new_compare11(xwv440, xwv460, bhd, bhe) -> new_compare27(xwv440, xwv460, new_esEs5(xwv440, xwv460, bhd, bhe), bhd, bhe) new_compare1([], :(xwv4600, xwv4601), bf) -> LT new_esEs20(xwv4001, xwv3001, app(app(app(ty_@3, bfg), bfh), bga)) -> new_esEs7(xwv4001, xwv3001, bfg, bfh, bga) new_esEs20(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_esEs9(GT, GT) -> True new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(ty_[], cga)) -> new_ltEs6(xwv4410, xwv4610, cga) new_esEs5(Left(xwv4000), Right(xwv3000), bbf, bac) -> False new_esEs5(Right(xwv4000), Left(xwv3000), bbf, bac) -> False new_esEs22(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_esEs32(xwv32, xwv34, ty_Ordering) -> new_esEs9(xwv32, xwv34) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_esEs31(xwv400, xwv300, ty_Integer) -> new_esEs10(xwv400, xwv300) new_compare25(xwv440, xwv460, True) -> EQ new_compare27(xwv440, xwv460, True, bhd, bhe) -> EQ new_lt19(xwv440, xwv460, ty_@0) -> new_lt16(xwv440, xwv460) new_ltEs4(GT, LT) -> False new_esEs24(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_esEs9(EQ, GT) -> False new_esEs9(GT, EQ) -> False new_primPlusNat0(Succ(xwv1010), xwv300000) -> Succ(Succ(new_primPlusNat1(xwv1010, xwv300000))) new_ltEs20(xwv4412, xwv4612, app(ty_[], dga)) -> new_ltEs6(xwv4412, xwv4612, dga) new_esEs8(True, True) -> True new_esEs29(xwv4410, xwv4610, app(ty_Maybe, dda)) -> new_esEs6(xwv4410, xwv4610, dda) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Int, cch) -> new_ltEs15(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_Bool) -> new_esEs8(xwv4002, xwv3002) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt20(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_primPlusNat1(Zero, Zero) -> Zero new_esEs20(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_esEs12(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Float) -> new_ltEs14(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(app(ty_@3, ced), cee), cef), cch) -> new_ltEs16(xwv4410, xwv4610, ced, cee, cef) new_esEs31(xwv400, xwv300, app(ty_[], gh)) -> new_esEs11(xwv400, xwv300, gh) new_ltEs9(xwv441, xwv461) -> new_fsEs(new_compare7(xwv441, xwv461)) new_esEs19(xwv4002, xwv3002, app(ty_[], bed)) -> new_esEs11(xwv4002, xwv3002, bed) new_esEs28(xwv4411, xwv4611, ty_Ordering) -> new_esEs9(xwv4411, xwv4611) new_esEs25(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs29(xwv4410, xwv4610, app(ty_[], dde)) -> new_esEs11(xwv4410, xwv4610, dde) new_esEs28(xwv4411, xwv4611, app(ty_Maybe, dec)) -> new_esEs6(xwv4411, xwv4611, dec) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_lt19(xwv440, xwv460, app(app(app(ty_@3, de), df), dg)) -> new_lt5(xwv440, xwv460, de, df, dg) new_lt20(xwv4410, xwv4610, app(ty_[], dde)) -> new_lt18(xwv4410, xwv4610, dde) new_compare17(@0, @0) -> EQ new_primMulNat0(Succ(xwv400100), Succ(xwv300000)) -> new_primPlusNat0(new_primMulNat0(xwv400100, Succ(xwv300000)), xwv300000) new_esEs28(xwv4411, xwv4611, app(app(ty_@2, ddf), ddg)) -> new_esEs4(xwv4411, xwv4611, ddf, ddg) new_compare7(Char(xwv4400), Char(xwv4600)) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Ordering, cch) -> new_ltEs4(xwv4410, xwv4610) new_primCmpNat0(Succ(xwv44000), Succ(xwv46000)) -> new_primCmpNat0(xwv44000, xwv46000) new_lt8(xwv440, xwv460) -> new_esEs9(new_compare7(xwv440, xwv460), LT) new_lt20(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_ltEs8(Nothing, Nothing, dh) -> True new_ltEs8(Just(xwv4410), Nothing, dh) -> False new_compare14(xwv440, xwv460, dc) -> new_compare23(xwv440, xwv460, new_esEs6(xwv440, xwv460, dc), dc) new_lt20(xwv4410, xwv4610, app(app(ty_@2, dcd), dce)) -> new_lt14(xwv4410, xwv4610, dcd, dce) new_ltEs20(xwv4412, xwv4612, ty_Ordering) -> new_ltEs4(xwv4412, xwv4612) new_compare6(xwv4400, xwv4600, ty_Ordering) -> new_compare19(xwv4400, xwv4600) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Ratio, ec)) -> new_ltEs11(xwv4410, xwv4610, ec) new_esEs29(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_esEs29(xwv4410, xwv4610, app(app(ty_@2, dcd), dce)) -> new_esEs4(xwv4410, xwv4610, dcd, dce) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, ty_@0) -> new_lt16(xwv4411, xwv4611) new_ltEs19(xwv441, xwv461, ty_Ordering) -> new_ltEs4(xwv441, xwv461) new_primEqNat0(Zero, Zero) -> True new_esEs28(xwv4411, xwv4611, app(app(ty_Either, dea), deb)) -> new_esEs5(xwv4411, xwv4611, dea, deb) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs15(Char(xwv4000), Char(xwv3000)) -> new_primEqNat0(xwv4000, xwv3000) new_esEs11([], [], gh) -> True new_lt21(xwv4411, xwv4611, ty_Double) -> new_lt17(xwv4411, xwv4611) new_primCmpInt(Neg(Succ(xwv4400)), Neg(Succ(xwv4600))) -> new_primCmpNat0(xwv4600, xwv4400) new_ltEs4(GT, GT) -> True new_esEs9(LT, GT) -> False new_esEs9(GT, LT) -> False new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(app(ty_@3, eg), eh), fa)) -> new_ltEs16(xwv4410, xwv4610, eg, eh, fa) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_asAs(False, xwv62) -> False new_ltEs17(xwv441, xwv461) -> new_fsEs(new_compare16(xwv441, xwv461)) new_esEs19(xwv4002, xwv3002, ty_Int) -> new_esEs17(xwv4002, xwv3002) new_compare6(xwv4400, xwv4600, ty_Char) -> new_compare7(xwv4400, xwv4600) new_esEs29(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_lt21(xwv4411, xwv4611, ty_Integer) -> new_lt6(xwv4411, xwv4611) new_lt19(xwv440, xwv460, app(ty_[], bf)) -> new_lt18(xwv440, xwv460, bf) new_compare28(xwv44, xwv46, True, ccd, cce) -> EQ new_esEs25(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Integer) -> new_compare16(xwv4400, xwv4600) new_lt20(xwv4410, xwv4610, app(app(app(ty_@3, ddb), ddc), ddd)) -> new_lt5(xwv4410, xwv4610, ddb, ddc, ddd) new_esEs29(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, app(ty_Ratio, cab)) -> new_lt4(xwv4410, xwv4610, cab) new_esEs25(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Float) -> new_compare12(xwv4400, xwv4600) new_lt19(xwv440, xwv460, app(app(ty_@2, cdd), cde)) -> new_lt14(xwv440, xwv460, cdd, cde) new_esEs20(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(app(ty_@3, bbc), bbd), bbe), bac) -> new_esEs7(xwv4000, xwv3000, bbc, bbd, bbe) new_ltEs11(xwv441, xwv461, ccf) -> new_fsEs(new_compare9(xwv441, xwv461, ccf)) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_[], bbb), bac) -> new_esEs11(xwv4000, xwv3000, bbb) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs21(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_esEs32(x0, x1, ty_Char) new_esEs22(x0, x1, ty_Integer) new_primCompAux00(x0, LT) new_primCmpInt(Pos(Succ(x0)), Pos(Zero)) new_compare25(x0, x1, True) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Succ(x0)), Neg(Zero)) new_compare6(x0, x1, app(ty_Maybe, x2)) new_esEs12(x0, x1, ty_Integer) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Int) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_compare23(x0, x1, False, x2) new_ltEs20(x0, x1, ty_Int) new_lt13(x0, x1, ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs32(x0, x1, ty_Int) new_ltEs4(LT, LT) new_ltEs8(Just(x0), Just(x1), app(ty_Ratio, x2)) new_lt14(x0, x1, x2, x3) new_primPlusNat1(Zero, Zero) new_ltEs20(x0, x1, ty_Ordering) new_sr0(Integer(x0), Integer(x1)) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_compare27(x0, x1, True, x2, x3) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_ltEs13(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_compare6(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Int) new_esEs24(x0, x1, ty_Double) new_compare6(x0, x1, ty_Bool) new_lt20(x0, x1, app(ty_Ratio, x2)) new_ltEs8(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs32(x0, x1, app(app(ty_@2, x2), x3)) new_sr(x0, x1) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs12(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, ty_Int) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs31(x0, x1, ty_Float) new_esEs20(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs13(Left(x0), Left(x1), ty_Integer, x2) new_lt13(x0, x1, ty_Double) new_esEs24(x0, x1, ty_Char) new_ltEs8(Just(x0), Just(x1), ty_Integer) new_primEqInt(Pos(Zero), Pos(Zero)) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_ltEs7(x0, x1) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_ltEs19(x0, x1, ty_Float) new_esEs12(x0, x1, ty_Bool) new_esEs25(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Bool) new_ltEs8(Just(x0), Just(x1), ty_@0) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs28(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Ordering) new_compare17(@0, @0) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs32(x0, x1, app(app(ty_Either, x2), x3)) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primEqInt(Neg(Zero), Neg(Zero)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs32(x0, x1, ty_Double) new_lt13(x0, x1, ty_Char) new_esEs21(x0, x1, ty_Int) new_lt21(x0, x1, app(ty_Ratio, x2)) new_esEs10(Integer(x0), Integer(x1)) new_esEs32(x0, x1, app(ty_[], x2)) new_esEs32(x0, x1, ty_@0) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs9(LT, LT) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Neg(x0), Neg(x1)) new_lt19(x0, x1, app(ty_Ratio, x2)) new_ltEs13(Left(x0), Left(x1), ty_Float, x2) new_esEs20(x0, x1, ty_@0) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_compare6(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Int) new_esEs9(EQ, GT) new_esEs9(GT, EQ) new_esEs22(x0, x1, ty_@0) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_esEs8(False, True) new_esEs8(True, False) new_lt19(x0, x1, ty_Double) new_esEs12(x0, x1, ty_@0) new_ltEs18(x0, x1, ty_Char) new_esEs8(True, True) new_ltEs6(x0, x1, x2) new_lt13(x0, x1, app(ty_Maybe, x2)) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs8(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_compare112(x0, x1, False) new_ltEs13(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs23(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Bool) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs20(x0, x1, ty_@0) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_esEs32(x0, x1, app(ty_Ratio, x2)) new_ltEs13(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_esEs22(x0, x1, ty_Float) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_pePe(False, x0) new_compare10(x0, x1) new_ltEs13(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_compare114(x0, x1, True, x2, x3) new_ltEs4(GT, EQ) new_esEs12(x0, x1, ty_Float) new_ltEs4(EQ, GT) new_esEs19(x0, x1, ty_Ordering) new_compare9(:%(x0, x1), :%(x2, x3), ty_Int) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_esEs28(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Double) new_compare6(x0, x1, ty_Double) new_esEs31(x0, x1, app(app(ty_@2, x2), x3)) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs24(x0, x1, ty_Ordering) new_esEs20(x0, x1, ty_Int) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_compare6(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Char) new_ltEs20(x0, x1, ty_Double) new_ltEs8(Just(x0), Nothing, x1) new_compare6(x0, x1, ty_Char) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_ltEs5(x0, x1) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, ty_Char) new_ltEs19(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Double) new_lt13(x0, x1, app(ty_[], x2)) new_ltEs8(Just(x0), Just(x1), ty_Ordering) new_esEs22(x0, x1, ty_Int) new_ltEs8(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_ltEs8(Just(x0), Just(x1), ty_Float) new_esEs32(x0, x1, ty_Integer) new_lt19(x0, x1, app(ty_Maybe, x2)) new_esEs12(x0, x1, app(ty_Maybe, x2)) new_esEs21(x0, x1, ty_@0) new_esEs12(x0, x1, ty_Int) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_esEs28(x0, x1, ty_Int) new_ltEs13(Right(x0), Right(x1), x2, ty_Float) new_ltEs20(x0, x1, ty_Bool) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Ordering) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_ltEs13(Left(x0), Left(x1), ty_Char, x2) new_ltEs4(EQ, LT) new_ltEs4(LT, EQ) new_compare6(x0, x1, ty_Float) new_ltEs8(Nothing, Just(x0), x1) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare23(x0, x1, True, x2) new_lt13(x0, x1, ty_Bool) new_lt20(x0, x1, ty_Float) new_ltEs4(GT, GT) new_compare114(x0, x1, False, x2, x3) new_ltEs18(x0, x1, ty_Double) new_compare26(x0, x1, False) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt12(x0, x1) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs16(Double(x0, x1), Double(x2, x3)) new_ltEs8(Just(x0), Just(x1), ty_Int) new_primCompAux00(x0, EQ) new_ltEs13(Left(x0), Left(x1), ty_Int, x2) new_ltEs20(x0, x1, ty_Integer) new_compare18(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs28(x0, x1, ty_Float) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs32(x0, x1, ty_Bool) new_esEs6(Just(x0), Just(x1), ty_@0) new_ltEs18(x0, x1, app(ty_[], x2)) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_compare111(x0, x1, False) new_compare113(x0, x1, x2, x3, True, x4, x5) new_compare24(x0, x1, True, x2, x3, x4) new_compare14(x0, x1, x2) new_lt6(x0, x1) new_esEs22(x0, x1, ty_Char) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs12(x0, x1, ty_Char) new_compare25(x0, x1, False) new_compare110(x0, x1, True, x2, x3, x4) new_primPlusNat1(Zero, Succ(x0)) new_esEs12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt19(x0, x1, ty_Ordering) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs25(x0, x1, ty_Int) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs6(Just(x0), Nothing, x1) new_lt17(x0, x1) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_ltEs17(x0, x1) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_esEs31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, ty_Int) new_primPlusNat0(Succ(x0), x1) new_lt21(x0, x1, app(ty_Maybe, x2)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_primEqNat0(Succ(x0), Zero) new_ltEs8(Just(x0), Just(x1), ty_Char) new_primCompAux0(x0, x1, x2, x3) new_esEs32(x0, x1, ty_Ordering) new_ltEs9(x0, x1) new_compare16(Integer(x0), Integer(x1)) new_esEs12(x0, x1, app(app(ty_@2, x2), x3)) new_esEs12(x0, x1, ty_Ordering) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Bool) new_esEs30(x0, x1, x2, x3, False, x4, x5) new_esEs11([], [], x0) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_compare6(x0, x1, app(ty_[], x2)) new_primPlusNat1(Succ(x0), Zero) new_esEs22(x0, x1, ty_Ordering) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_esEs13(Float(x0, x1), Float(x2, x3)) new_esEs24(x0, x1, ty_@0) new_lt13(x0, x1, ty_Float) new_compare112(x0, x1, True) new_esEs31(x0, x1, app(ty_Maybe, x2)) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs25(x0, x1, ty_Char) new_lt21(x0, x1, ty_Double) new_esEs19(x0, x1, ty_@0) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_lt21(x0, x1, ty_@0) new_compare116(x0, x1, False, x2) new_esEs17(x0, x1) new_ltEs8(Nothing, Nothing, x0) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_esEs31(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs10(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs13(Left(x0), Left(x1), ty_Bool, x2) new_primMulInt(Pos(x0), Pos(x1)) new_esEs6(Nothing, Just(x0), x1) new_ltEs8(Just(x0), Just(x1), ty_Bool) new_compare28(x0, x1, True, x2, x3) new_esEs31(x0, x1, ty_Int) new_esEs28(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_compare26(x0, x1, True) new_ltEs13(Right(x0), Right(x1), x2, ty_@0) new_esEs9(EQ, EQ) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs19(x0, x1, ty_Int) new_compare6(x0, x1, app(app(ty_@2, x2), x3)) new_lt19(x0, x1, ty_Integer) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_@0) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs28(x0, x1, ty_Integer) new_lt18(x0, x1, x2) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_lt20(x0, x1, ty_Bool) new_primCmpInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primMulNat0(Zero, Zero) new_lt21(x0, x1, ty_Integer) new_ltEs13(Right(x0), Right(x1), x2, ty_Bool) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_lt19(x0, x1, app(ty_[], x2)) new_lt21(x0, x1, ty_Bool) new_ltEs16(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare12(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Bool) new_compare12(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare12(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_ltEs19(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs24(x0, x1, app(ty_[], x2)) new_esEs15(Char(x0), Char(x1)) new_primCmpNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs28(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(ty_[], x2)) new_pePe(True, x0) new_esEs14(:%(x0, x1), :%(x2, x3), x4) new_esEs12(x0, x1, app(ty_Ratio, x2)) new_esEs7(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_ltEs13(Right(x0), Right(x1), x2, ty_Char) new_esEs25(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_Float) new_primCompAux00(x0, GT) new_esEs31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs19(x0, x1, app(ty_[], x2)) new_asAs(True, x0) new_esEs25(x0, x1, ty_Float) new_ltEs14(x0, x1) new_ltEs4(LT, GT) new_lt19(x0, x1, ty_@0) new_ltEs4(GT, LT) new_ltEs13(Left(x0), Left(x1), ty_Ordering, x2) new_primEqNat0(Zero, Succ(x0)) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_not(True) new_lt21(x0, x1, app(ty_[], x2)) new_lt9(x0, x1, x2) new_lt20(x0, x1, ty_Char) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_esEs29(x0, x1, ty_Char) new_lt16(x0, x1) new_ltEs13(Right(x0), Right(x1), x2, ty_Integer) new_ltEs12(True, True) new_ltEs8(Just(x0), Just(x1), app(ty_[], x2)) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Integer) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_esEs20(x0, x1, ty_Float) new_esEs28(x0, x1, ty_Bool) new_esEs28(x0, x1, ty_@0) new_compare7(Char(x0), Char(x1)) new_esEs23(x0, x1, ty_Bool) new_compare28(@2(x0, x1), @2(x2, x3), False, x4, x5) new_ltEs19(x0, x1, ty_@0) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs12(False, True) new_ltEs12(True, False) new_esEs11(:(x0, x1), [], x2) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_primMulNat0(Zero, Succ(x0)) new_ltEs13(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_compare11(x0, x1, x2, x3) new_ltEs11(x0, x1, x2) new_esEs9(LT, EQ) new_esEs9(EQ, LT) new_esEs32(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs19(x0, x1, ty_Bool) new_esEs23(x0, x1, ty_@0) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_ltEs4(EQ, EQ) new_esEs31(x0, x1, ty_Char) new_esEs9(GT, GT) new_esEs31(x0, x1, ty_Double) new_compare111(x0, x1, True) new_esEs23(x0, x1, ty_Char) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, ty_Double) new_esEs31(x0, x1, ty_@0) new_compare19(x0, x1) new_lt20(x0, x1, ty_Int) new_compare113(x0, x1, x2, x3, False, x4, x5) new_esEs28(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs19(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Float) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare115(x0, x1, x2, x3, True, x4, x5, x6) new_esEs27(x0, x1, ty_Integer) new_lt19(x0, x1, ty_Bool) new_lt10(x0, x1) new_esEs24(x0, x1, ty_Integer) new_esEs32(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Char) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt20(x0, x1, ty_Double) new_compare24(x0, x1, False, x2, x3, x4) new_esEs23(x0, x1, ty_Int) new_esEs9(LT, GT) new_esEs9(GT, LT) new_primCmpInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primCmpInt(Pos(Zero), Pos(Zero)) new_compare12(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs28(x0, x1, ty_Char) new_lt19(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Float) new_esEs21(x0, x1, app(ty_[], x2)) new_esEs20(x0, x1, ty_Integer) new_asAs(False, x0) new_esEs21(x0, x1, ty_Bool) new_ltEs8(Just(x0), Just(x1), ty_Double) new_compare27(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_compare18(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_lt21(x0, x1, ty_Ordering) new_lt13(x0, x1, ty_Integer) new_compare18(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare18(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_esEs11(:(x0, x1), :(x2, x3), x4) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_ltEs13(Left(x0), Left(x1), app(ty_[], x2), x3) new_lt21(x0, x1, ty_Float) new_ltEs13(Left(x0), Right(x1), x2, x3) new_ltEs13(Right(x0), Left(x1), x2, x3) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, ty_Integer) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_lt7(x0, x1) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_compare1([], [], x0) new_lt11(x0, x1, x2, x3) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs30(x0, x1, x2, x3, True, x4, x5) new_esEs26(x0, x1, ty_Integer) new_esEs28(x0, x1, app(ty_Maybe, x2)) new_esEs31(x0, x1, ty_Bool) new_lt13(x0, x1, ty_@0) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_ltEs13(Right(x0), Right(x1), x2, ty_Ordering) new_esEs29(x0, x1, ty_Int) new_esEs32(x0, x1, app(ty_Maybe, x2)) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs25(x0, x1, ty_@0) new_compare6(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_esEs23(x0, x1, app(ty_[], x2)) new_compare116(x0, x1, True, x2) new_lt19(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Bool) new_compare8(x0, x1, x2, x3) new_ltEs13(Right(x0), Right(x1), x2, ty_Double) new_compare15(x0, x1, x2, x3, x4) new_ltEs13(Left(x0), Left(x1), ty_@0, x2) new_primCmpNat0(Zero, Succ(x0)) new_lt15(x0, x1) new_compare115(x0, x1, x2, x3, False, x4, x5, x6) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs22(x0, x1, ty_Double) new_esEs18(@0, @0) new_compare13(x0, x1) new_primPlusNat0(Zero, x0) new_primMulNat0(Succ(x0), Succ(x1)) new_primPlusNat1(Succ(x0), Succ(x1)) new_esEs12(x0, x1, ty_Double) new_primEqNat0(Zero, Zero) new_lt4(x0, x1, x2) new_compare6(x0, x1, ty_Integer) new_ltEs15(x0, x1) new_esEs19(x0, x1, ty_Int) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_not(False) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, ty_Integer) new_esEs19(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, ty_Float) new_esEs8(False, False) new_compare6(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs12(False, False) new_esEs6(Just(x0), Just(x1), ty_Char) new_compare1([], :(x0, x1), x2) new_esEs27(x0, x1, ty_Int) new_ltEs13(Left(x0), Left(x1), ty_Double, x2) new_lt20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Bool) new_ltEs13(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_esEs19(x0, x1, ty_Float) new_esEs28(x0, x1, ty_Ordering) new_esEs28(x0, x1, app(app(ty_Either, x2), x3)) new_primCmpNat0(Succ(x0), Zero) new_esEs6(Nothing, Nothing, x0) new_esEs23(x0, x1, ty_Integer) new_esEs12(x0, x1, app(ty_[], x2)) new_compare9(:%(x0, x1), :%(x2, x3), ty_Integer) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt8(x0, x1) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, ty_Char) new_esEs20(x0, x1, ty_Ordering) new_esEs19(x0, x1, ty_Char) new_compare6(x0, x1, ty_Ordering) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt5(x0, x1, x2, x3, x4) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, ty_Ordering) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs25(x0, x1, ty_Double) new_esEs31(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Float) new_lt20(x0, x1, app(ty_[], x2)) new_esEs11([], :(x0, x1), x2) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_compare1(:(x0, x1), [], x2) new_ltEs18(x0, x1, ty_Ordering) new_compare110(x0, x1, False, x2, x3, x4) new_lt21(x0, x1, ty_Int) new_compare1(:(x0, x1), :(x2, x3), x4) new_primCmpNat0(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Bool) new_ltEs13(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_ltEs8(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, h, ba, bb) -> new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs9(new_compare28(@2(xwv21, xwv22), @2(xwv15, xwv16), new_esEs4(@2(xwv21, xwv22), @2(xwv15, xwv16), h, ba), h, ba), LT), h, ba, bb) at position [8,0,2] we obtained the following new rules [LPAR04]: (new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, h, ba, bb) -> new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs9(new_compare28(@2(xwv21, xwv22), @2(xwv15, xwv16), new_asAs(new_esEs25(xwv21, xwv15, h), new_esEs24(xwv22, xwv16, ba)), h, ba), LT), h, ba, bb),new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, h, ba, bb) -> new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs9(new_compare28(@2(xwv21, xwv22), @2(xwv15, xwv16), new_asAs(new_esEs25(xwv21, xwv15, h), new_esEs24(xwv22, xwv16, ba)), h, ba), LT), h, ba, bb)) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, h, ba, bb) -> new_delFromFM(xwv19, @2(xwv21, xwv22), h, ba, bb) new_delFromFM(Branch(@2(xwv300, xwv301), xwv31, xwv32, xwv33, xwv34), @2(xwv400, xwv401), bc, bd, be) -> new_delFromFM2(xwv300, xwv301, xwv31, xwv32, xwv33, xwv34, xwv400, xwv401, new_esEs30(xwv400, xwv401, xwv300, xwv301, new_esEs31(xwv400, xwv300, bc), bc, bd), bc, bd, be) new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, h, ba, bb) -> new_delFromFM(xwv20, @2(xwv21, xwv22), h, ba, bb) new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, h, ba, bb) -> new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs9(new_compare28(@2(xwv21, xwv22), @2(xwv15, xwv16), new_asAs(new_esEs25(xwv21, xwv15, h), new_esEs24(xwv22, xwv16, ba)), h, ba), LT), h, ba, bb) The TRS R consists of the following rules: new_ltEs18(xwv4411, xwv4611, ty_Integer) -> new_ltEs17(xwv4411, xwv4611) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(ty_Maybe, cfe)) -> new_ltEs8(xwv4410, xwv4610, cfe) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xwv4400)), Pos(xwv460)) -> LT new_ltEs18(xwv4411, xwv4611, app(app(ty_@2, cbb), cbc)) -> new_ltEs10(xwv4411, xwv4611, cbb, cbc) new_pePe(True, xwv135) -> True new_esEs23(xwv440, xwv460, app(ty_Maybe, dc)) -> new_esEs6(xwv440, xwv460, dc) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Float, bac) -> new_esEs13(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, app(app(app(ty_@3, ded), dee), def)) -> new_lt5(xwv4411, xwv4611, ded, dee, def) new_primCmpInt(Neg(Succ(xwv4400)), Neg(Zero)) -> LT new_ltEs7(xwv441, xwv461) -> new_fsEs(new_compare17(xwv441, xwv461)) new_esEs21(xwv4000, xwv3000, app(app(app(ty_@3, bha), bhb), bhc)) -> new_esEs7(xwv4000, xwv3000, bha, bhb, bhc) new_compare24(xwv440, xwv460, False, de, df, dg) -> new_compare110(xwv440, xwv460, new_ltEs16(xwv440, xwv460, de, df, dg), de, df, dg) new_compare23(xwv440, xwv460, True, dc) -> EQ new_esEs23(xwv440, xwv460, ty_Int) -> new_esEs17(xwv440, xwv460) new_esEs22(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, app(ty_[], dae)) -> new_esEs11(xwv4001, xwv3001, dae) new_lt20(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_compare6(xwv4400, xwv4600, ty_Bool) -> new_compare10(xwv4400, xwv4600) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt(Pos(Zero), Neg(Succ(xwv4600))) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_compare19(xwv440, xwv460) -> new_compare25(xwv440, xwv460, new_esEs9(xwv440, xwv460)) new_esEs23(xwv440, xwv460, ty_Double) -> new_esEs16(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(ty_[], da)) -> new_compare1(xwv4400, xwv4600, da) new_esEs9(LT, EQ) -> False new_esEs9(EQ, LT) -> False new_esEs18(@0, @0) -> True new_compare113(xwv110, xwv111, xwv112, xwv113, True, bda, bdb) -> LT new_esEs24(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt6(xwv440, xwv460) -> new_esEs9(new_compare16(xwv440, xwv460), LT) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_Either, cgd), cge)) -> new_esEs5(xwv4000, xwv3000, cgd, cge) new_esEs20(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_@0, cch) -> new_ltEs7(xwv4410, xwv4610) new_compare15(xwv440, xwv460, de, df, dg) -> new_compare24(xwv440, xwv460, new_esEs7(xwv440, xwv460, de, df, dg), de, df, dg) new_esEs23(xwv440, xwv460, app(app(ty_Either, bhd), bhe)) -> new_esEs5(xwv440, xwv460, bhd, bhe) new_ltEs20(xwv4412, xwv4612, ty_Bool) -> new_ltEs12(xwv4412, xwv4612) new_esEs28(xwv4411, xwv4611, ty_Integer) -> new_esEs10(xwv4411, xwv4611) new_compare26(xwv440, xwv460, True) -> EQ new_primEqInt(Pos(Succ(xwv40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xwv30000))) -> False new_esEs27(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs25(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_esEs32(xwv32, xwv34, ty_Char) -> new_esEs15(xwv32, xwv34) new_ltEs4(GT, EQ) -> False new_esEs28(xwv4411, xwv4611, ty_@0) -> new_esEs18(xwv4411, xwv4611) new_esEs31(xwv400, xwv300, app(app(app(ty_@3, bdc), bdd), bde)) -> new_esEs7(xwv400, xwv300, bdc, bdd, bde) new_esEs31(xwv400, xwv300, ty_Ordering) -> new_esEs9(xwv400, xwv300) new_ltEs19(xwv441, xwv461, app(ty_[], dd)) -> new_ltEs6(xwv441, xwv461, dd) new_esEs24(xwv4001, xwv3001, app(app(ty_@2, dab), dac)) -> new_esEs4(xwv4001, xwv3001, dab, dac) new_esEs19(xwv4002, xwv3002, ty_Ordering) -> new_esEs9(xwv4002, xwv3002) new_esEs28(xwv4411, xwv4611, app(ty_[], deg)) -> new_esEs11(xwv4411, xwv4611, deg) new_esEs28(xwv4411, xwv4611, app(ty_Ratio, ddh)) -> new_esEs14(xwv4411, xwv4611, ddh) new_esEs8(False, True) -> False new_esEs8(True, False) -> False new_esEs12(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_compare1(:(xwv4400, xwv4401), [], bf) -> GT new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Maybe, bba), bac) -> new_esEs6(xwv4000, xwv3000, bba) new_primEqNat0(Succ(xwv40000), Succ(xwv30000)) -> new_primEqNat0(xwv40000, xwv30000) new_esEs23(xwv440, xwv460, app(ty_Ratio, db)) -> new_esEs14(xwv440, xwv460, db) new_esEs31(xwv400, xwv300, ty_Bool) -> new_esEs8(xwv400, xwv300) new_esEs29(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(app(ty_@2, bcb), bcc)) -> new_esEs4(xwv4000, xwv3000, bcb, bcc) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Ratio, cgc)) -> new_esEs14(xwv4000, xwv3000, cgc) new_esEs12(xwv4000, xwv3000, app(app(ty_Either, hb), hc)) -> new_esEs5(xwv4000, xwv3000, hb, hc) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Maybe, cec), cch) -> new_ltEs8(xwv4410, xwv4610, cec) new_not(True) -> False new_ltEs19(xwv441, xwv461, ty_Double) -> new_ltEs5(xwv441, xwv461) new_lt21(xwv4411, xwv4611, app(app(ty_@2, ddf), ddg)) -> new_lt14(xwv4411, xwv4611, ddf, ddg) new_ltEs20(xwv4412, xwv4612, app(app(ty_@2, deh), dfa)) -> new_ltEs10(xwv4412, xwv4612, deh, dfa) new_esEs25(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_primCompAux00(xwv146, LT) -> LT new_primCmpNat0(Zero, Zero) -> EQ new_esEs12(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Integer) -> new_ltEs17(xwv4412, xwv4612) new_lt21(xwv4411, xwv4611, ty_Float) -> new_lt10(xwv4411, xwv4611) new_esEs28(xwv4411, xwv4611, ty_Float) -> new_esEs13(xwv4411, xwv4611) new_esEs32(xwv32, xwv34, ty_Bool) -> new_esEs8(xwv32, xwv34) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Ratio, bad), bac) -> new_esEs14(xwv4000, xwv3000, bad) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(ty_Ratio, bbg)) -> new_esEs14(xwv4000, xwv3000, bbg) new_ltEs16(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cda, cdb, cdc) -> new_pePe(new_lt20(xwv4410, xwv4610, cda), new_asAs(new_esEs29(xwv4410, xwv4610, cda), new_pePe(new_lt21(xwv4411, xwv4611, cdb), new_asAs(new_esEs28(xwv4411, xwv4611, cdb), new_ltEs20(xwv4412, xwv4612, cdc))))) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Float, cch) -> new_ltEs14(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(ty_[], bff)) -> new_esEs11(xwv4001, xwv3001, bff) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs16(Double(xwv4000, xwv4001), Double(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_esEs25(xwv4000, xwv3000, app(app(app(ty_@3, dbh), dca), dcb)) -> new_esEs7(xwv4000, xwv3000, dbh, dca, dcb) new_compare6(xwv4400, xwv4600, ty_@0) -> new_compare17(xwv4400, xwv4600) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_esEs28(xwv4411, xwv4611, ty_Double) -> new_esEs16(xwv4411, xwv4611) new_esEs19(xwv4002, xwv3002, app(app(ty_@2, bea), beb)) -> new_esEs4(xwv4002, xwv3002, bea, beb) new_primEqNat0(Succ(xwv40000), Zero) -> False new_primEqNat0(Zero, Succ(xwv30000)) -> False new_ltEs19(xwv441, xwv461, ty_Bool) -> new_ltEs12(xwv441, xwv461) new_esEs19(xwv4002, xwv3002, app(app(app(ty_@3, bee), bef), beg)) -> new_esEs7(xwv4002, xwv3002, bee, bef, beg) new_compare112(xwv440, xwv460, False) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_esEs23(xwv440, xwv460, ty_@0) -> new_esEs18(xwv440, xwv460) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Double) -> new_esEs16(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, app(ty_Maybe, dfe)) -> new_ltEs8(xwv4412, xwv4612, dfe) new_esEs12(xwv4000, xwv3000, app(ty_Ratio, ha)) -> new_esEs14(xwv4000, xwv3000, ha) new_primCompAux00(xwv146, GT) -> GT new_lt17(xwv440, xwv460) -> new_esEs9(new_compare18(xwv440, xwv460), LT) new_lt18(xwv440, xwv460, bf) -> new_esEs9(new_compare1(xwv440, xwv460, bf), LT) new_lt19(xwv440, xwv460, ty_Bool) -> new_lt15(xwv440, xwv460) new_ltEs18(xwv4411, xwv4611, ty_Bool) -> new_ltEs12(xwv4411, xwv4611) new_compare115(xwv110, xwv111, xwv112, xwv113, True, xwv115, bda, bdb) -> new_compare113(xwv110, xwv111, xwv112, xwv113, True, bda, bdb) new_lt21(xwv4411, xwv4611, app(ty_Maybe, dec)) -> new_lt9(xwv4411, xwv4611, dec) new_compare6(xwv4400, xwv4600, app(ty_Maybe, cd)) -> new_compare14(xwv4400, xwv4600, cd) new_compare23(xwv440, xwv460, False, dc) -> new_compare116(xwv440, xwv460, new_ltEs8(xwv440, xwv460, dc), dc) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Integer) -> new_compare16(new_sr0(xwv4400, xwv4601), new_sr0(xwv4600, xwv4401)) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_@0, bac) -> new_esEs18(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(ty_Ratio, chg)) -> new_esEs14(xwv4001, xwv3001, chg) new_primCmpInt(Pos(Succ(xwv4400)), Neg(xwv460)) -> GT new_esEs20(xwv4001, xwv3001, app(app(ty_@2, bfc), bfd)) -> new_esEs4(xwv4001, xwv3001, bfc, bfd) new_lt13(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Double, cch) -> new_ltEs5(xwv4410, xwv4610) new_ltEs19(xwv441, xwv461, ty_Float) -> new_ltEs14(xwv441, xwv461) new_esEs24(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_lt4(xwv440, xwv460, db) -> new_esEs9(new_compare9(xwv440, xwv460, db), LT) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt13(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_Float) -> new_ltEs14(xwv4412, xwv4612) new_ltEs20(xwv4412, xwv4612, ty_Double) -> new_ltEs5(xwv4412, xwv4612) new_primPlusNat1(Succ(xwv19200), Succ(xwv9700)) -> Succ(Succ(new_primPlusNat1(xwv19200, xwv9700))) new_ltEs14(xwv441, xwv461) -> new_fsEs(new_compare12(xwv441, xwv461)) new_primCmpNat0(Zero, Succ(xwv46000)) -> LT new_compare6(xwv4400, xwv4600, app(app(ty_@2, bg), bh)) -> new_compare8(xwv4400, xwv4600, bg, bh) new_compare25(xwv440, xwv460, False) -> new_compare111(xwv440, xwv460, new_ltEs4(xwv440, xwv460)) new_esEs29(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs28(xwv4411, xwv4611, ty_Int) -> new_esEs17(xwv4411, xwv4611) new_esEs30(xwv31, xwv32, xwv33, xwv34, False, fc, fd) -> new_esEs9(new_compare28(@2(xwv31, xwv32), @2(xwv33, xwv34), False, fc, fd), GT) new_esEs32(xwv32, xwv34, app(app(app(ty_@3, ge), gf), gg)) -> new_esEs7(xwv32, xwv34, ge, gf, gg) new_esEs22(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_@0) -> new_esEs18(xwv4002, xwv3002) new_primCmpNat0(Succ(xwv44000), Zero) -> GT new_compare110(xwv440, xwv460, False, de, df, dg) -> GT new_lt13(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_lt20(xwv4410, xwv4610, app(app(ty_Either, dcg), dch)) -> new_lt11(xwv4410, xwv4610, dcg, dch) new_pePe(False, xwv135) -> xwv135 new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_[], ceg), cch) -> new_ltEs6(xwv4410, xwv4610, ceg) new_esEs31(xwv400, xwv300, ty_Float) -> new_esEs13(xwv400, xwv300) new_esEs22(xwv4410, xwv4610, app(ty_Ratio, cab)) -> new_esEs14(xwv4410, xwv4610, cab) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_[], cha)) -> new_esEs11(xwv4000, xwv3000, cha) new_ltEs13(Left(xwv4410), Right(xwv4610), ccg, cch) -> True new_ltEs19(xwv441, xwv461, ty_@0) -> new_ltEs7(xwv441, xwv461) new_esEs7(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bdc, bdd, bde) -> new_asAs(new_esEs21(xwv4000, xwv3000, bdc), new_asAs(new_esEs20(xwv4001, xwv3001, bdd), new_esEs19(xwv4002, xwv3002, bde))) new_compare114(xwv440, xwv460, True, bhd, bhe) -> LT new_esEs11(:(xwv4000, xwv4001), [], gh) -> False new_esEs11([], :(xwv3000, xwv3001), gh) -> False new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_esEs25(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Zero)) -> GT new_ltEs19(xwv441, xwv461, app(app(ty_@2, bhf), bhg)) -> new_ltEs10(xwv441, xwv461, bhf, bhg) new_ltEs19(xwv441, xwv461, ty_Integer) -> new_ltEs17(xwv441, xwv461) new_compare27(xwv440, xwv460, False, bhd, bhe) -> new_compare114(xwv440, xwv460, new_ltEs13(xwv440, xwv460, bhd, bhe), bhd, bhe) new_lt20(xwv4410, xwv4610, app(ty_Maybe, dda)) -> new_lt9(xwv4410, xwv4610, dda) new_esEs6(Just(xwv4000), Just(xwv3000), ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_Either, cea), ceb), cch) -> new_ltEs13(xwv4410, xwv4610, cea, ceb) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_@2, bag), bah), bac) -> new_esEs4(xwv4000, xwv3000, bag, bah) new_lt11(xwv440, xwv460, bhd, bhe) -> new_esEs9(new_compare11(xwv440, xwv460, bhd, bhe), LT) new_esEs22(xwv4410, xwv4610, app(ty_Maybe, cae)) -> new_esEs6(xwv4410, xwv4610, cae) new_esEs32(xwv32, xwv34, app(ty_Maybe, gc)) -> new_esEs6(xwv32, xwv34, gc) new_esEs21(xwv4000, xwv3000, app(app(ty_@2, bge), bgf)) -> new_esEs4(xwv4000, xwv3000, bge, bgf) new_lt19(xwv440, xwv460, app(ty_Maybe, dc)) -> new_lt9(xwv440, xwv460, dc) new_lt21(xwv4411, xwv4611, ty_Bool) -> new_lt15(xwv4411, xwv4611) new_primEqInt(Pos(Zero), Neg(Succ(xwv30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xwv30000))) -> False new_lt19(xwv440, xwv460, ty_Ordering) -> new_lt12(xwv440, xwv460) new_esEs23(xwv440, xwv460, app(ty_[], bf)) -> new_esEs11(xwv440, xwv460, bf) new_ltEs13(Right(xwv4410), Left(xwv4610), ccg, cch) -> False new_esEs25(xwv4000, xwv3000, app(app(ty_@2, dbd), dbe)) -> new_esEs4(xwv4000, xwv3000, dbd, dbe) new_esEs30(xwv31, xwv32, xwv33, xwv34, True, fc, fd) -> new_esEs9(new_compare28(@2(xwv31, xwv32), @2(xwv33, xwv34), new_esEs32(xwv32, xwv34, fd), fc, fd), GT) new_ltEs4(LT, GT) -> True new_lt21(xwv4411, xwv4611, ty_Int) -> new_lt7(xwv4411, xwv4611) new_esEs20(xwv4001, xwv3001, app(ty_Ratio, beh)) -> new_esEs14(xwv4001, xwv3001, beh) new_esEs21(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs29(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs12(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(app(ty_Either, chh), daa)) -> new_esEs5(xwv4001, xwv3001, chh, daa) new_primEqInt(Neg(Succ(xwv40000)), Neg(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_lt5(xwv440, xwv460, de, df, dg) -> new_esEs9(new_compare15(xwv440, xwv460, de, df, dg), LT) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Char, cch) -> new_ltEs9(xwv4410, xwv4610) new_primCmpInt(Neg(Zero), Pos(Succ(xwv4600))) -> LT new_ltEs20(xwv4412, xwv4612, app(app(ty_Either, dfc), dfd)) -> new_ltEs13(xwv4412, xwv4612, dfc, dfd) new_ltEs4(LT, LT) -> True new_compare114(xwv440, xwv460, False, bhd, bhe) -> GT new_ltEs4(EQ, LT) -> False new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_ltEs18(xwv4411, xwv4611, app(app(app(ty_@3, cbh), cca), ccb)) -> new_ltEs16(xwv4411, xwv4611, cbh, cca, ccb) new_esEs32(xwv32, xwv34, ty_Double) -> new_esEs16(xwv32, xwv34) new_primMulInt(Pos(xwv40010), Pos(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_esEs32(xwv32, xwv34, app(ty_Ratio, ff)) -> new_esEs14(xwv32, xwv34, ff) new_lt13(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_@2, cdf), cdg), cch) -> new_ltEs10(xwv4410, xwv4610, cdf, cdg) new_compare6(xwv4400, xwv4600, app(app(ty_Either, cb), cc)) -> new_compare11(xwv4400, xwv4600, cb, cc) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs8(False, False) -> True new_lt19(xwv440, xwv460, app(app(ty_Either, bhd), bhe)) -> new_lt11(xwv440, xwv460, bhd, bhe) new_esEs11(:(xwv4000, xwv4001), :(xwv3000, xwv3001), gh) -> new_asAs(new_esEs12(xwv4000, xwv3000, gh), new_esEs11(xwv4001, xwv3001, gh)) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Double) -> new_ltEs5(xwv4411, xwv4611) new_esEs32(xwv32, xwv34, app(app(ty_Either, fg), fh)) -> new_esEs5(xwv32, xwv34, fg, fh) new_esEs22(xwv4410, xwv4610, app(app(app(ty_@3, caf), cag), cah)) -> new_esEs7(xwv4410, xwv4610, caf, cag, cah) new_esEs24(xwv4001, xwv3001, app(ty_Maybe, dad)) -> new_esEs6(xwv4001, xwv3001, dad) new_esEs14(:%(xwv4000, xwv4001), :%(xwv3000, xwv3001), dcc) -> new_asAs(new_esEs27(xwv4000, xwv3000, dcc), new_esEs26(xwv4001, xwv3001, dcc)) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Int, bac) -> new_esEs17(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, ty_Integer) -> new_esEs10(xwv440, xwv460) new_ltEs19(xwv441, xwv461, app(ty_Maybe, dh)) -> new_ltEs8(xwv441, xwv461, dh) new_primMulNat0(Succ(xwv400100), Zero) -> Zero new_primMulNat0(Zero, Succ(xwv300000)) -> Zero new_primPlusNat0(Zero, xwv300000) -> Succ(xwv300000) new_lt13(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(ty_[], dbg)) -> new_esEs11(xwv4000, xwv3000, dbg) new_esEs22(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_@0) -> new_ltEs7(xwv4412, xwv4612) new_lt13(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_ltEs19(xwv441, xwv461, app(app(ty_Either, ccg), cch)) -> new_ltEs13(xwv441, xwv461, ccg, cch) new_esEs24(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_esEs31(xwv400, xwv300, ty_@0) -> new_esEs18(xwv400, xwv300) new_esEs4(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), che, chf) -> new_asAs(new_esEs25(xwv4000, xwv3000, che), new_esEs24(xwv4001, xwv3001, chf)) new_ltEs12(False, True) -> True new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_Either, bae), baf), bac) -> new_esEs5(xwv4000, xwv3000, bae, baf) new_lt13(xwv4410, xwv4610, app(ty_[], cba)) -> new_lt18(xwv4410, xwv4610, cba) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(ty_Maybe, bcd)) -> new_esEs6(xwv4000, xwv3000, bcd) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(app(app(ty_@3, bcf), bcg), bch)) -> new_esEs7(xwv4000, xwv3000, bcf, bcg, bch) new_esEs21(xwv4000, xwv3000, app(app(ty_Either, bgc), bgd)) -> new_esEs5(xwv4000, xwv3000, bgc, bgd) new_compare116(xwv440, xwv460, False, dc) -> GT new_compare116(xwv440, xwv460, True, dc) -> LT new_esEs12(xwv4000, xwv3000, app(ty_Maybe, hf)) -> new_esEs6(xwv4000, xwv3000, hf) new_esEs19(xwv4002, xwv3002, ty_Double) -> new_esEs16(xwv4002, xwv3002) new_esEs22(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs12(xwv4000, xwv3000, app(ty_[], hg)) -> new_esEs11(xwv4000, xwv3000, hg) new_esEs23(xwv440, xwv460, ty_Ordering) -> new_esEs9(xwv440, xwv460) new_compare1([], [], bf) -> EQ new_esEs6(Just(xwv4000), Just(xwv3000), app(app(app(ty_@3, chb), chc), chd)) -> new_esEs7(xwv4000, xwv3000, chb, chc, chd) new_compare111(xwv440, xwv460, True) -> LT new_esEs28(xwv4411, xwv4611, ty_Char) -> new_esEs15(xwv4411, xwv4611) new_esEs20(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt13(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_esEs20(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_primPlusNat1(Succ(xwv19200), Zero) -> Succ(xwv19200) new_primPlusNat1(Zero, Succ(xwv9700)) -> Succ(xwv9700) new_esEs24(xwv4001, xwv3001, app(app(app(ty_@3, daf), dag), dah)) -> new_esEs7(xwv4001, xwv3001, daf, dag, dah) new_esEs9(LT, LT) -> True new_compare10(xwv440, xwv460) -> new_compare26(xwv440, xwv460, new_esEs8(xwv440, xwv460)) new_lt13(xwv4410, xwv4610, app(app(ty_@2, bhh), caa)) -> new_lt14(xwv4410, xwv4610, bhh, caa) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(ty_[], bce)) -> new_esEs11(xwv4000, xwv3000, bce) new_esEs12(xwv4000, xwv3000, app(app(ty_@2, hd), he)) -> new_esEs4(xwv4000, xwv3000, hd, he) new_esEs17(xwv400, xwv300) -> new_primEqInt(xwv400, xwv300) new_lt21(xwv4411, xwv4611, ty_Ordering) -> new_lt12(xwv4411, xwv4611) new_ltEs12(True, True) -> True new_ltEs18(xwv4411, xwv4611, app(app(ty_Either, cbe), cbf)) -> new_ltEs13(xwv4411, xwv4611, cbe, cbf) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_@2, cgf), cgg)) -> new_esEs4(xwv4000, xwv3000, cgf, cgg) new_esEs24(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_esEs26(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_ltEs4(LT, EQ) -> True new_fsEs(xwv123) -> new_not(new_esEs9(xwv123, GT)) new_esEs19(xwv4002, xwv3002, ty_Float) -> new_esEs13(xwv4002, xwv3002) new_esEs23(xwv440, xwv460, app(app(app(ty_@3, de), df), dg)) -> new_esEs7(xwv440, xwv460, de, df, dg) new_esEs23(xwv440, xwv460, ty_Bool) -> new_esEs8(xwv440, xwv460) new_ltEs20(xwv4412, xwv4612, app(app(app(ty_@3, dff), dfg), dfh)) -> new_ltEs16(xwv4412, xwv4612, dff, dfg, dfh) new_esEs20(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_ltEs18(xwv4411, xwv4611, app(ty_Maybe, cbg)) -> new_ltEs8(xwv4411, xwv4611, cbg) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Bool, bac) -> new_esEs8(xwv4000, xwv3000) new_primMulInt(Neg(xwv40010), Neg(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_primCmpInt(Pos(Zero), Pos(Succ(xwv4600))) -> new_primCmpNat0(Zero, Succ(xwv4600)) new_lt20(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Integer, bac) -> new_esEs10(xwv4000, xwv3000) new_compare115(xwv110, xwv111, xwv112, xwv113, False, xwv115, bda, bdb) -> new_compare113(xwv110, xwv111, xwv112, xwv113, xwv115, bda, bdb) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_[], fb)) -> new_ltEs6(xwv4410, xwv4610, fb) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Maybe, cgh)) -> new_esEs6(xwv4000, xwv3000, cgh) new_ltEs4(EQ, EQ) -> True new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs6(Nothing, Just(xwv3000), cgb) -> False new_esEs6(Just(xwv4000), Nothing, cgb) -> False new_esEs6(Nothing, Nothing, cgb) -> True new_esEs12(xwv4000, xwv3000, app(app(app(ty_@3, hh), baa), bab)) -> new_esEs7(xwv4000, xwv3000, hh, baa, bab) new_ltEs18(xwv4411, xwv4611, ty_Char) -> new_ltEs9(xwv4411, xwv4611) new_esEs22(xwv4410, xwv4610, app(app(ty_Either, cac), cad)) -> new_esEs5(xwv4410, xwv4610, cac, cad) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs31(xwv400, xwv300, ty_Double) -> new_esEs16(xwv400, xwv300) new_esEs24(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_lt21(xwv4411, xwv4611, app(app(ty_Either, dea), deb)) -> new_lt11(xwv4411, xwv4611, dea, deb) new_esEs21(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, app(app(ty_@2, cdd), cde)) -> new_esEs4(xwv440, xwv460, cdd, cde) new_esEs12(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_compare112(xwv440, xwv460, True) -> LT new_esEs5(Left(xwv4000), Left(xwv3000), ty_Ordering, bac) -> new_esEs9(xwv4000, xwv3000) new_esEs13(Float(xwv4000, xwv4001), Float(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Char, bac) -> new_esEs15(xwv4000, xwv3000) new_lt13(xwv4410, xwv4610, app(app(ty_Either, cac), cad)) -> new_lt11(xwv4410, xwv4610, cac, cad) new_ltEs19(xwv441, xwv461, ty_Char) -> new_ltEs9(xwv441, xwv461) new_compare6(xwv4400, xwv4600, app(ty_Ratio, ca)) -> new_compare9(xwv4400, xwv4600, ca) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(ty_Ratio, cfb)) -> new_ltEs11(xwv4410, xwv4610, cfb) new_lt20(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_esEs31(xwv400, xwv300, ty_Int) -> new_esEs17(xwv400, xwv300) new_ltEs18(xwv4411, xwv4611, ty_@0) -> new_ltEs7(xwv4411, xwv4611) new_esEs26(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(app(ty_@2, ceh), cfa)) -> new_ltEs10(xwv4410, xwv4610, ceh, cfa) new_ltEs20(xwv4412, xwv4612, ty_Int) -> new_ltEs15(xwv4412, xwv4612) new_primMulInt(Pos(xwv40010), Neg(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_primMulInt(Neg(xwv40010), Pos(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_esEs19(xwv4002, xwv3002, app(app(ty_Either, bdg), bdh)) -> new_esEs5(xwv4002, xwv3002, bdg, bdh) new_esEs32(xwv32, xwv34, app(ty_[], gd)) -> new_esEs11(xwv32, xwv34, gd) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs22(xwv4410, xwv4610, app(app(ty_@2, bhh), caa)) -> new_esEs4(xwv4410, xwv4610, bhh, caa) new_esEs31(xwv400, xwv300, app(ty_Maybe, cgb)) -> new_esEs6(xwv400, xwv300, cgb) new_esEs24(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_esEs25(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs32(xwv32, xwv34, ty_Integer) -> new_esEs10(xwv32, xwv34) new_compare28(@2(xwv440, xwv441), @2(xwv460, xwv461), False, ccd, cce) -> new_compare115(xwv440, xwv441, xwv460, xwv461, new_lt19(xwv440, xwv460, ccd), new_asAs(new_esEs23(xwv440, xwv460, ccd), new_ltEs19(xwv441, xwv461, cce)), ccd, cce) new_esEs32(xwv32, xwv34, ty_@0) -> new_esEs18(xwv32, xwv34) new_lt13(xwv4410, xwv4610, app(app(app(ty_@3, caf), cag), cah)) -> new_lt5(xwv4410, xwv4610, caf, cag, cah) new_sr0(Integer(xwv44000), Integer(xwv46010)) -> Integer(new_primMulInt(xwv44000, xwv46010)) new_esEs12(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Ratio, bgb)) -> new_esEs14(xwv4000, xwv3000, bgb) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs19(xwv441, xwv461, app(app(app(ty_@3, cda), cdb), cdc)) -> new_ltEs16(xwv441, xwv461, cda, cdb, cdc) new_compare24(xwv440, xwv460, True, de, df, dg) -> EQ new_esEs31(xwv400, xwv300, app(ty_Ratio, dcc)) -> new_esEs14(xwv400, xwv300, dcc) new_ltEs18(xwv4411, xwv4611, ty_Ordering) -> new_ltEs4(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Ratio, cdh), cch) -> new_ltEs11(xwv4410, xwv4610, cdh) new_ltEs5(xwv441, xwv461) -> new_fsEs(new_compare18(xwv441, xwv461)) new_lt19(xwv440, xwv460, app(ty_Ratio, db)) -> new_lt4(xwv440, xwv460, db) new_ltEs6(xwv441, xwv461, dd) -> new_fsEs(new_compare1(xwv441, xwv461, dd)) new_esEs28(xwv4411, xwv4611, app(app(app(ty_@3, ded), dee), def)) -> new_esEs7(xwv4411, xwv4611, ded, dee, def) new_compare8(xwv440, xwv460, cdd, cde) -> new_compare28(xwv440, xwv460, new_esEs4(xwv440, xwv460, cdd, cde), cdd, cde) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_asAs(True, xwv62) -> xwv62 new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Integer, cch) -> new_ltEs17(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(ty_Ratio, dba)) -> new_esEs14(xwv4000, xwv3000, dba) new_esEs10(Integer(xwv4000), Integer(xwv3000)) -> new_primEqInt(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Maybe, bgg)) -> new_esEs6(xwv4000, xwv3000, bgg) new_esEs28(xwv4411, xwv4611, ty_Bool) -> new_esEs8(xwv4411, xwv4611) new_lt19(xwv440, xwv460, ty_Double) -> new_lt17(xwv440, xwv460) new_ltEs19(xwv441, xwv461, ty_Int) -> new_ltEs15(xwv441, xwv461) new_lt20(xwv4410, xwv4610, app(ty_Ratio, dcf)) -> new_lt4(xwv4410, xwv4610, dcf) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(app(ty_Either, cfc), cfd)) -> new_ltEs13(xwv4410, xwv4610, cfc, cfd) new_compare6(xwv4400, xwv4600, ty_Int) -> new_compare13(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, app(ty_[], cba)) -> new_esEs11(xwv4410, xwv4610, cba) new_lt10(xwv440, xwv460) -> new_esEs9(new_compare12(xwv440, xwv460), LT) new_esEs21(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_lt15(xwv440, xwv460) -> new_esEs9(new_compare10(xwv440, xwv460), LT) new_ltEs10(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), bhf, bhg) -> new_pePe(new_lt13(xwv4410, xwv4610, bhf), new_asAs(new_esEs22(xwv4410, xwv4610, bhf), new_ltEs18(xwv4411, xwv4611, bhg))) new_esEs21(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Char) -> new_ltEs9(xwv4412, xwv4612) new_lt21(xwv4411, xwv4611, ty_Char) -> new_lt8(xwv4411, xwv4611) new_lt21(xwv4411, xwv4611, app(ty_[], deg)) -> new_lt18(xwv4411, xwv4611, deg) new_ltEs20(xwv4412, xwv4612, app(ty_Ratio, dfb)) -> new_ltEs11(xwv4412, xwv4612, dfb) new_esEs32(xwv32, xwv34, ty_Float) -> new_esEs13(xwv32, xwv34) new_lt19(xwv440, xwv460, ty_Integer) -> new_lt6(xwv440, xwv460) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, app(ty_Maybe, cae)) -> new_lt9(xwv4410, xwv4610, cae) new_esEs29(xwv4410, xwv4610, app(app(ty_Either, dcg), dch)) -> new_esEs5(xwv4410, xwv4610, dcg, dch) new_esEs12(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_lt14(xwv440, xwv460, cdd, cde) -> new_esEs9(new_compare8(xwv440, xwv460, cdd, cde), LT) new_esEs29(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_primCompAux00(xwv146, EQ) -> xwv146 new_compare113(xwv110, xwv111, xwv112, xwv113, False, bda, bdb) -> GT new_sr(xwv4001, xwv3000) -> new_primMulInt(xwv4001, xwv3000) new_compare26(xwv440, xwv460, False) -> new_compare112(xwv440, xwv460, new_ltEs12(xwv440, xwv460)) new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_@2, ea), eb)) -> new_ltEs10(xwv4410, xwv4610, ea, eb) new_compare6(xwv4400, xwv4600, ty_Double) -> new_compare18(xwv4400, xwv4600) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Bool, cch) -> new_ltEs12(xwv4410, xwv4610) new_compare13(xwv44, xwv46) -> new_primCmpInt(xwv44, xwv46) new_primMulNat0(Zero, Zero) -> Zero new_esEs22(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_esEs21(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_lt19(xwv440, xwv460, ty_Char) -> new_lt8(xwv440, xwv460) new_esEs29(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_lt9(xwv440, xwv460, dc) -> new_esEs9(new_compare14(xwv440, xwv460, dc), LT) new_compare111(xwv440, xwv460, False) -> GT new_ltEs12(True, False) -> False new_compare1(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bf) -> new_primCompAux0(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bf), bf) new_lt20(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(app(ty_Either, bfa), bfb)) -> new_esEs5(xwv4001, xwv3001, bfa, bfb) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, app(app(ty_Either, bbh), bca)) -> new_esEs5(xwv4000, xwv3000, bbh, bca) new_ltEs19(xwv441, xwv461, app(ty_Ratio, ccf)) -> new_ltEs11(xwv441, xwv461, ccf) new_esEs19(xwv4002, xwv3002, app(ty_Ratio, bdf)) -> new_esEs14(xwv4002, xwv3002, bdf) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Int) -> new_compare13(new_sr(xwv4400, xwv4601), new_sr(xwv4600, xwv4401)) new_ltEs18(xwv4411, xwv4611, ty_Int) -> new_ltEs15(xwv4411, xwv4611) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Succ(xwv4600))) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_esEs29(xwv4410, xwv4610, app(ty_Ratio, dcf)) -> new_esEs14(xwv4410, xwv4610, dcf) new_lt21(xwv4411, xwv4611, app(ty_Ratio, ddh)) -> new_lt4(xwv4411, xwv4611, ddh) new_esEs9(EQ, EQ) -> True new_ltEs18(xwv4411, xwv4611, app(ty_Ratio, cbd)) -> new_ltEs11(xwv4411, xwv4611, cbd) new_esEs12(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs12(False, False) -> True new_lt19(xwv440, xwv460, ty_Int) -> new_lt7(xwv440, xwv460) new_lt20(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Maybe, ef)) -> new_ltEs8(xwv4410, xwv4610, ef) new_esEs20(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(app(app(ty_@3, cff), cfg), cfh)) -> new_ltEs16(xwv4410, xwv4610, cff, cfg, cfh) new_primEqInt(Neg(Succ(xwv40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xwv30000))) -> False new_esEs25(xwv4000, xwv3000, app(ty_Maybe, dbf)) -> new_esEs6(xwv4000, xwv3000, dbf) new_ltEs8(Nothing, Just(xwv4610), dh) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_Either, ed), ee)) -> new_ltEs13(xwv4410, xwv4610, ed, ee) new_primEqInt(Pos(Succ(xwv40000)), Pos(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_esEs32(xwv32, xwv34, app(app(ty_@2, ga), gb)) -> new_esEs4(xwv32, xwv34, ga, gb) new_ltEs18(xwv4411, xwv4611, app(ty_[], ccc)) -> new_ltEs6(xwv4411, xwv4611, ccc) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(app(ty_Either, dbb), dbc)) -> new_esEs5(xwv4000, xwv3000, dbb, dbc) new_esEs20(xwv4001, xwv3001, app(ty_Maybe, bfe)) -> new_esEs6(xwv4001, xwv3001, bfe) new_lt20(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_primEqInt(Pos(Succ(xwv40000)), Neg(xwv3000)) -> False new_primEqInt(Neg(Succ(xwv40000)), Pos(xwv3000)) -> False new_esEs19(xwv4002, xwv3002, app(ty_Maybe, bec)) -> new_esEs6(xwv4002, xwv3002, bec) new_ltEs4(EQ, GT) -> True new_primCmpInt(Neg(Zero), Neg(Succ(xwv4600))) -> new_primCmpNat0(Succ(xwv4600), Zero) new_esEs22(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_lt16(xwv440, xwv460) -> new_esEs9(new_compare17(xwv440, xwv460), LT) new_esEs27(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs31(xwv400, xwv300, app(app(ty_Either, bbf), bac)) -> new_esEs5(xwv400, xwv300, bbf, bac) new_esEs19(xwv4002, xwv3002, ty_Char) -> new_esEs15(xwv4002, xwv3002) new_esEs31(xwv400, xwv300, ty_Char) -> new_esEs15(xwv400, xwv300) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_esEs21(xwv4000, xwv3000, app(ty_[], bgh)) -> new_esEs11(xwv4000, xwv3000, bgh) new_esEs25(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, ty_Char) -> new_esEs15(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(app(app(ty_@3, ce), cf), cg)) -> new_compare15(xwv4400, xwv4600, ce, cf, cg) new_ltEs15(xwv441, xwv461) -> new_fsEs(new_compare13(xwv441, xwv461)) new_lt19(xwv440, xwv460, ty_Float) -> new_lt10(xwv440, xwv460) new_esEs19(xwv4002, xwv3002, ty_Integer) -> new_esEs10(xwv4002, xwv3002) new_compare110(xwv440, xwv460, True, de, df, dg) -> LT new_primCompAux0(xwv4400, xwv4600, xwv136, bf) -> new_primCompAux00(xwv136, new_compare6(xwv4400, xwv4600, bf)) new_esEs23(xwv440, xwv460, ty_Float) -> new_esEs13(xwv440, xwv460) new_esEs29(xwv4410, xwv4610, app(app(app(ty_@3, ddb), ddc), ddd)) -> new_esEs7(xwv4410, xwv4610, ddb, ddc, ddd) new_compare16(Integer(xwv4400), Integer(xwv4600)) -> new_primCmpInt(xwv4400, xwv4600) new_lt12(xwv440, xwv460) -> new_esEs9(new_compare19(xwv440, xwv460), LT) new_esEs31(xwv400, xwv300, app(app(ty_@2, che), chf)) -> new_esEs4(xwv400, xwv300, che, chf) new_esEs32(xwv32, xwv34, ty_Int) -> new_esEs17(xwv32, xwv34) new_lt7(xwv440, xwv460) -> new_esEs9(new_compare13(xwv440, xwv460), LT) new_not(False) -> True new_esEs6(Just(xwv4000), Just(xwv3000), ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Double, bac) -> new_esEs16(xwv4000, xwv3000) new_compare11(xwv440, xwv460, bhd, bhe) -> new_compare27(xwv440, xwv460, new_esEs5(xwv440, xwv460, bhd, bhe), bhd, bhe) new_compare1([], :(xwv4600, xwv4601), bf) -> LT new_esEs20(xwv4001, xwv3001, app(app(app(ty_@3, bfg), bfh), bga)) -> new_esEs7(xwv4001, xwv3001, bfg, bfh, bga) new_esEs20(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_esEs9(GT, GT) -> True new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, app(ty_[], cga)) -> new_ltEs6(xwv4410, xwv4610, cga) new_esEs5(Left(xwv4000), Right(xwv3000), bbf, bac) -> False new_esEs5(Right(xwv4000), Left(xwv3000), bbf, bac) -> False new_esEs22(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_esEs32(xwv32, xwv34, ty_Ordering) -> new_esEs9(xwv32, xwv34) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_esEs31(xwv400, xwv300, ty_Integer) -> new_esEs10(xwv400, xwv300) new_compare25(xwv440, xwv460, True) -> EQ new_compare27(xwv440, xwv460, True, bhd, bhe) -> EQ new_lt19(xwv440, xwv460, ty_@0) -> new_lt16(xwv440, xwv460) new_ltEs4(GT, LT) -> False new_esEs24(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_esEs9(EQ, GT) -> False new_esEs9(GT, EQ) -> False new_primPlusNat0(Succ(xwv1010), xwv300000) -> Succ(Succ(new_primPlusNat1(xwv1010, xwv300000))) new_ltEs20(xwv4412, xwv4612, app(ty_[], dga)) -> new_ltEs6(xwv4412, xwv4612, dga) new_esEs8(True, True) -> True new_esEs29(xwv4410, xwv4610, app(ty_Maybe, dda)) -> new_esEs6(xwv4410, xwv4610, dda) new_ltEs13(Right(xwv4410), Right(xwv4610), ccg, ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Int, cch) -> new_ltEs15(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_Bool) -> new_esEs8(xwv4002, xwv3002) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt20(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_primPlusNat1(Zero, Zero) -> Zero new_esEs20(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_esEs12(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Float) -> new_ltEs14(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(app(ty_@3, ced), cee), cef), cch) -> new_ltEs16(xwv4410, xwv4610, ced, cee, cef) new_esEs31(xwv400, xwv300, app(ty_[], gh)) -> new_esEs11(xwv400, xwv300, gh) new_ltEs9(xwv441, xwv461) -> new_fsEs(new_compare7(xwv441, xwv461)) new_esEs19(xwv4002, xwv3002, app(ty_[], bed)) -> new_esEs11(xwv4002, xwv3002, bed) new_esEs28(xwv4411, xwv4611, ty_Ordering) -> new_esEs9(xwv4411, xwv4611) new_esEs25(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs29(xwv4410, xwv4610, app(ty_[], dde)) -> new_esEs11(xwv4410, xwv4610, dde) new_esEs28(xwv4411, xwv4611, app(ty_Maybe, dec)) -> new_esEs6(xwv4411, xwv4611, dec) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_lt19(xwv440, xwv460, app(app(app(ty_@3, de), df), dg)) -> new_lt5(xwv440, xwv460, de, df, dg) new_lt20(xwv4410, xwv4610, app(ty_[], dde)) -> new_lt18(xwv4410, xwv4610, dde) new_compare17(@0, @0) -> EQ new_primMulNat0(Succ(xwv400100), Succ(xwv300000)) -> new_primPlusNat0(new_primMulNat0(xwv400100, Succ(xwv300000)), xwv300000) new_esEs28(xwv4411, xwv4611, app(app(ty_@2, ddf), ddg)) -> new_esEs4(xwv4411, xwv4611, ddf, ddg) new_compare7(Char(xwv4400), Char(xwv4600)) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Ordering, cch) -> new_ltEs4(xwv4410, xwv4610) new_primCmpNat0(Succ(xwv44000), Succ(xwv46000)) -> new_primCmpNat0(xwv44000, xwv46000) new_lt8(xwv440, xwv460) -> new_esEs9(new_compare7(xwv440, xwv460), LT) new_lt20(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_ltEs8(Nothing, Nothing, dh) -> True new_ltEs8(Just(xwv4410), Nothing, dh) -> False new_compare14(xwv440, xwv460, dc) -> new_compare23(xwv440, xwv460, new_esEs6(xwv440, xwv460, dc), dc) new_lt20(xwv4410, xwv4610, app(app(ty_@2, dcd), dce)) -> new_lt14(xwv4410, xwv4610, dcd, dce) new_ltEs20(xwv4412, xwv4612, ty_Ordering) -> new_ltEs4(xwv4412, xwv4612) new_compare6(xwv4400, xwv4600, ty_Ordering) -> new_compare19(xwv4400, xwv4600) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Ratio, ec)) -> new_ltEs11(xwv4410, xwv4610, ec) new_esEs29(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_esEs29(xwv4410, xwv4610, app(app(ty_@2, dcd), dce)) -> new_esEs4(xwv4410, xwv4610, dcd, dce) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, ty_@0) -> new_lt16(xwv4411, xwv4611) new_ltEs19(xwv441, xwv461, ty_Ordering) -> new_ltEs4(xwv441, xwv461) new_primEqNat0(Zero, Zero) -> True new_esEs28(xwv4411, xwv4611, app(app(ty_Either, dea), deb)) -> new_esEs5(xwv4411, xwv4611, dea, deb) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs15(Char(xwv4000), Char(xwv3000)) -> new_primEqNat0(xwv4000, xwv3000) new_esEs11([], [], gh) -> True new_lt21(xwv4411, xwv4611, ty_Double) -> new_lt17(xwv4411, xwv4611) new_primCmpInt(Neg(Succ(xwv4400)), Neg(Succ(xwv4600))) -> new_primCmpNat0(xwv4600, xwv4400) new_ltEs4(GT, GT) -> True new_esEs9(LT, GT) -> False new_esEs9(GT, LT) -> False new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(app(ty_@3, eg), eh), fa)) -> new_ltEs16(xwv4410, xwv4610, eg, eh, fa) new_esEs5(Right(xwv4000), Right(xwv3000), bbf, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_asAs(False, xwv62) -> False new_ltEs17(xwv441, xwv461) -> new_fsEs(new_compare16(xwv441, xwv461)) new_esEs19(xwv4002, xwv3002, ty_Int) -> new_esEs17(xwv4002, xwv3002) new_compare6(xwv4400, xwv4600, ty_Char) -> new_compare7(xwv4400, xwv4600) new_esEs29(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_lt21(xwv4411, xwv4611, ty_Integer) -> new_lt6(xwv4411, xwv4611) new_lt19(xwv440, xwv460, app(ty_[], bf)) -> new_lt18(xwv440, xwv460, bf) new_compare28(xwv44, xwv46, True, ccd, cce) -> EQ new_esEs25(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Integer) -> new_compare16(xwv4400, xwv4600) new_lt20(xwv4410, xwv4610, app(app(app(ty_@3, ddb), ddc), ddd)) -> new_lt5(xwv4410, xwv4610, ddb, ddc, ddd) new_esEs29(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, app(ty_Ratio, cab)) -> new_lt4(xwv4410, xwv4610, cab) new_esEs25(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Float) -> new_compare12(xwv4400, xwv4600) new_lt19(xwv440, xwv460, app(app(ty_@2, cdd), cde)) -> new_lt14(xwv440, xwv460, cdd, cde) new_esEs20(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(app(ty_@3, bbc), bbd), bbe), bac) -> new_esEs7(xwv4000, xwv3000, bbc, bbd, bbe) new_ltEs11(xwv441, xwv461, ccf) -> new_fsEs(new_compare9(xwv441, xwv461, ccf)) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_[], bbb), bac) -> new_esEs11(xwv4000, xwv3000, bbb) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs21(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_esEs32(x0, x1, ty_Char) new_esEs22(x0, x1, ty_Integer) new_primCompAux00(x0, LT) new_primCmpInt(Pos(Succ(x0)), Pos(Zero)) new_compare25(x0, x1, True) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Succ(x0)), Neg(Zero)) new_compare6(x0, x1, app(ty_Maybe, x2)) new_esEs12(x0, x1, ty_Integer) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Int) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_compare23(x0, x1, False, x2) new_ltEs20(x0, x1, ty_Int) new_lt13(x0, x1, ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs32(x0, x1, ty_Int) new_ltEs4(LT, LT) new_ltEs8(Just(x0), Just(x1), app(ty_Ratio, x2)) new_lt14(x0, x1, x2, x3) new_primPlusNat1(Zero, Zero) new_ltEs20(x0, x1, ty_Ordering) new_sr0(Integer(x0), Integer(x1)) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_compare27(x0, x1, True, x2, x3) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_ltEs13(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_compare6(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Int) new_esEs24(x0, x1, ty_Double) new_compare6(x0, x1, ty_Bool) new_lt20(x0, x1, app(ty_Ratio, x2)) new_ltEs8(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs32(x0, x1, app(app(ty_@2, x2), x3)) new_sr(x0, x1) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs12(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, ty_Int) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs31(x0, x1, ty_Float) new_esEs20(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs13(Left(x0), Left(x1), ty_Integer, x2) new_lt13(x0, x1, ty_Double) new_esEs24(x0, x1, ty_Char) new_ltEs8(Just(x0), Just(x1), ty_Integer) new_primEqInt(Pos(Zero), Pos(Zero)) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_ltEs7(x0, x1) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_ltEs19(x0, x1, ty_Float) new_esEs12(x0, x1, ty_Bool) new_esEs25(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Bool) new_ltEs8(Just(x0), Just(x1), ty_@0) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs28(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Ordering) new_compare17(@0, @0) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs32(x0, x1, app(app(ty_Either, x2), x3)) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primEqInt(Neg(Zero), Neg(Zero)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs32(x0, x1, ty_Double) new_lt13(x0, x1, ty_Char) new_esEs21(x0, x1, ty_Int) new_lt21(x0, x1, app(ty_Ratio, x2)) new_esEs10(Integer(x0), Integer(x1)) new_esEs32(x0, x1, app(ty_[], x2)) new_esEs32(x0, x1, ty_@0) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs9(LT, LT) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Neg(x0), Neg(x1)) new_lt19(x0, x1, app(ty_Ratio, x2)) new_ltEs13(Left(x0), Left(x1), ty_Float, x2) new_esEs20(x0, x1, ty_@0) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_compare6(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Int) new_esEs9(EQ, GT) new_esEs9(GT, EQ) new_esEs22(x0, x1, ty_@0) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_esEs8(False, True) new_esEs8(True, False) new_lt19(x0, x1, ty_Double) new_esEs12(x0, x1, ty_@0) new_ltEs18(x0, x1, ty_Char) new_esEs8(True, True) new_ltEs6(x0, x1, x2) new_lt13(x0, x1, app(ty_Maybe, x2)) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs8(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_compare112(x0, x1, False) new_ltEs13(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs23(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Bool) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs20(x0, x1, ty_@0) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_esEs32(x0, x1, app(ty_Ratio, x2)) new_ltEs13(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_esEs22(x0, x1, ty_Float) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_pePe(False, x0) new_compare10(x0, x1) new_ltEs13(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_compare114(x0, x1, True, x2, x3) new_ltEs4(GT, EQ) new_esEs12(x0, x1, ty_Float) new_ltEs4(EQ, GT) new_esEs19(x0, x1, ty_Ordering) new_compare9(:%(x0, x1), :%(x2, x3), ty_Int) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_esEs28(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Double) new_compare6(x0, x1, ty_Double) new_esEs31(x0, x1, app(app(ty_@2, x2), x3)) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs24(x0, x1, ty_Ordering) new_esEs20(x0, x1, ty_Int) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_compare6(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Char) new_ltEs20(x0, x1, ty_Double) new_ltEs8(Just(x0), Nothing, x1) new_compare6(x0, x1, ty_Char) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_ltEs5(x0, x1) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, ty_Char) new_ltEs19(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Double) new_lt13(x0, x1, app(ty_[], x2)) new_ltEs8(Just(x0), Just(x1), ty_Ordering) new_esEs22(x0, x1, ty_Int) new_ltEs8(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_ltEs8(Just(x0), Just(x1), ty_Float) new_esEs32(x0, x1, ty_Integer) new_lt19(x0, x1, app(ty_Maybe, x2)) new_esEs12(x0, x1, app(ty_Maybe, x2)) new_esEs21(x0, x1, ty_@0) new_esEs12(x0, x1, ty_Int) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_esEs28(x0, x1, ty_Int) new_ltEs13(Right(x0), Right(x1), x2, ty_Float) new_ltEs20(x0, x1, ty_Bool) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Ordering) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_ltEs13(Left(x0), Left(x1), ty_Char, x2) new_ltEs4(EQ, LT) new_ltEs4(LT, EQ) new_compare6(x0, x1, ty_Float) new_ltEs8(Nothing, Just(x0), x1) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare23(x0, x1, True, x2) new_lt13(x0, x1, ty_Bool) new_lt20(x0, x1, ty_Float) new_ltEs4(GT, GT) new_compare114(x0, x1, False, x2, x3) new_ltEs18(x0, x1, ty_Double) new_compare26(x0, x1, False) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt12(x0, x1) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs16(Double(x0, x1), Double(x2, x3)) new_ltEs8(Just(x0), Just(x1), ty_Int) new_primCompAux00(x0, EQ) new_ltEs13(Left(x0), Left(x1), ty_Int, x2) new_ltEs20(x0, x1, ty_Integer) new_compare18(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs28(x0, x1, ty_Float) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs32(x0, x1, ty_Bool) new_esEs6(Just(x0), Just(x1), ty_@0) new_ltEs18(x0, x1, app(ty_[], x2)) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_compare111(x0, x1, False) new_compare113(x0, x1, x2, x3, True, x4, x5) new_compare24(x0, x1, True, x2, x3, x4) new_compare14(x0, x1, x2) new_lt6(x0, x1) new_esEs22(x0, x1, ty_Char) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs12(x0, x1, ty_Char) new_compare25(x0, x1, False) new_compare110(x0, x1, True, x2, x3, x4) new_primPlusNat1(Zero, Succ(x0)) new_esEs12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt19(x0, x1, ty_Ordering) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs25(x0, x1, ty_Int) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs6(Just(x0), Nothing, x1) new_lt17(x0, x1) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_ltEs17(x0, x1) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_esEs31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, ty_Int) new_primPlusNat0(Succ(x0), x1) new_lt21(x0, x1, app(ty_Maybe, x2)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_primEqNat0(Succ(x0), Zero) new_ltEs8(Just(x0), Just(x1), ty_Char) new_primCompAux0(x0, x1, x2, x3) new_esEs32(x0, x1, ty_Ordering) new_ltEs9(x0, x1) new_compare16(Integer(x0), Integer(x1)) new_esEs12(x0, x1, app(app(ty_@2, x2), x3)) new_esEs12(x0, x1, ty_Ordering) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Bool) new_esEs30(x0, x1, x2, x3, False, x4, x5) new_esEs11([], [], x0) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_compare6(x0, x1, app(ty_[], x2)) new_primPlusNat1(Succ(x0), Zero) new_esEs22(x0, x1, ty_Ordering) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_esEs13(Float(x0, x1), Float(x2, x3)) new_esEs24(x0, x1, ty_@0) new_lt13(x0, x1, ty_Float) new_compare112(x0, x1, True) new_esEs31(x0, x1, app(ty_Maybe, x2)) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs25(x0, x1, ty_Char) new_lt21(x0, x1, ty_Double) new_esEs19(x0, x1, ty_@0) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_lt21(x0, x1, ty_@0) new_compare116(x0, x1, False, x2) new_esEs17(x0, x1) new_ltEs8(Nothing, Nothing, x0) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_esEs31(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs10(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs13(Left(x0), Left(x1), ty_Bool, x2) new_primMulInt(Pos(x0), Pos(x1)) new_esEs6(Nothing, Just(x0), x1) new_ltEs8(Just(x0), Just(x1), ty_Bool) new_compare28(x0, x1, True, x2, x3) new_esEs31(x0, x1, ty_Int) new_esEs28(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_compare26(x0, x1, True) new_ltEs13(Right(x0), Right(x1), x2, ty_@0) new_esEs9(EQ, EQ) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs19(x0, x1, ty_Int) new_compare6(x0, x1, app(app(ty_@2, x2), x3)) new_lt19(x0, x1, ty_Integer) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_@0) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs28(x0, x1, ty_Integer) new_lt18(x0, x1, x2) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_lt20(x0, x1, ty_Bool) new_primCmpInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primMulNat0(Zero, Zero) new_lt21(x0, x1, ty_Integer) new_ltEs13(Right(x0), Right(x1), x2, ty_Bool) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_lt19(x0, x1, app(ty_[], x2)) new_lt21(x0, x1, ty_Bool) new_ltEs16(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare12(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Bool) new_compare12(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare12(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_ltEs19(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs24(x0, x1, app(ty_[], x2)) new_esEs15(Char(x0), Char(x1)) new_primCmpNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs28(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(ty_[], x2)) new_pePe(True, x0) new_esEs14(:%(x0, x1), :%(x2, x3), x4) new_esEs12(x0, x1, app(ty_Ratio, x2)) new_esEs7(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_ltEs13(Right(x0), Right(x1), x2, ty_Char) new_esEs25(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_Float) new_primCompAux00(x0, GT) new_esEs31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs19(x0, x1, app(ty_[], x2)) new_asAs(True, x0) new_esEs25(x0, x1, ty_Float) new_ltEs14(x0, x1) new_ltEs4(LT, GT) new_lt19(x0, x1, ty_@0) new_ltEs4(GT, LT) new_ltEs13(Left(x0), Left(x1), ty_Ordering, x2) new_primEqNat0(Zero, Succ(x0)) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_not(True) new_lt21(x0, x1, app(ty_[], x2)) new_lt9(x0, x1, x2) new_lt20(x0, x1, ty_Char) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_esEs29(x0, x1, ty_Char) new_lt16(x0, x1) new_ltEs13(Right(x0), Right(x1), x2, ty_Integer) new_ltEs12(True, True) new_ltEs8(Just(x0), Just(x1), app(ty_[], x2)) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Integer) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_esEs20(x0, x1, ty_Float) new_esEs28(x0, x1, ty_Bool) new_esEs28(x0, x1, ty_@0) new_compare7(Char(x0), Char(x1)) new_esEs23(x0, x1, ty_Bool) new_compare28(@2(x0, x1), @2(x2, x3), False, x4, x5) new_ltEs19(x0, x1, ty_@0) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs12(False, True) new_ltEs12(True, False) new_esEs11(:(x0, x1), [], x2) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_primMulNat0(Zero, Succ(x0)) new_ltEs13(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_compare11(x0, x1, x2, x3) new_ltEs11(x0, x1, x2) new_esEs9(LT, EQ) new_esEs9(EQ, LT) new_esEs32(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs19(x0, x1, ty_Bool) new_esEs23(x0, x1, ty_@0) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_ltEs4(EQ, EQ) new_esEs31(x0, x1, ty_Char) new_esEs9(GT, GT) new_esEs31(x0, x1, ty_Double) new_compare111(x0, x1, True) new_esEs23(x0, x1, ty_Char) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, ty_Double) new_esEs31(x0, x1, ty_@0) new_compare19(x0, x1) new_lt20(x0, x1, ty_Int) new_compare113(x0, x1, x2, x3, False, x4, x5) new_esEs28(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs19(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Float) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare115(x0, x1, x2, x3, True, x4, x5, x6) new_esEs27(x0, x1, ty_Integer) new_lt19(x0, x1, ty_Bool) new_lt10(x0, x1) new_esEs24(x0, x1, ty_Integer) new_esEs32(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Char) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt20(x0, x1, ty_Double) new_compare24(x0, x1, False, x2, x3, x4) new_esEs23(x0, x1, ty_Int) new_esEs9(LT, GT) new_esEs9(GT, LT) new_primCmpInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primCmpInt(Pos(Zero), Pos(Zero)) new_compare12(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs28(x0, x1, ty_Char) new_lt19(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Float) new_esEs21(x0, x1, app(ty_[], x2)) new_esEs20(x0, x1, ty_Integer) new_asAs(False, x0) new_esEs21(x0, x1, ty_Bool) new_ltEs8(Just(x0), Just(x1), ty_Double) new_compare27(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_compare18(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_lt21(x0, x1, ty_Ordering) new_lt13(x0, x1, ty_Integer) new_compare18(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare18(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_esEs11(:(x0, x1), :(x2, x3), x4) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_ltEs13(Left(x0), Left(x1), app(ty_[], x2), x3) new_lt21(x0, x1, ty_Float) new_ltEs13(Left(x0), Right(x1), x2, x3) new_ltEs13(Right(x0), Left(x1), x2, x3) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, ty_Integer) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_lt7(x0, x1) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_compare1([], [], x0) new_lt11(x0, x1, x2, x3) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs30(x0, x1, x2, x3, True, x4, x5) new_esEs26(x0, x1, ty_Integer) new_esEs28(x0, x1, app(ty_Maybe, x2)) new_esEs31(x0, x1, ty_Bool) new_lt13(x0, x1, ty_@0) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_ltEs13(Right(x0), Right(x1), x2, ty_Ordering) new_esEs29(x0, x1, ty_Int) new_esEs32(x0, x1, app(ty_Maybe, x2)) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs25(x0, x1, ty_@0) new_compare6(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_esEs23(x0, x1, app(ty_[], x2)) new_compare116(x0, x1, True, x2) new_lt19(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Bool) new_compare8(x0, x1, x2, x3) new_ltEs13(Right(x0), Right(x1), x2, ty_Double) new_compare15(x0, x1, x2, x3, x4) new_ltEs13(Left(x0), Left(x1), ty_@0, x2) new_primCmpNat0(Zero, Succ(x0)) new_lt15(x0, x1) new_compare115(x0, x1, x2, x3, False, x4, x5, x6) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs22(x0, x1, ty_Double) new_esEs18(@0, @0) new_compare13(x0, x1) new_primPlusNat0(Zero, x0) new_primMulNat0(Succ(x0), Succ(x1)) new_primPlusNat1(Succ(x0), Succ(x1)) new_esEs12(x0, x1, ty_Double) new_primEqNat0(Zero, Zero) new_lt4(x0, x1, x2) new_compare6(x0, x1, ty_Integer) new_ltEs15(x0, x1) new_esEs19(x0, x1, ty_Int) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_not(False) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, ty_Integer) new_esEs19(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, ty_Float) new_esEs8(False, False) new_compare6(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs12(False, False) new_esEs6(Just(x0), Just(x1), ty_Char) new_compare1([], :(x0, x1), x2) new_esEs27(x0, x1, ty_Int) new_ltEs13(Left(x0), Left(x1), ty_Double, x2) new_lt20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Bool) new_ltEs13(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_esEs19(x0, x1, ty_Float) new_esEs28(x0, x1, ty_Ordering) new_esEs28(x0, x1, app(app(ty_Either, x2), x3)) new_primCmpNat0(Succ(x0), Zero) new_esEs6(Nothing, Nothing, x0) new_esEs23(x0, x1, ty_Integer) new_esEs12(x0, x1, app(ty_[], x2)) new_compare9(:%(x0, x1), :%(x2, x3), ty_Integer) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt8(x0, x1) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, ty_Char) new_esEs20(x0, x1, ty_Ordering) new_esEs19(x0, x1, ty_Char) new_compare6(x0, x1, ty_Ordering) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt5(x0, x1, x2, x3, x4) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, ty_Ordering) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs25(x0, x1, ty_Double) new_esEs31(x0, x1, ty_Ordering) new_esEs24(x0, x1, ty_Float) new_lt20(x0, x1, app(ty_[], x2)) new_esEs11([], :(x0, x1), x2) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_compare1(:(x0, x1), [], x2) new_ltEs18(x0, x1, ty_Ordering) new_compare110(x0, x1, False, x2, x3, x4) new_lt21(x0, x1, ty_Int) new_compare1(:(x0, x1), :(x2, x3), x4) new_primCmpNat0(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Bool) new_ltEs13(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_ltEs8(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_delFromFM(Branch(@2(xwv300, xwv301), xwv31, xwv32, xwv33, xwv34), @2(xwv400, xwv401), bc, bd, be) -> new_delFromFM2(xwv300, xwv301, xwv31, xwv32, xwv33, xwv34, xwv400, xwv401, new_esEs30(xwv400, xwv401, xwv300, xwv301, new_esEs31(xwv400, xwv300, bc), bc, bd), bc, bd, be) The graph contains the following edges 1 > 1, 1 > 2, 1 > 3, 1 > 4, 1 > 5, 1 > 6, 2 > 7, 2 > 8, 3 >= 10, 4 >= 11, 5 >= 12 *new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, h, ba, bb) -> new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs9(new_compare28(@2(xwv21, xwv22), @2(xwv15, xwv16), new_asAs(new_esEs25(xwv21, xwv15, h), new_esEs24(xwv22, xwv16, ba)), h, ba), LT), h, ba, bb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 10 >= 10, 11 >= 11, 12 >= 12 *new_delFromFM2(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, h, ba, bb) -> new_delFromFM(xwv20, @2(xwv21, xwv22), h, ba, bb) The graph contains the following edges 6 >= 1, 10 >= 3, 11 >= 4, 12 >= 5 *new_delFromFM1(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, h, ba, bb) -> new_delFromFM(xwv19, @2(xwv21, xwv22), h, ba, bb) The graph contains the following edges 5 >= 1, 10 >= 3, 11 >= 4, 12 >= 5 ---------------------------------------- (30) YES ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: new_primMinusNat(Succ(xwv24400), Succ(xwv24500)) -> new_primMinusNat(xwv24400, xwv24500) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primMinusNat(Succ(xwv24400), Succ(xwv24500)) -> new_primMinusNat(xwv24400, xwv24500) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (33) YES ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: new_primPlusNat(Succ(xwv19200), Succ(xwv9700)) -> new_primPlusNat(xwv19200, xwv9700) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primPlusNat(Succ(xwv19200), Succ(xwv9700)) -> new_primPlusNat(xwv19200, xwv9700) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: new_esEs(Right(xwv4000), Right(xwv3000), cb, app(app(ty_@2, ce), cf)) -> new_esEs0(xwv4000, xwv3000, ce, cf) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(ty_Maybe, fd), fa) -> new_esEs1(xwv4000, xwv3000, fd) new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), hc) -> new_esEs2(xwv4001, xwv3001, hc) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(ty_Maybe, eb)) -> new_esEs1(xwv4001, xwv3001, eb) new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(app(ty_@2, hf), hg)) -> new_esEs0(xwv4000, xwv3000, hf, hg) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(app(ty_Either, df), dg)) -> new_esEs(xwv4001, xwv3001, df, dg) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(app(app(ty_@3, bdh), bea), beb), baf, bcb) -> new_esEs3(xwv4000, xwv3000, bdh, bea, beb) new_esEs(Right(xwv4000), Right(xwv3000), cb, app(app(app(ty_@3, db), dc), dd)) -> new_esEs3(xwv4000, xwv3000, db, dc, dd) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(app(ty_Either, bag), bah)) -> new_esEs(xwv4002, xwv3002, bag, bah) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(app(ty_@2, dh), ea)) -> new_esEs0(xwv4001, xwv3001, dh, ea) new_esEs1(Just(xwv4000), Just(xwv3000), app(app(ty_Either, gb), gc)) -> new_esEs(xwv4000, xwv3000, gb, gc) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(ty_[], bdg), baf, bcb) -> new_esEs2(xwv4000, xwv3000, bdg) new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(app(ty_Either, hd), he)) -> new_esEs(xwv4000, xwv3000, hd, he) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(app(app(ty_@3, bbe), bbf), bbg)) -> new_esEs3(xwv4002, xwv3002, bbe, bbf, bbg) new_esEs(Right(xwv4000), Right(xwv3000), cb, app(ty_Maybe, cg)) -> new_esEs1(xwv4000, xwv3000, cg) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(app(app(ty_@3, fg), fh), ga), fa) -> new_esEs3(xwv4000, xwv3000, fg, fh, ga) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(app(app(ty_@3, ed), ee), ef)) -> new_esEs3(xwv4001, xwv3001, ed, ee, ef) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(app(ty_Either, eg), eh), fa) -> new_esEs(xwv4000, xwv3000, eg, eh) new_esEs(Right(xwv4000), Right(xwv3000), cb, app(app(ty_Either, cc), cd)) -> new_esEs(xwv4000, xwv3000, cc, cd) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(app(ty_@2, bcc), bcd), bcb) -> new_esEs0(xwv4001, xwv3001, bcc, bcd) new_esEs(Right(xwv4000), Right(xwv3000), cb, app(ty_[], da)) -> new_esEs2(xwv4000, xwv3000, da) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(ty_[], bcf), bcb) -> new_esEs2(xwv4001, xwv3001, bcf) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(app(ty_@2, bdd), bde), baf, bcb) -> new_esEs0(xwv4000, xwv3000, bdd, bde) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(ty_[], ff), fa) -> new_esEs2(xwv4000, xwv3000, ff) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(app(app(ty_@3, bcg), bch), bda), bcb) -> new_esEs3(xwv4001, xwv3001, bcg, bch, bda) new_esEs1(Just(xwv4000), Just(xwv3000), app(app(app(ty_@3, gh), ha), hb)) -> new_esEs3(xwv4000, xwv3000, gh, ha, hb) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(ty_[], bbd)) -> new_esEs2(xwv4002, xwv3002, bbd) new_esEs(Left(xwv4000), Left(xwv3000), app(app(ty_Either, h), ba), bb) -> new_esEs(xwv4000, xwv3000, h, ba) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(ty_[], ec)) -> new_esEs2(xwv4001, xwv3001, ec) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(app(ty_@2, bba), bbb)) -> new_esEs0(xwv4002, xwv3002, bba, bbb) new_esEs1(Just(xwv4000), Just(xwv3000), app(ty_[], gg)) -> new_esEs2(xwv4000, xwv3000, gg) new_esEs1(Just(xwv4000), Just(xwv3000), app(app(ty_@2, gd), ge)) -> new_esEs0(xwv4000, xwv3000, gd, ge) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(ty_Maybe, bdf), baf, bcb) -> new_esEs1(xwv4000, xwv3000, bdf) new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(ty_[], baa)) -> new_esEs2(xwv4000, xwv3000, baa) new_esEs(Left(xwv4000), Left(xwv3000), app(ty_[], bf), bb) -> new_esEs2(xwv4000, xwv3000, bf) new_esEs(Left(xwv4000), Left(xwv3000), app(ty_Maybe, be), bb) -> new_esEs1(xwv4000, xwv3000, be) new_esEs(Left(xwv4000), Left(xwv3000), app(app(app(ty_@3, bg), bh), ca), bb) -> new_esEs3(xwv4000, xwv3000, bg, bh, ca) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(ty_Maybe, bce), bcb) -> new_esEs1(xwv4001, xwv3001, bce) new_esEs(Left(xwv4000), Left(xwv3000), app(app(ty_@2, bc), bd), bb) -> new_esEs0(xwv4000, xwv3000, bc, bd) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(app(ty_Either, bdb), bdc), baf, bcb) -> new_esEs(xwv4000, xwv3000, bdb, bdc) new_esEs1(Just(xwv4000), Just(xwv3000), app(ty_Maybe, gf)) -> new_esEs1(xwv4000, xwv3000, gf) new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(app(app(ty_@3, bab), bac), bad)) -> new_esEs3(xwv4000, xwv3000, bab, bac, bad) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(ty_Maybe, bbc)) -> new_esEs1(xwv4002, xwv3002, bbc) new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(app(ty_@2, fb), fc), fa) -> new_esEs0(xwv4000, xwv3000, fb, fc) new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(app(ty_Either, bbh), bca), bcb) -> new_esEs(xwv4001, xwv3001, bbh, bca) new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(ty_Maybe, hh)) -> new_esEs1(xwv4000, xwv3000, hh) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_esEs1(Just(xwv4000), Just(xwv3000), app(app(ty_Either, gb), gc)) -> new_esEs(xwv4000, xwv3000, gb, gc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Just(xwv4000), Just(xwv3000), app(app(ty_@2, gd), ge)) -> new_esEs0(xwv4000, xwv3000, gd, ge) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(app(ty_Either, hd), he)) -> new_esEs(xwv4000, xwv3000, hd, he) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Just(xwv4000), Just(xwv3000), app(ty_[], gg)) -> new_esEs2(xwv4000, xwv3000, gg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(app(ty_@2, hf), hg)) -> new_esEs0(xwv4000, xwv3000, hf, hg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Just(xwv4000), Just(xwv3000), app(app(app(ty_@3, gh), ha), hb)) -> new_esEs3(xwv4000, xwv3000, gh, ha, hb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs1(Just(xwv4000), Just(xwv3000), app(ty_Maybe, gf)) -> new_esEs1(xwv4000, xwv3000, gf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(app(app(ty_@3, bab), bac), bad)) -> new_esEs3(xwv4000, xwv3000, bab, bac, bad) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(ty_Maybe, hh)) -> new_esEs1(xwv4000, xwv3000, hh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(app(ty_Either, df), dg)) -> new_esEs(xwv4001, xwv3001, df, dg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(app(ty_Either, eg), eh), fa) -> new_esEs(xwv4000, xwv3000, eg, eh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(app(ty_@2, dh), ea)) -> new_esEs0(xwv4001, xwv3001, dh, ea) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(app(ty_@2, fb), fc), fa) -> new_esEs0(xwv4000, xwv3000, fb, fc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(ty_[], ff), fa) -> new_esEs2(xwv4000, xwv3000, ff) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(ty_[], ec)) -> new_esEs2(xwv4001, xwv3001, ec) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(app(app(ty_@3, fg), fh), ga), fa) -> new_esEs3(xwv4000, xwv3000, fg, fh, ga) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(app(app(ty_@3, ed), ee), ef)) -> new_esEs3(xwv4001, xwv3001, ed, ee, ef) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), app(ty_Maybe, fd), fa) -> new_esEs1(xwv4000, xwv3000, fd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), de, app(ty_Maybe, eb)) -> new_esEs1(xwv4001, xwv3001, eb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs(Right(xwv4000), Right(xwv3000), cb, app(app(ty_Either, cc), cd)) -> new_esEs(xwv4000, xwv3000, cc, cd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs(Left(xwv4000), Left(xwv3000), app(app(ty_Either, h), ba), bb) -> new_esEs(xwv4000, xwv3000, h, ba) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(app(ty_Either, bag), bah)) -> new_esEs(xwv4002, xwv3002, bag, bah) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(app(ty_Either, bdb), bdc), baf, bcb) -> new_esEs(xwv4000, xwv3000, bdb, bdc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(app(ty_Either, bbh), bca), bcb) -> new_esEs(xwv4001, xwv3001, bbh, bca) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs(Right(xwv4000), Right(xwv3000), cb, app(app(ty_@2, ce), cf)) -> new_esEs0(xwv4000, xwv3000, ce, cf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs(Left(xwv4000), Left(xwv3000), app(app(ty_@2, bc), bd), bb) -> new_esEs0(xwv4000, xwv3000, bc, bd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(app(ty_@2, bcc), bcd), bcb) -> new_esEs0(xwv4001, xwv3001, bcc, bcd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(app(ty_@2, bdd), bde), baf, bcb) -> new_esEs0(xwv4000, xwv3000, bdd, bde) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(app(ty_@2, bba), bbb)) -> new_esEs0(xwv4002, xwv3002, bba, bbb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), hc) -> new_esEs2(xwv4001, xwv3001, hc) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_esEs2(:(xwv4000, xwv4001), :(xwv3000, xwv3001), app(ty_[], baa)) -> new_esEs2(xwv4000, xwv3000, baa) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs(Right(xwv4000), Right(xwv3000), cb, app(ty_[], da)) -> new_esEs2(xwv4000, xwv3000, da) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs(Left(xwv4000), Left(xwv3000), app(ty_[], bf), bb) -> new_esEs2(xwv4000, xwv3000, bf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(ty_[], bdg), baf, bcb) -> new_esEs2(xwv4000, xwv3000, bdg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(ty_[], bcf), bcb) -> new_esEs2(xwv4001, xwv3001, bcf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(ty_[], bbd)) -> new_esEs2(xwv4002, xwv3002, bbd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_esEs(Right(xwv4000), Right(xwv3000), cb, app(app(app(ty_@3, db), dc), dd)) -> new_esEs3(xwv4000, xwv3000, db, dc, dd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs(Left(xwv4000), Left(xwv3000), app(app(app(ty_@3, bg), bh), ca), bb) -> new_esEs3(xwv4000, xwv3000, bg, bh, ca) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs(Right(xwv4000), Right(xwv3000), cb, app(ty_Maybe, cg)) -> new_esEs1(xwv4000, xwv3000, cg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs(Left(xwv4000), Left(xwv3000), app(ty_Maybe, be), bb) -> new_esEs1(xwv4000, xwv3000, be) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(app(app(ty_@3, bdh), bea), beb), baf, bcb) -> new_esEs3(xwv4000, xwv3000, bdh, bea, beb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(app(app(ty_@3, bbe), bbf), bbg)) -> new_esEs3(xwv4002, xwv3002, bbe, bbf, bbg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(app(app(ty_@3, bcg), bch), bda), bcb) -> new_esEs3(xwv4001, xwv3001, bcg, bch, bda) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), app(ty_Maybe, bdf), baf, bcb) -> new_esEs1(xwv4000, xwv3000, bdf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, app(ty_Maybe, bce), bcb) -> new_esEs1(xwv4001, xwv3001, bce) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs3(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), bae, baf, app(ty_Maybe, bbc)) -> new_esEs1(xwv4002, xwv3002, bbc) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key10(xwv325, xwv326, xwv327, xwv328, xwv329, xwv330, xwv331, xwv332, xwv333, xwv334, xwv335, xwv336, xwv337, xwv338, Branch(xwv3390, xwv3391, xwv3392, xwv3393, xwv3394), h, ba) -> new_glueBal2Mid_key10(xwv325, xwv326, xwv327, xwv328, xwv329, xwv330, xwv331, xwv332, xwv333, xwv334, xwv3390, xwv3391, xwv3392, xwv3393, xwv3394, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key10(xwv325, xwv326, xwv327, xwv328, xwv329, xwv330, xwv331, xwv332, xwv333, xwv334, xwv335, xwv336, xwv337, xwv338, Branch(xwv3390, xwv3391, xwv3392, xwv3393, xwv3394), h, ba) -> new_glueBal2Mid_key10(xwv325, xwv326, xwv327, xwv328, xwv329, xwv330, xwv331, xwv332, xwv333, xwv334, xwv3390, xwv3391, xwv3392, xwv3393, xwv3394, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 15 > 11, 15 > 12, 15 > 13, 15 > 14, 15 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (42) YES ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: new_deleteMax(xwv190, xwv191, xwv192, xwv193, Branch(xwv1940, xwv1941, xwv1942, xwv1943, xwv1944), h, ba, bb) -> new_deleteMax(xwv1940, xwv1941, xwv1942, xwv1943, xwv1944, h, ba, bb) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_deleteMax(xwv190, xwv191, xwv192, xwv193, Branch(xwv1940, xwv1941, xwv1942, xwv1943, xwv1944), h, ba, bb) -> new_deleteMax(xwv1940, xwv1941, xwv1942, xwv1943, xwv1944, h, ba, bb) The graph contains the following edges 5 > 1, 5 > 2, 5 > 3, 5 > 4, 5 > 5, 6 >= 6, 7 >= 7, 8 >= 8 ---------------------------------------- (45) YES ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(xwv3, :(xwv40, xwv41), h, ba, bb) -> new_foldl(new_delFromFM0(xwv3, xwv40, h, ba, bb), xwv41, h, ba, bb) The TRS R consists of the following rules: new_ltEs18(xwv4411, xwv4611, ty_Integer) -> new_ltEs17(xwv4411, xwv4611) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, app(ty_Maybe, bgb)) -> new_ltEs8(xwv4410, xwv4610, bgb) new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_primCmpInt(Neg(Succ(xwv4400)), Pos(xwv460)) -> LT new_ltEs18(xwv4411, xwv4611, app(app(ty_@2, bce), bcf)) -> new_ltEs10(xwv4411, xwv4611, bce, bcf) new_pePe(True, xwv135) -> True new_esEs23(xwv440, xwv460, app(ty_Maybe, ed)) -> new_esEs6(xwv440, xwv460, ed) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Float, db) -> new_esEs13(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, app(app(app(ty_@3, cea), ceb), cec)) -> new_lt5(xwv4411, xwv4611, cea, ceb, cec) new_esEs21(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_primCmpInt(Neg(Succ(xwv4400)), Neg(Zero)) -> LT new_ltEs7(xwv441, xwv461) -> new_fsEs(new_compare17(xwv441, xwv461)) new_esEs21(xwv4000, xwv3000, app(app(app(ty_@3, dfe), dff), dfg)) -> new_esEs7(xwv4000, xwv3000, dfe, dff, dfg) new_compare24(xwv440, xwv460, False, bab, bac, bad) -> new_compare110(xwv440, xwv460, new_ltEs16(xwv440, xwv460, bab, bac, bad), bab, bac, bad) new_compare23(xwv440, xwv460, True, ed) -> EQ new_esEs23(xwv440, xwv460, ty_Int) -> new_esEs17(xwv440, xwv460) new_esEs22(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, app(ty_[], bhe)) -> new_esEs11(xwv4001, xwv3001, bhe) new_lt20(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_compare6(xwv4400, xwv4600, ty_Bool) -> new_compare10(xwv4400, xwv4600) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt(Pos(Zero), Neg(Succ(xwv4600))) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_compare19(xwv440, xwv460) -> new_compare25(xwv440, xwv460, new_esEs9(xwv440, xwv460)) new_esEs23(xwv440, xwv460, ty_Double) -> new_esEs16(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(ty_[], ce)) -> new_compare1(xwv4400, xwv4600, ce) new_esEs9(LT, EQ) -> False new_esEs9(EQ, LT) -> False new_esEs18(@0, @0) -> True new_compare113(xwv110, xwv111, xwv112, xwv113, True, bae, baf) -> LT new_esEs24(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt6(xwv440, xwv460) -> new_esEs9(new_compare16(xwv440, xwv460), LT) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_Either, dgc), dgd)) -> new_esEs5(xwv4000, xwv3000, dgc, dgd) new_esEs20(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_@0, bea) -> new_ltEs7(xwv4410, xwv4610) new_compare15(xwv440, xwv460, bab, bac, bad) -> new_compare24(xwv440, xwv460, new_esEs7(xwv440, xwv460, bab, bac, bad), bab, bac, bad) new_esEs23(xwv440, xwv460, app(app(ty_Either, bag), bah)) -> new_esEs5(xwv440, xwv460, bag, bah) new_ltEs20(xwv4412, xwv4612, ty_Bool) -> new_ltEs12(xwv4412, xwv4612) new_esEs28(xwv4411, xwv4611, ty_Integer) -> new_esEs10(xwv4411, xwv4611) new_compare26(xwv440, xwv460, True) -> EQ new_primEqInt(Pos(Succ(xwv40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(xwv30000))) -> False new_esEs27(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs25(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_esEs32(xwv32, xwv34, ty_Char) -> new_esEs15(xwv32, xwv34) new_esEs28(xwv4411, xwv4611, ty_@0) -> new_esEs18(xwv4411, xwv4611) new_ltEs4(GT, EQ) -> False new_esEs31(xwv400, xwv300, app(app(app(ty_@3, dg), dh), ea)) -> new_esEs7(xwv400, xwv300, dg, dh, ea) new_esEs31(xwv400, xwv300, ty_Ordering) -> new_esEs9(xwv400, xwv300) new_ltEs19(xwv441, xwv461, app(ty_[], cga)) -> new_ltEs6(xwv441, xwv461, cga) new_esEs24(xwv4001, xwv3001, app(app(ty_@2, bhb), bhc)) -> new_esEs4(xwv4001, xwv3001, bhb, bhc) new_esEs28(xwv4411, xwv4611, app(ty_[], ced)) -> new_esEs11(xwv4411, xwv4611, ced) new_esEs19(xwv4002, xwv3002, ty_Ordering) -> new_esEs9(xwv4002, xwv3002) new_esEs28(xwv4411, xwv4611, app(ty_Ratio, cde)) -> new_esEs14(xwv4411, xwv4611, cde) new_primPlusInt(Neg(xwv3620), xwv361, xwv360, xwv358, eb, ec) -> new_primPlusInt1(xwv3620, new_sizeFM(xwv361, eb, ec)) new_esEs8(False, True) -> False new_esEs8(True, False) -> False new_esEs12(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_compare1(:(xwv4400, xwv4401), [], bc) -> GT new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Maybe, dac), db) -> new_esEs6(xwv4000, xwv3000, dac) new_primEqNat0(Succ(xwv40000), Succ(xwv30000)) -> new_primEqNat0(xwv40000, xwv30000) new_esEs23(xwv440, xwv460, app(ty_Ratio, cf)) -> new_esEs14(xwv440, xwv460, cf) new_esEs31(xwv400, xwv300, ty_Bool) -> new_esEs8(xwv400, xwv300) new_esEs29(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_esEs5(Right(xwv4000), Right(xwv3000), da, app(app(ty_@2, dbc), dbd)) -> new_esEs4(xwv4000, xwv3000, dbc, dbd) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Ratio, dgb)) -> new_esEs14(xwv4000, xwv3000, dgb) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Maybe, beg), bea) -> new_ltEs8(xwv4410, xwv4610, beg) new_esEs12(xwv4000, xwv3000, app(app(ty_Either, cge), cgf)) -> new_esEs5(xwv4000, xwv3000, cge, cgf) new_not(True) -> False new_lt21(xwv4411, xwv4611, app(app(ty_@2, cdc), cdd)) -> new_lt14(xwv4411, xwv4611, cdc, cdd) new_ltEs19(xwv441, xwv461, ty_Double) -> new_ltEs5(xwv441, xwv461) new_ltEs20(xwv4412, xwv4612, app(app(ty_@2, cee), cef)) -> new_ltEs10(xwv4412, xwv4612, cee, cef) new_esEs25(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_primCompAux00(xwv146, LT) -> LT new_primCmpNat0(Zero, Zero) -> EQ new_esEs12(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Integer) -> new_ltEs17(xwv4412, xwv4612) new_lt21(xwv4411, xwv4611, ty_Float) -> new_lt10(xwv4411, xwv4611) new_esEs28(xwv4411, xwv4611, ty_Float) -> new_esEs13(xwv4411, xwv4611) new_esEs32(xwv32, xwv34, ty_Bool) -> new_esEs8(xwv32, xwv34) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_Ratio, chf), db) -> new_esEs14(xwv4000, xwv3000, chf) new_ltEs16(@3(xwv4410, xwv4411, xwv4412), @3(xwv4610, xwv4611, xwv4612), cbf, cbg, cbh) -> new_pePe(new_lt20(xwv4410, xwv4610, cbf), new_asAs(new_esEs29(xwv4410, xwv4610, cbf), new_pePe(new_lt21(xwv4411, xwv4611, cbg), new_asAs(new_esEs28(xwv4411, xwv4611, cbg), new_ltEs20(xwv4412, xwv4612, cbh))))) new_esEs5(Right(xwv4000), Right(xwv3000), da, app(ty_Ratio, dah)) -> new_esEs14(xwv4000, xwv3000, dah) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Float, bea) -> new_ltEs14(xwv4410, xwv4610) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs20(xwv4001, xwv3001, app(ty_[], deb)) -> new_esEs11(xwv4001, xwv3001, deb) new_esEs16(Double(xwv4000, xwv4001), Double(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_esEs25(xwv4000, xwv3000, app(app(app(ty_@3, cah), cba), cbb)) -> new_esEs7(xwv4000, xwv3000, cah, cba, cbb) new_compare6(xwv4400, xwv4600, ty_@0) -> new_compare17(xwv4400, xwv4600) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_glueBal2GlueBal1(xwv200, xwv201, xwv202, xwv203, xwv204, xwv190, xwv191, xwv192, xwv193, xwv194, False, ee, ef, eg) -> new_mkBalBranch(new_glueBal2Mid_key100(xwv200, xwv201, xwv202, xwv203, xwv204, xwv190, xwv191, xwv192, xwv193, xwv194, xwv190, xwv191, xwv192, xwv193, xwv194, app(app(ty_@2, ee), ef), eg), new_glueBal2Mid_elt100(xwv200, xwv201, xwv202, xwv203, xwv204, xwv190, xwv191, xwv192, xwv193, xwv194, xwv190, xwv191, xwv192, xwv193, xwv194, eg, app(app(ty_@2, ee), ef)), new_deleteMax0(xwv190, xwv191, xwv192, xwv193, xwv194, ee, ef, eg), Branch(xwv200, xwv201, xwv202, xwv203, xwv204), ee, ef, eg) new_esEs28(xwv4411, xwv4611, ty_Double) -> new_esEs16(xwv4411, xwv4611) new_esEs19(xwv4002, xwv3002, app(app(ty_@2, dce), dcf)) -> new_esEs4(xwv4002, xwv3002, dce, dcf) new_primEqNat0(Succ(xwv40000), Zero) -> False new_primEqNat0(Zero, Succ(xwv30000)) -> False new_ltEs19(xwv441, xwv461, ty_Bool) -> new_ltEs12(xwv441, xwv461) new_esEs19(xwv4002, xwv3002, app(app(app(ty_@3, dda), ddb), ddc)) -> new_esEs7(xwv4002, xwv3002, dda, ddb, ddc) new_compare112(xwv440, xwv460, False) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_esEs23(xwv440, xwv460, ty_@0) -> new_esEs18(xwv440, xwv460) new_primPlusInt0(xwv2440, Neg(xwv2450)) -> new_primMinusNat0(xwv2440, xwv2450) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Double) -> new_esEs16(xwv4000, xwv3000) new_deleteMax0(xwv190, xwv191, xwv192, xwv193, EmptyFM, ee, ef, eg) -> xwv193 new_ltEs20(xwv4412, xwv4612, app(ty_Maybe, cfb)) -> new_ltEs8(xwv4412, xwv4612, cfb) new_esEs12(xwv4000, xwv3000, app(ty_Ratio, cgd)) -> new_esEs14(xwv4000, xwv3000, cgd) new_primCompAux00(xwv146, GT) -> GT new_lt17(xwv440, xwv460) -> new_esEs9(new_compare18(xwv440, xwv460), LT) new_lt18(xwv440, xwv460, bc) -> new_esEs9(new_compare1(xwv440, xwv460, bc), LT) new_primMinusNat0(Succ(xwv24400), Zero) -> Pos(Succ(xwv24400)) new_lt19(xwv440, xwv460, ty_Bool) -> new_lt15(xwv440, xwv460) new_ltEs18(xwv4411, xwv4611, ty_Bool) -> new_ltEs12(xwv4411, xwv4611) new_delFromFM00(xwv15, xwv16, xwv17, xwv18, Branch(xwv190, xwv191, xwv192, xwv193, xwv194), EmptyFM, xwv21, xwv22, True, ee, ef, eg) -> Branch(xwv190, xwv191, xwv192, xwv193, xwv194) new_compare115(xwv110, xwv111, xwv112, xwv113, True, xwv115, bae, baf) -> new_compare113(xwv110, xwv111, xwv112, xwv113, True, bae, baf) new_lt21(xwv4411, xwv4611, app(ty_Maybe, cdh)) -> new_lt9(xwv4411, xwv4611, cdh) new_compare6(xwv4400, xwv4600, app(ty_Maybe, ca)) -> new_compare14(xwv4400, xwv4600, ca) new_compare23(xwv440, xwv460, False, ed) -> new_compare116(xwv440, xwv460, new_ltEs8(xwv440, xwv460, ed), ed) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Integer) -> new_compare16(new_sr0(xwv4400, xwv4601), new_sr0(xwv4600, xwv4401)) new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_@0, db) -> new_esEs18(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(ty_Ratio, bgg)) -> new_esEs14(xwv4001, xwv3001, bgg) new_primCmpInt(Pos(Succ(xwv4400)), Neg(xwv460)) -> GT new_lt13(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Double, bea) -> new_ltEs5(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(app(ty_@2, ddg), ddh)) -> new_esEs4(xwv4001, xwv3001, ddg, ddh) new_primPlusInt0(xwv2440, Pos(xwv2450)) -> Pos(new_primPlusNat1(xwv2440, xwv2450)) new_ltEs19(xwv441, xwv461, ty_Float) -> new_ltEs14(xwv441, xwv461) new_esEs24(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_primPlusInt(Pos(xwv3620), xwv361, xwv360, xwv358, eb, ec) -> new_primPlusInt0(xwv3620, new_sizeFM(xwv361, eb, ec)) new_lt4(xwv440, xwv460, cf) -> new_esEs9(new_compare9(xwv440, xwv460, cf), LT) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Int) -> new_esEs17(xwv4000, xwv3000) new_mkBranch(xwv357, xwv358, xwv359, xwv360, xwv361, eb, ec) -> Branch(xwv358, xwv359, new_primPlusInt(new_primPlusInt0(Succ(Zero), new_sizeFM(xwv360, eb, ec)), xwv361, xwv360, xwv358, eb, ec), xwv360, xwv361) new_sizeFM0(EmptyFM, ee, ef, eg) -> Pos(Zero) new_esEs21(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt13(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_Float) -> new_ltEs14(xwv4412, xwv4612) new_ltEs20(xwv4412, xwv4612, ty_Double) -> new_ltEs5(xwv4412, xwv4612) new_primPlusNat1(Succ(xwv19200), Succ(xwv9700)) -> Succ(Succ(new_primPlusNat1(xwv19200, xwv9700))) new_delFromFM0(EmptyFM, xwv40, h, ba, bb) -> EmptyFM new_delFromFM00(xwv15, xwv16, xwv17, xwv18, Branch(xwv190, xwv191, xwv192, xwv193, xwv194), Branch(xwv200, xwv201, xwv202, xwv203, xwv204), xwv21, xwv22, True, ee, ef, eg) -> new_glueBal2GlueBal1(xwv200, xwv201, xwv202, xwv203, xwv204, xwv190, xwv191, xwv192, xwv193, xwv194, new_gt(new_sizeFM0(Branch(xwv200, xwv201, xwv202, xwv203, xwv204), ee, ef, eg), new_sizeFM0(Branch(xwv190, xwv191, xwv192, xwv193, xwv194), ee, ef, eg)), ee, ef, eg) new_ltEs14(xwv441, xwv461) -> new_fsEs(new_compare12(xwv441, xwv461)) new_primCmpNat0(Zero, Succ(xwv46000)) -> LT new_compare6(xwv4400, xwv4600, app(app(ty_@2, bd), be)) -> new_compare8(xwv4400, xwv4600, bd, be) new_compare25(xwv440, xwv460, False) -> new_compare111(xwv440, xwv460, new_ltEs4(xwv440, xwv460)) new_esEs29(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs28(xwv4411, xwv4611, ty_Int) -> new_esEs17(xwv4411, xwv4611) new_sizeFM(EmptyFM, eb, ec) -> Pos(Zero) new_esEs30(xwv31, xwv32, xwv33, xwv34, False, gf, gg) -> new_esEs9(new_compare28(@2(xwv31, xwv32), @2(xwv33, xwv34), False, gf, gg), GT) new_esEs32(xwv32, xwv34, app(app(app(ty_@3, hg), hh), baa)) -> new_esEs7(xwv32, xwv34, hg, hh, baa) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_esEs22(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_@0) -> new_esEs18(xwv4002, xwv3002) new_compare110(xwv440, xwv460, False, bab, bac, bad) -> GT new_primCmpNat0(Succ(xwv44000), Zero) -> GT new_lt13(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_lt20(xwv4410, xwv4610, app(app(ty_Either, ccd), cce)) -> new_lt11(xwv4410, xwv4610, ccd, cce) new_pePe(False, xwv135) -> xwv135 new_mkBalBranch6MkBalBranch11(xwv200, xwv201, xwv2400, xwv2401, xwv2402, xwv2403, xwv2404, xwv204, True, ee, ef, eg) -> new_mkBranch(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero))))))), xwv2400, xwv2401, xwv2403, new_mkBranch(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))))), xwv200, xwv201, xwv2404, xwv204, app(app(ty_@2, ee), ef), eg), app(app(ty_@2, ee), ef), eg) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Int) -> new_ltEs15(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_[], bfc), bea) -> new_ltEs6(xwv4410, xwv4610, bfc) new_esEs31(xwv400, xwv300, ty_Float) -> new_esEs13(xwv400, xwv300) new_esEs22(xwv4410, xwv4610, app(ty_Ratio, bbe)) -> new_esEs14(xwv4410, xwv4610, bbe) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_[], dgh)) -> new_esEs11(xwv4000, xwv3000, dgh) new_ltEs13(Left(xwv4410), Right(xwv4610), bfd, bea) -> True new_primPlusInt1(xwv2440, Neg(xwv2460)) -> Neg(new_primPlusNat1(xwv2440, xwv2460)) new_ltEs19(xwv441, xwv461, ty_@0) -> new_ltEs7(xwv441, xwv461) new_esEs7(@3(xwv4000, xwv4001, xwv4002), @3(xwv3000, xwv3001, xwv3002), dg, dh, ea) -> new_asAs(new_esEs21(xwv4000, xwv3000, dg), new_asAs(new_esEs20(xwv4001, xwv3001, dh), new_esEs19(xwv4002, xwv3002, ea))) new_compare114(xwv440, xwv460, True, bag, bah) -> LT new_esEs11(:(xwv4000, xwv4001), [], df) -> False new_esEs11([], :(xwv3000, xwv3001), df) -> False new_primMinusNat0(Succ(xwv24400), Succ(xwv24500)) -> new_primMinusNat0(xwv24400, xwv24500) new_mkBalBranch6MkBalBranch01(xwv200, xwv201, xwv240, xwv2040, xwv2041, xwv2042, xwv2043, xwv2044, True, ee, ef, eg) -> new_mkBranch(Succ(Succ(Zero)), xwv2040, xwv2041, new_mkBranch(Succ(Succ(Succ(Zero))), xwv200, xwv201, xwv240, xwv2043, app(app(ty_@2, ee), ef), eg), xwv2044, app(app(ty_@2, ee), ef), eg) new_compare18(Double(xwv4400, Neg(xwv44010)), Double(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_esEs25(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Zero)) -> GT new_ltEs19(xwv441, xwv461, app(app(ty_@2, bba), bbb)) -> new_ltEs10(xwv441, xwv461, bba, bbb) new_ltEs19(xwv441, xwv461, ty_Integer) -> new_ltEs17(xwv441, xwv461) new_lt20(xwv4410, xwv4610, app(ty_Maybe, ccf)) -> new_lt9(xwv4410, xwv4610, ccf) new_compare27(xwv440, xwv460, False, bag, bah) -> new_compare114(xwv440, xwv460, new_ltEs13(xwv440, xwv460, bag, bah), bag, bah) new_esEs6(Just(xwv4000), Just(xwv3000), ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_Either, bee), bef), bea) -> new_ltEs13(xwv4410, xwv4610, bee, bef) new_lt11(xwv440, xwv460, bag, bah) -> new_esEs9(new_compare11(xwv440, xwv460, bag, bah), LT) new_esEs22(xwv4410, xwv4610, app(ty_Maybe, bbh)) -> new_esEs6(xwv4410, xwv4610, bbh) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_@2, daa), dab), db) -> new_esEs4(xwv4000, xwv3000, daa, dab) new_esEs32(xwv32, xwv34, app(ty_Maybe, he)) -> new_esEs6(xwv32, xwv34, he) new_lt21(xwv4411, xwv4611, ty_Bool) -> new_lt15(xwv4411, xwv4611) new_esEs21(xwv4000, xwv3000, app(app(ty_@2, dfa), dfb)) -> new_esEs4(xwv4000, xwv3000, dfa, dfb) new_lt19(xwv440, xwv460, app(ty_Maybe, ed)) -> new_lt9(xwv440, xwv460, ed) new_primEqInt(Pos(Zero), Neg(Succ(xwv30000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(xwv30000))) -> False new_lt19(xwv440, xwv460, ty_Ordering) -> new_lt12(xwv440, xwv460) new_ltEs13(Right(xwv4410), Left(xwv4610), bfd, bea) -> False new_esEs23(xwv440, xwv460, app(ty_[], bc)) -> new_esEs11(xwv440, xwv460, bc) new_esEs25(xwv4000, xwv3000, app(app(ty_@2, cad), cae)) -> new_esEs4(xwv4000, xwv3000, cad, cae) new_esEs30(xwv31, xwv32, xwv33, xwv34, True, gf, gg) -> new_esEs9(new_compare28(@2(xwv31, xwv32), @2(xwv33, xwv34), new_esEs32(xwv32, xwv34, gg), gf, gg), GT) new_lt21(xwv4411, xwv4611, ty_Int) -> new_lt7(xwv4411, xwv4611) new_ltEs4(LT, GT) -> True new_esEs20(xwv4001, xwv3001, app(ty_Ratio, ddd)) -> new_esEs14(xwv4001, xwv3001, ddd) new_esEs29(xwv4410, xwv4610, ty_Double) -> new_esEs16(xwv4410, xwv4610) new_esEs21(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs12(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs24(xwv4001, xwv3001, app(app(ty_Either, bgh), bha)) -> new_esEs5(xwv4001, xwv3001, bgh, bha) new_primEqInt(Neg(Succ(xwv40000)), Neg(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Char, bea) -> new_ltEs9(xwv4410, xwv4610) new_lt5(xwv440, xwv460, bab, bac, bad) -> new_esEs9(new_compare15(xwv440, xwv460, bab, bac, bad), LT) new_primCmpInt(Neg(Zero), Pos(Succ(xwv4600))) -> LT new_ltEs20(xwv4412, xwv4612, app(app(ty_Either, ceh), cfa)) -> new_ltEs13(xwv4412, xwv4612, ceh, cfa) new_ltEs4(LT, LT) -> True new_compare114(xwv440, xwv460, False, bag, bah) -> GT new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Bool) -> new_ltEs12(xwv4410, xwv4610) new_ltEs18(xwv4411, xwv4611, app(app(app(ty_@3, bdc), bdd), bde)) -> new_ltEs16(xwv4411, xwv4611, bdc, bdd, bde) new_ltEs4(EQ, LT) -> False new_esEs32(xwv32, xwv34, ty_Double) -> new_esEs16(xwv32, xwv34) new_mkBalBranch6MkBalBranch3(xwv200, xwv201, Branch(xwv2400, xwv2401, xwv2402, xwv2403, xwv2404), xwv204, True, ee, ef, eg) -> new_mkBalBranch6MkBalBranch11(xwv200, xwv201, xwv2400, xwv2401, xwv2402, xwv2403, xwv2404, xwv204, new_lt7(new_sizeFM0(xwv2404, ee, ef, eg), new_sr(Pos(Succ(Succ(Zero))), new_sizeFM0(xwv2403, ee, ef, eg))), ee, ef, eg) new_primMulInt(Pos(xwv40010), Pos(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_esEs32(xwv32, xwv34, app(ty_Ratio, gh)) -> new_esEs14(xwv32, xwv34, gh) new_lt13(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(ty_@2, beb), bec), bea) -> new_ltEs10(xwv4410, xwv4610, beb, bec) new_compare6(xwv4400, xwv4600, app(app(ty_Either, bg), bh)) -> new_compare11(xwv4400, xwv4600, bg, bh) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs8(False, False) -> True new_lt19(xwv440, xwv460, app(app(ty_Either, bag), bah)) -> new_lt11(xwv440, xwv460, bag, bah) new_esEs11(:(xwv4000, xwv4001), :(xwv3000, xwv3001), df) -> new_asAs(new_esEs12(xwv4000, xwv3000, df), new_esEs11(xwv4001, xwv3001, df)) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Double) -> new_ltEs5(xwv4411, xwv4611) new_esEs32(xwv32, xwv34, app(app(ty_Either, ha), hb)) -> new_esEs5(xwv32, xwv34, ha, hb) new_esEs22(xwv4410, xwv4610, app(app(app(ty_@3, bca), bcb), bcc)) -> new_esEs7(xwv4410, xwv4610, bca, bcb, bcc) new_esEs24(xwv4001, xwv3001, app(ty_Maybe, bhd)) -> new_esEs6(xwv4001, xwv3001, bhd) new_esEs14(:%(xwv4000, xwv4001), :%(xwv3000, xwv3001), cg) -> new_asAs(new_esEs27(xwv4000, xwv3000, cg), new_esEs26(xwv4001, xwv3001, cg)) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Int, db) -> new_esEs17(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, ty_Integer) -> new_esEs10(xwv440, xwv460) new_ltEs19(xwv441, xwv461, app(ty_Maybe, fb)) -> new_ltEs8(xwv441, xwv461, fb) new_primMulNat0(Succ(xwv400100), Zero) -> Zero new_primMulNat0(Zero, Succ(xwv300000)) -> Zero new_primPlusNat0(Zero, xwv300000) -> Succ(xwv300000) new_lt13(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_glueBal2Mid_key100(xwv325, xwv326, xwv327, xwv328, xwv329, xwv330, xwv331, xwv332, xwv333, xwv334, xwv335, xwv336, xwv337, xwv338, Branch(xwv3390, xwv3391, xwv3392, xwv3393, xwv3394), cgb, cgc) -> new_glueBal2Mid_key100(xwv325, xwv326, xwv327, xwv328, xwv329, xwv330, xwv331, xwv332, xwv333, xwv334, xwv3390, xwv3391, xwv3392, xwv3393, xwv3394, cgb, cgc) new_esEs25(xwv4000, xwv3000, app(ty_[], cag)) -> new_esEs11(xwv4000, xwv3000, cag) new_esEs22(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_ltEs20(xwv4412, xwv4612, ty_@0) -> new_ltEs7(xwv4412, xwv4612) new_lt13(xwv4410, xwv4610, ty_Bool) -> new_lt15(xwv4410, xwv4610) new_mkBalBranch6MkBalBranch11(xwv200, xwv201, xwv2400, xwv2401, xwv2402, xwv2403, Branch(xwv24040, xwv24041, xwv24042, xwv24043, xwv24044), xwv204, False, ee, ef, eg) -> new_mkBranch(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero))))))))), xwv24040, xwv24041, new_mkBranch(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))))))), xwv2400, xwv2401, xwv2403, xwv24043, app(app(ty_@2, ee), ef), eg), new_mkBranch(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero))))))))))), xwv200, xwv201, xwv24044, xwv204, app(app(ty_@2, ee), ef), eg), app(app(ty_@2, ee), ef), eg) new_ltEs19(xwv441, xwv461, app(app(ty_Either, bfd), bea)) -> new_ltEs13(xwv441, xwv461, bfd, bea) new_esEs31(xwv400, xwv300, ty_@0) -> new_esEs18(xwv400, xwv300) new_esEs24(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_esEs4(@2(xwv4000, xwv4001), @2(xwv3000, xwv3001), dc, dd) -> new_asAs(new_esEs25(xwv4000, xwv3000, dc), new_esEs24(xwv4001, xwv3001, dd)) new_mkBalBranch6MkBalBranch3(xwv200, xwv201, xwv240, xwv204, False, ee, ef, eg) -> new_mkBranch(Succ(Zero), xwv200, xwv201, xwv240, xwv204, app(app(ty_@2, ee), ef), eg) new_ltEs12(False, True) -> True new_lt13(xwv4410, xwv4610, app(ty_[], bcd)) -> new_lt18(xwv4410, xwv4610, bcd) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(ty_Either, chg), chh), db) -> new_esEs5(xwv4000, xwv3000, chg, chh) new_esEs5(Right(xwv4000), Right(xwv3000), da, app(ty_Maybe, dbe)) -> new_esEs6(xwv4000, xwv3000, dbe) new_esEs6(Just(xwv4000), Just(xwv3000), ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), da, app(app(app(ty_@3, dbg), dbh), dca)) -> new_esEs7(xwv4000, xwv3000, dbg, dbh, dca) new_esEs21(xwv4000, xwv3000, app(app(ty_Either, deg), deh)) -> new_esEs5(xwv4000, xwv3000, deg, deh) new_compare116(xwv440, xwv460, False, ed) -> GT new_compare116(xwv440, xwv460, True, ed) -> LT new_esEs12(xwv4000, xwv3000, app(ty_Maybe, cha)) -> new_esEs6(xwv4000, xwv3000, cha) new_esEs19(xwv4002, xwv3002, ty_Double) -> new_esEs16(xwv4002, xwv3002) new_esEs22(xwv4410, xwv4610, ty_@0) -> new_esEs18(xwv4410, xwv4610) new_esEs12(xwv4000, xwv3000, app(ty_[], chb)) -> new_esEs11(xwv4000, xwv3000, chb) new_esEs23(xwv440, xwv460, ty_Ordering) -> new_esEs9(xwv440, xwv460) new_compare111(xwv440, xwv460, True) -> LT new_compare1([], [], bc) -> EQ new_esEs6(Just(xwv4000), Just(xwv3000), app(app(app(ty_@3, dha), dhb), dhc)) -> new_esEs7(xwv4000, xwv3000, dha, dhb, dhc) new_esEs28(xwv4411, xwv4611, ty_Char) -> new_esEs15(xwv4411, xwv4611) new_esEs20(xwv4001, xwv3001, ty_Float) -> new_esEs13(xwv4001, xwv3001) new_lt13(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_Ordering) -> new_ltEs4(xwv4410, xwv4610) new_esEs24(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_mkBalBranch6MkBalBranch11(xwv200, xwv201, xwv2400, xwv2401, xwv2402, xwv2403, EmptyFM, xwv204, False, ee, ef, eg) -> error([]) new_esEs20(xwv4001, xwv3001, ty_@0) -> new_esEs18(xwv4001, xwv3001) new_esEs24(xwv4001, xwv3001, app(app(app(ty_@3, bhf), bhg), bhh)) -> new_esEs7(xwv4001, xwv3001, bhf, bhg, bhh) new_primPlusNat1(Succ(xwv19200), Zero) -> Succ(xwv19200) new_primPlusNat1(Zero, Succ(xwv9700)) -> Succ(xwv9700) new_compare10(xwv440, xwv460) -> new_compare26(xwv440, xwv460, new_esEs8(xwv440, xwv460)) new_esEs9(LT, LT) -> True new_lt13(xwv4410, xwv4610, app(app(ty_@2, bbc), bbd)) -> new_lt14(xwv4410, xwv4610, bbc, bbd) new_esEs5(Right(xwv4000), Right(xwv3000), da, app(ty_[], dbf)) -> new_esEs11(xwv4000, xwv3000, dbf) new_glueBal2Mid_key200(xwv262, xwv263, xwv264, xwv265, xwv266, xwv267, xwv268, xwv269, xwv270, xwv271, xwv272, xwv273, xwv274, Branch(xwv2750, xwv2751, xwv2752, xwv2753, xwv2754), xwv276, eh, fa) -> new_glueBal2Mid_key200(xwv262, xwv263, xwv264, xwv265, xwv266, xwv267, xwv268, xwv269, xwv270, xwv271, xwv2750, xwv2751, xwv2752, xwv2753, xwv2754, eh, fa) new_esEs12(xwv4000, xwv3000, app(app(ty_@2, cgg), cgh)) -> new_esEs4(xwv4000, xwv3000, cgg, cgh) new_esEs17(xwv400, xwv300) -> new_primEqInt(xwv400, xwv300) new_lt21(xwv4411, xwv4611, ty_Ordering) -> new_lt12(xwv4411, xwv4611) new_mkBalBranch6Size_r(xwv200, xwv201, xwv240, xwv204, ee, ef, eg) -> new_sizeFM0(xwv204, ee, ef, eg) new_ltEs12(True, True) -> True new_ltEs18(xwv4411, xwv4611, app(app(ty_Either, bch), bda)) -> new_ltEs13(xwv4411, xwv4611, bch, bda) new_esEs6(Just(xwv4000), Just(xwv3000), app(app(ty_@2, dge), dgf)) -> new_esEs4(xwv4000, xwv3000, dge, dgf) new_gt(xwv91, xwv90) -> new_esEs9(new_compare13(xwv91, xwv90), GT) new_esEs24(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_esEs26(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_ltEs4(LT, EQ) -> True new_fsEs(xwv123) -> new_not(new_esEs9(xwv123, GT)) new_esEs19(xwv4002, xwv3002, ty_Float) -> new_esEs13(xwv4002, xwv3002) new_esEs23(xwv440, xwv460, app(app(app(ty_@3, bab), bac), bad)) -> new_esEs7(xwv440, xwv460, bab, bac, bad) new_esEs23(xwv440, xwv460, ty_Bool) -> new_esEs8(xwv440, xwv460) new_ltEs20(xwv4412, xwv4612, app(app(app(ty_@3, cfc), cfd), cfe)) -> new_ltEs16(xwv4412, xwv4612, cfc, cfd, cfe) new_ltEs18(xwv4411, xwv4611, app(ty_Maybe, bdb)) -> new_ltEs8(xwv4411, xwv4611, bdb) new_esEs20(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Bool, db) -> new_esEs8(xwv4000, xwv3000) new_primMulInt(Neg(xwv40010), Neg(xwv30000)) -> Pos(new_primMulNat0(xwv40010, xwv30000)) new_primCmpInt(Pos(Zero), Pos(Succ(xwv4600))) -> new_primCmpNat0(Zero, Succ(xwv4600)) new_lt20(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_mkBalBranch6MkBalBranch5(xwv200, xwv201, xwv240, xwv204, False, ee, ef, eg) -> new_mkBalBranch6MkBalBranch4(xwv200, xwv201, xwv240, xwv204, new_gt(new_mkBalBranch6Size_r(xwv200, xwv201, xwv240, xwv204, ee, ef, eg), new_sr(new_sIZE_RATIO, new_mkBalBranch6Size_l(xwv200, xwv201, xwv240, xwv204, ee, ef, eg))), ee, ef, eg) new_delFromFM20(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, ee, ef, eg) -> new_delFromFM10(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs9(new_compare28(@2(xwv21, xwv22), @2(xwv15, xwv16), new_esEs4(@2(xwv21, xwv22), @2(xwv15, xwv16), ee, ef), ee, ef), LT), ee, ef, eg) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Integer, db) -> new_esEs10(xwv4000, xwv3000) new_compare115(xwv110, xwv111, xwv112, xwv113, False, xwv115, bae, baf) -> new_compare113(xwv110, xwv111, xwv112, xwv113, xwv115, bae, baf) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_[], ge)) -> new_ltEs6(xwv4410, xwv4610, ge) new_esEs6(Just(xwv4000), Just(xwv3000), app(ty_Maybe, dgg)) -> new_esEs6(xwv4000, xwv3000, dgg) new_ltEs4(EQ, EQ) -> True new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs6(Nothing, Just(xwv3000), de) -> False new_esEs6(Just(xwv4000), Nothing, de) -> False new_esEs6(Nothing, Nothing, de) -> True new_esEs12(xwv4000, xwv3000, app(app(app(ty_@3, chc), chd), che)) -> new_esEs7(xwv4000, xwv3000, chc, chd, che) new_ltEs18(xwv4411, xwv4611, ty_Char) -> new_ltEs9(xwv4411, xwv4611) new_esEs22(xwv4410, xwv4610, app(app(ty_Either, bbf), bbg)) -> new_esEs5(xwv4410, xwv4610, bbf, bbg) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs31(xwv400, xwv300, ty_Double) -> new_esEs16(xwv400, xwv300) new_esEs24(xwv4001, xwv3001, ty_Ordering) -> new_esEs9(xwv4001, xwv3001) new_lt21(xwv4411, xwv4611, app(app(ty_Either, cdf), cdg)) -> new_lt11(xwv4411, xwv4611, cdf, cdg) new_esEs21(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs23(xwv440, xwv460, app(app(ty_@2, cbc), cbd)) -> new_esEs4(xwv440, xwv460, cbc, cbd) new_esEs12(xwv4000, xwv3000, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_compare112(xwv440, xwv460, True) -> LT new_esEs5(Left(xwv4000), Left(xwv3000), ty_Ordering, db) -> new_esEs9(xwv4000, xwv3000) new_esEs13(Float(xwv4000, xwv4001), Float(xwv3000, xwv3001)) -> new_esEs17(new_sr(xwv4000, xwv3001), new_sr(xwv4001, xwv3000)) new_lt13(xwv4410, xwv4610, app(app(ty_Either, bbf), bbg)) -> new_lt11(xwv4410, xwv4610, bbf, bbg) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Char, db) -> new_esEs15(xwv4000, xwv3000) new_ltEs19(xwv441, xwv461, ty_Char) -> new_ltEs9(xwv441, xwv461) new_compare6(xwv4400, xwv4600, app(ty_Ratio, bf)) -> new_compare9(xwv4400, xwv4600, bf) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, app(ty_Ratio, bfg)) -> new_ltEs11(xwv4410, xwv4610, bfg) new_lt20(xwv4410, xwv4610, ty_Integer) -> new_lt6(xwv4410, xwv4610) new_esEs31(xwv400, xwv300, ty_Int) -> new_esEs17(xwv400, xwv300) new_deleteMax0(xwv190, xwv191, xwv192, xwv193, Branch(xwv1940, xwv1941, xwv1942, xwv1943, xwv1944), ee, ef, eg) -> new_mkBalBranch(xwv190, xwv191, xwv193, new_deleteMax0(xwv1940, xwv1941, xwv1942, xwv1943, xwv1944, ee, ef, eg), ee, ef, eg) new_ltEs18(xwv4411, xwv4611, ty_@0) -> new_ltEs7(xwv4411, xwv4611) new_esEs26(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, app(app(ty_@2, bfe), bff)) -> new_ltEs10(xwv4410, xwv4610, bfe, bff) new_ltEs20(xwv4412, xwv4612, ty_Int) -> new_ltEs15(xwv4412, xwv4612) new_mkBalBranch6MkBalBranch4(xwv200, xwv201, xwv240, Branch(xwv2040, xwv2041, xwv2042, xwv2043, xwv2044), True, ee, ef, eg) -> new_mkBalBranch6MkBalBranch01(xwv200, xwv201, xwv240, xwv2040, xwv2041, xwv2042, xwv2043, xwv2044, new_lt7(new_sizeFM0(xwv2043, ee, ef, eg), new_sr(Pos(Succ(Succ(Zero))), new_sizeFM0(xwv2044, ee, ef, eg))), ee, ef, eg) new_primMulInt(Pos(xwv40010), Neg(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_primMulInt(Neg(xwv40010), Pos(xwv30000)) -> Neg(new_primMulNat0(xwv40010, xwv30000)) new_esEs19(xwv4002, xwv3002, app(app(ty_Either, dcc), dcd)) -> new_esEs5(xwv4002, xwv3002, dcc, dcd) new_mkBalBranch6MkBalBranch01(xwv200, xwv201, xwv240, xwv2040, xwv2041, xwv2042, EmptyFM, xwv2044, False, ee, ef, eg) -> error([]) new_esEs32(xwv32, xwv34, app(ty_[], hf)) -> new_esEs11(xwv32, xwv34, hf) new_compare18(Double(xwv4400, Pos(xwv44010)), Double(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_esEs22(xwv4410, xwv4610, app(app(ty_@2, bbc), bbd)) -> new_esEs4(xwv4410, xwv4610, bbc, bbd) new_esEs31(xwv400, xwv300, app(ty_Maybe, de)) -> new_esEs6(xwv400, xwv300, de) new_esEs24(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_esEs25(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs32(xwv32, xwv34, ty_Integer) -> new_esEs10(xwv32, xwv34) new_compare28(@2(xwv440, xwv441), @2(xwv460, xwv461), False, dfh, dga) -> new_compare115(xwv440, xwv441, xwv460, xwv461, new_lt19(xwv440, xwv460, dfh), new_asAs(new_esEs23(xwv440, xwv460, dfh), new_ltEs19(xwv441, xwv461, dga)), dfh, dga) new_esEs32(xwv32, xwv34, ty_@0) -> new_esEs18(xwv32, xwv34) new_lt13(xwv4410, xwv4610, app(app(app(ty_@3, bca), bcb), bcc)) -> new_lt5(xwv4410, xwv4610, bca, bcb, bcc) new_sr0(Integer(xwv44000), Integer(xwv46010)) -> Integer(new_primMulInt(xwv44000, xwv46010)) new_esEs12(xwv4000, xwv3000, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Ratio, def)) -> new_esEs14(xwv4000, xwv3000, def) new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_ltEs19(xwv441, xwv461, app(app(app(ty_@3, cbf), cbg), cbh)) -> new_ltEs16(xwv441, xwv461, cbf, cbg, cbh) new_esEs31(xwv400, xwv300, app(ty_Ratio, cg)) -> new_esEs14(xwv400, xwv300, cg) new_compare24(xwv440, xwv460, True, bab, bac, bad) -> EQ new_ltEs18(xwv4411, xwv4611, ty_Ordering) -> new_ltEs4(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(ty_Ratio, bed), bea) -> new_ltEs11(xwv4410, xwv4610, bed) new_ltEs5(xwv441, xwv461) -> new_fsEs(new_compare18(xwv441, xwv461)) new_lt19(xwv440, xwv460, app(ty_Ratio, cf)) -> new_lt4(xwv440, xwv460, cf) new_esEs28(xwv4411, xwv4611, app(app(app(ty_@3, cea), ceb), cec)) -> new_esEs7(xwv4411, xwv4611, cea, ceb, cec) new_ltEs6(xwv441, xwv461, cga) -> new_fsEs(new_compare1(xwv441, xwv461, cga)) new_compare8(xwv440, xwv460, cbc, cbd) -> new_compare28(xwv440, xwv460, new_esEs4(xwv440, xwv460, cbc, cbd), cbc, cbd) new_glueBal2Mid_elt200(xwv278, xwv279, xwv280, xwv281, xwv282, xwv283, xwv284, xwv285, xwv286, xwv287, xwv288, xwv289, xwv290, EmptyFM, xwv292, cfg, cfh) -> xwv289 new_esEs6(Just(xwv4000), Just(xwv3000), ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_asAs(True, xwv62) -> xwv62 new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Integer, bea) -> new_ltEs17(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(ty_Ratio, caa)) -> new_esEs14(xwv4000, xwv3000, caa) new_esEs10(Integer(xwv4000), Integer(xwv3000)) -> new_primEqInt(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_Maybe, dfc)) -> new_esEs6(xwv4000, xwv3000, dfc) new_esEs28(xwv4411, xwv4611, ty_Bool) -> new_esEs8(xwv4411, xwv4611) new_lt19(xwv440, xwv460, ty_Double) -> new_lt17(xwv440, xwv460) new_lt20(xwv4410, xwv4610, app(ty_Ratio, ccc)) -> new_lt4(xwv4410, xwv4610, ccc) new_ltEs19(xwv441, xwv461, ty_Int) -> new_ltEs15(xwv441, xwv461) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, app(app(ty_Either, bfh), bga)) -> new_ltEs13(xwv4410, xwv4610, bfh, bga) new_compare6(xwv4400, xwv4600, ty_Int) -> new_compare13(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, app(ty_[], bcd)) -> new_esEs11(xwv4410, xwv4610, bcd) new_lt10(xwv440, xwv460) -> new_esEs9(new_compare12(xwv440, xwv460), LT) new_esEs21(xwv4000, xwv3000, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_lt15(xwv440, xwv460) -> new_esEs9(new_compare10(xwv440, xwv460), LT) new_ltEs10(@2(xwv4410, xwv4411), @2(xwv4610, xwv4611), bba, bbb) -> new_pePe(new_lt13(xwv4410, xwv4610, bba), new_asAs(new_esEs22(xwv4410, xwv4610, bba), new_ltEs18(xwv4411, xwv4611, bbb))) new_esEs21(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_ltEs20(xwv4412, xwv4612, ty_Char) -> new_ltEs9(xwv4412, xwv4612) new_primMinusNat0(Zero, Zero) -> Pos(Zero) new_lt21(xwv4411, xwv4611, ty_Char) -> new_lt8(xwv4411, xwv4611) new_lt21(xwv4411, xwv4611, app(ty_[], ced)) -> new_lt18(xwv4411, xwv4611, ced) new_ltEs20(xwv4412, xwv4612, app(ty_Ratio, ceg)) -> new_ltEs11(xwv4412, xwv4612, ceg) new_esEs32(xwv32, xwv34, ty_Float) -> new_esEs13(xwv32, xwv34) new_lt19(xwv440, xwv460, ty_Integer) -> new_lt6(xwv440, xwv460) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_@0) -> new_ltEs7(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, ty_Ordering) -> new_lt12(xwv4410, xwv4610) new_deleteMin0(xwv200, xwv201, xwv202, EmptyFM, xwv204, ee, ef, eg) -> xwv204 new_lt13(xwv4410, xwv4610, app(ty_Maybe, bbh)) -> new_lt9(xwv4410, xwv4610, bbh) new_esEs29(xwv4410, xwv4610, app(app(ty_Either, ccd), cce)) -> new_esEs5(xwv4410, xwv4610, ccd, cce) new_esEs12(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_lt14(xwv440, xwv460, cbc, cbd) -> new_esEs9(new_compare8(xwv440, xwv460, cbc, cbd), LT) new_esEs29(xwv4410, xwv4610, ty_Char) -> new_esEs15(xwv4410, xwv4610) new_primCompAux00(xwv146, EQ) -> xwv146 new_compare113(xwv110, xwv111, xwv112, xwv113, False, bae, baf) -> GT new_sr(xwv4001, xwv3000) -> new_primMulInt(xwv4001, xwv3000) new_compare26(xwv440, xwv460, False) -> new_compare112(xwv440, xwv460, new_ltEs12(xwv440, xwv460)) new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_@2, fc), fd)) -> new_ltEs10(xwv4410, xwv4610, fc, fd) new_compare6(xwv4400, xwv4600, ty_Double) -> new_compare18(xwv4400, xwv4600) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Bool, bea) -> new_ltEs12(xwv4410, xwv4610) new_compare13(xwv44, xwv46) -> new_primCmpInt(xwv44, xwv46) new_primMulNat0(Zero, Zero) -> Zero new_esEs22(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_esEs21(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_lt19(xwv440, xwv460, ty_Char) -> new_lt8(xwv440, xwv460) new_esEs29(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_lt9(xwv440, xwv460, ed) -> new_esEs9(new_compare14(xwv440, xwv460, ed), LT) new_compare111(xwv440, xwv460, False) -> GT new_ltEs12(True, False) -> False new_compare1(:(xwv4400, xwv4401), :(xwv4600, xwv4601), bc) -> new_primCompAux0(xwv4400, xwv4600, new_compare1(xwv4401, xwv4601, bc), bc) new_lt20(xwv4410, xwv4610, ty_Float) -> new_lt10(xwv4410, xwv4610) new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_esEs20(xwv4001, xwv3001, app(app(ty_Either, dde), ddf)) -> new_esEs5(xwv4001, xwv3001, dde, ddf) new_esEs5(Right(xwv4000), Right(xwv3000), da, app(app(ty_Either, dba), dbb)) -> new_esEs5(xwv4000, xwv3000, dba, dbb) new_ltEs19(xwv441, xwv461, app(ty_Ratio, cbe)) -> new_ltEs11(xwv441, xwv461, cbe) new_esEs19(xwv4002, xwv3002, app(ty_Ratio, dcb)) -> new_esEs14(xwv4002, xwv3002, dcb) new_compare9(:%(xwv4400, xwv4401), :%(xwv4600, xwv4601), ty_Int) -> new_compare13(new_sr(xwv4400, xwv4601), new_sr(xwv4600, xwv4401)) new_ltEs18(xwv4411, xwv4611, ty_Int) -> new_ltEs15(xwv4411, xwv4611) new_primCmpInt(Pos(Succ(xwv4400)), Pos(Succ(xwv4600))) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs22(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_esEs29(xwv4410, xwv4610, app(ty_Ratio, ccc)) -> new_esEs14(xwv4410, xwv4610, ccc) new_lt21(xwv4411, xwv4611, app(ty_Ratio, cde)) -> new_lt4(xwv4411, xwv4611, cde) new_glueBal2Mid_key100(xwv325, xwv326, xwv327, xwv328, xwv329, xwv330, xwv331, xwv332, xwv333, xwv334, xwv335, xwv336, xwv337, xwv338, EmptyFM, cgb, cgc) -> xwv335 new_deleteMin0(xwv200, xwv201, xwv202, Branch(xwv2030, xwv2031, xwv2032, xwv2033, xwv2034), xwv204, ee, ef, eg) -> new_mkBalBranch(xwv200, xwv201, new_deleteMin0(xwv2030, xwv2031, xwv2032, xwv2033, xwv2034, ee, ef, eg), xwv204, ee, ef, eg) new_esEs9(EQ, EQ) -> True new_ltEs18(xwv4411, xwv4611, app(ty_Ratio, bcg)) -> new_ltEs11(xwv4411, xwv4611, bcg) new_esEs12(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_lt20(xwv4410, xwv4610, ty_Char) -> new_lt8(xwv4410, xwv4610) new_ltEs12(False, False) -> True new_lt19(xwv440, xwv460, ty_Int) -> new_lt7(xwv440, xwv460) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Maybe, ga)) -> new_ltEs8(xwv4410, xwv4610, ga) new_glueBal2GlueBal1(xwv200, xwv201, xwv202, xwv203, xwv204, xwv190, xwv191, xwv192, xwv193, xwv194, True, ee, ef, eg) -> new_mkBalBranch(new_glueBal2Mid_key200(xwv200, xwv201, xwv202, xwv203, xwv204, xwv190, xwv191, xwv192, xwv193, xwv194, xwv200, xwv201, xwv202, xwv203, xwv204, app(app(ty_@2, ee), ef), eg), new_glueBal2Mid_elt200(xwv200, xwv201, xwv202, xwv203, xwv204, xwv190, xwv191, xwv192, xwv193, xwv194, xwv200, xwv201, xwv202, xwv203, xwv204, eg, app(app(ty_@2, ee), ef)), Branch(xwv190, xwv191, xwv192, xwv193, xwv194), new_deleteMin0(xwv200, xwv201, xwv202, xwv203, xwv204, ee, ef, eg), ee, ef, eg) new_delFromFM0(Branch(@2(xwv300, xwv301), xwv31, xwv32, xwv33, xwv34), @2(xwv400, xwv401), h, ba, bb) -> new_delFromFM20(xwv300, xwv301, xwv31, xwv32, xwv33, xwv34, xwv400, xwv401, new_esEs30(xwv400, xwv401, xwv300, xwv301, new_esEs31(xwv400, xwv300, h), h, ba), h, ba, bb) new_esEs20(xwv4001, xwv3001, ty_Char) -> new_esEs15(xwv4001, xwv3001) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, app(app(app(ty_@3, bgc), bgd), bge)) -> new_ltEs16(xwv4410, xwv4610, bgc, bgd, bge) new_primEqInt(Neg(Succ(xwv40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(xwv30000))) -> False new_esEs25(xwv4000, xwv3000, app(ty_Maybe, caf)) -> new_esEs6(xwv4000, xwv3000, caf) new_ltEs8(Nothing, Just(xwv4610), fb) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(ty_Either, fg), fh)) -> new_ltEs13(xwv4410, xwv4610, fg, fh) new_primEqInt(Pos(Succ(xwv40000)), Pos(Succ(xwv30000))) -> new_primEqNat0(xwv40000, xwv30000) new_esEs32(xwv32, xwv34, app(app(ty_@2, hc), hd)) -> new_esEs4(xwv32, xwv34, hc, hd) new_ltEs18(xwv4411, xwv4611, app(ty_[], bdf)) -> new_ltEs6(xwv4411, xwv4611, bdf) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_Double) -> new_ltEs5(xwv4410, xwv4610) new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_Float) -> new_ltEs14(xwv4410, xwv4610) new_esEs25(xwv4000, xwv3000, app(app(ty_Either, cab), cac)) -> new_esEs5(xwv4000, xwv3000, cab, cac) new_esEs20(xwv4001, xwv3001, app(ty_Maybe, dea)) -> new_esEs6(xwv4001, xwv3001, dea) new_lt20(xwv4410, xwv4610, ty_Int) -> new_lt7(xwv4410, xwv4610) new_primEqInt(Pos(Succ(xwv40000)), Neg(xwv3000)) -> False new_primEqInt(Neg(Succ(xwv40000)), Pos(xwv3000)) -> False new_esEs19(xwv4002, xwv3002, app(ty_Maybe, dcg)) -> new_esEs6(xwv4002, xwv3002, dcg) new_ltEs4(EQ, GT) -> True new_primCmpInt(Neg(Zero), Neg(Succ(xwv4600))) -> new_primCmpNat0(Succ(xwv4600), Zero) new_esEs31(xwv400, xwv300, app(app(ty_Either, da), db)) -> new_esEs5(xwv400, xwv300, da, db) new_esEs22(xwv4410, xwv4610, ty_Float) -> new_esEs13(xwv4410, xwv4610) new_lt16(xwv440, xwv460) -> new_esEs9(new_compare17(xwv440, xwv460), LT) new_esEs27(xwv4000, xwv3000, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_esEs31(xwv400, xwv300, ty_Char) -> new_esEs15(xwv400, xwv300) new_esEs19(xwv4002, xwv3002, ty_Char) -> new_esEs15(xwv4002, xwv3002) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_esEs25(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, app(ty_[], dfd)) -> new_esEs11(xwv4000, xwv3000, dfd) new_esEs23(xwv440, xwv460, ty_Char) -> new_esEs15(xwv440, xwv460) new_compare6(xwv4400, xwv4600, app(app(app(ty_@3, cb), cc), cd)) -> new_compare15(xwv4400, xwv4600, cb, cc, cd) new_ltEs15(xwv441, xwv461) -> new_fsEs(new_compare13(xwv441, xwv461)) new_lt19(xwv440, xwv460, ty_Float) -> new_lt10(xwv440, xwv460) new_primPlusInt2(Pos(xwv2440), xwv200, xwv201, xwv240, xwv204, ee, ef, eg) -> new_primPlusInt0(xwv2440, new_sizeFM0(xwv204, ee, ef, eg)) new_delFromFM10(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, ee, ef, eg) -> new_mkBalBranch(@2(xwv15, xwv16), xwv17, new_delFromFM0(xwv19, @2(xwv21, xwv22), ee, ef, eg), xwv20, ee, ef, eg) new_esEs19(xwv4002, xwv3002, ty_Integer) -> new_esEs10(xwv4002, xwv3002) new_compare110(xwv440, xwv460, True, bab, bac, bad) -> LT new_primCompAux0(xwv4400, xwv4600, xwv136, bc) -> new_primCompAux00(xwv136, new_compare6(xwv4400, xwv4600, bc)) new_sizeFM(Branch(xwv3600, xwv3601, xwv3602, xwv3603, xwv3604), eb, ec) -> xwv3602 new_esEs23(xwv440, xwv460, ty_Float) -> new_esEs13(xwv440, xwv460) new_delFromFM00(xwv15, xwv16, xwv17, xwv18, EmptyFM, xwv20, xwv21, xwv22, True, ee, ef, eg) -> xwv20 new_esEs29(xwv4410, xwv4610, app(app(app(ty_@3, ccg), cch), cda)) -> new_esEs7(xwv4410, xwv4610, ccg, cch, cda) new_glueBal2Mid_elt100(xwv341, xwv342, xwv343, xwv344, xwv345, xwv346, xwv347, xwv348, xwv349, xwv350, xwv351, xwv352, xwv353, xwv354, Branch(xwv3550, xwv3551, xwv3552, xwv3553, xwv3554), bdg, bdh) -> new_glueBal2Mid_elt100(xwv341, xwv342, xwv343, xwv344, xwv345, xwv346, xwv347, xwv348, xwv349, xwv350, xwv3550, xwv3551, xwv3552, xwv3553, xwv3554, bdg, bdh) new_esEs31(xwv400, xwv300, app(app(ty_@2, dc), dd)) -> new_esEs4(xwv400, xwv300, dc, dd) new_compare16(Integer(xwv4400), Integer(xwv4600)) -> new_primCmpInt(xwv4400, xwv4600) new_lt12(xwv440, xwv460) -> new_esEs9(new_compare19(xwv440, xwv460), LT) new_esEs32(xwv32, xwv34, ty_Int) -> new_esEs17(xwv32, xwv34) new_lt7(xwv440, xwv460) -> new_esEs9(new_compare13(xwv440, xwv460), LT) new_not(False) -> True new_esEs6(Just(xwv4000), Just(xwv3000), ty_Float) -> new_esEs13(xwv4000, xwv3000) new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_Int) -> new_esEs17(xwv4000, xwv3000) new_esEs5(Left(xwv4000), Left(xwv3000), ty_Double, db) -> new_esEs16(xwv4000, xwv3000) new_compare11(xwv440, xwv460, bag, bah) -> new_compare27(xwv440, xwv460, new_esEs5(xwv440, xwv460, bag, bah), bag, bah) new_compare1([], :(xwv4600, xwv4601), bc) -> LT new_esEs20(xwv4001, xwv3001, app(app(app(ty_@3, dec), ded), dee)) -> new_esEs7(xwv4001, xwv3001, dec, ded, dee) new_esEs20(xwv4001, xwv3001, ty_Bool) -> new_esEs8(xwv4001, xwv3001) new_esEs9(GT, GT) -> True new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, app(ty_[], bgf)) -> new_ltEs6(xwv4410, xwv4610, bgf) new_esEs22(xwv4410, xwv4610, ty_Int) -> new_esEs17(xwv4410, xwv4610) new_esEs5(Left(xwv4000), Right(xwv3000), da, db) -> False new_esEs5(Right(xwv4000), Left(xwv3000), da, db) -> False new_esEs32(xwv32, xwv34, ty_Ordering) -> new_esEs9(xwv32, xwv34) new_compare12(Float(xwv4400, Neg(xwv44010)), Float(xwv4600, Neg(xwv46010))) -> new_compare13(new_sr(xwv4400, Neg(xwv46010)), new_sr(Neg(xwv44010), xwv4600)) new_esEs31(xwv400, xwv300, ty_Integer) -> new_esEs10(xwv400, xwv300) new_compare25(xwv440, xwv460, True) -> EQ new_compare27(xwv440, xwv460, True, bag, bah) -> EQ new_lt19(xwv440, xwv460, ty_@0) -> new_lt16(xwv440, xwv460) new_ltEs4(GT, LT) -> False new_esEs24(xwv4001, xwv3001, ty_Double) -> new_esEs16(xwv4001, xwv3001) new_esEs9(EQ, GT) -> False new_esEs9(GT, EQ) -> False new_primPlusNat0(Succ(xwv1010), xwv300000) -> Succ(Succ(new_primPlusNat1(xwv1010, xwv300000))) new_ltEs20(xwv4412, xwv4612, app(ty_[], cff)) -> new_ltEs6(xwv4412, xwv4612, cff) new_esEs29(xwv4410, xwv4610, app(ty_Maybe, ccf)) -> new_esEs6(xwv4410, xwv4610, ccf) new_esEs8(True, True) -> True new_ltEs13(Right(xwv4410), Right(xwv4610), bfd, ty_Char) -> new_ltEs9(xwv4410, xwv4610) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Int, bea) -> new_ltEs15(xwv4410, xwv4610) new_esEs19(xwv4002, xwv3002, ty_Bool) -> new_esEs8(xwv4002, xwv3002) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_lt20(xwv4410, xwv4610, ty_Double) -> new_lt17(xwv4410, xwv4610) new_primPlusNat1(Zero, Zero) -> Zero new_esEs20(xwv4001, xwv3001, ty_Integer) -> new_esEs10(xwv4001, xwv3001) new_mkBalBranch(xwv200, xwv201, xwv240, xwv204, ee, ef, eg) -> new_mkBalBranch6MkBalBranch5(xwv200, xwv201, xwv240, xwv204, new_lt7(new_primPlusInt2(new_mkBalBranch6Size_l(xwv200, xwv201, xwv240, xwv204, ee, ef, eg), xwv200, xwv201, xwv240, xwv204, ee, ef, eg), Pos(Succ(Succ(Zero)))), ee, ef, eg) new_esEs12(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_esEs21(xwv4000, xwv3000, ty_Char) -> new_esEs15(xwv4000, xwv3000) new_ltEs18(xwv4411, xwv4611, ty_Float) -> new_ltEs14(xwv4411, xwv4611) new_ltEs13(Left(xwv4410), Left(xwv4610), app(app(app(ty_@3, beh), bfa), bfb), bea) -> new_ltEs16(xwv4410, xwv4610, beh, bfa, bfb) new_esEs31(xwv400, xwv300, app(ty_[], df)) -> new_esEs11(xwv400, xwv300, df) new_ltEs9(xwv441, xwv461) -> new_fsEs(new_compare7(xwv441, xwv461)) new_esEs28(xwv4411, xwv4611, ty_Ordering) -> new_esEs9(xwv4411, xwv4611) new_esEs19(xwv4002, xwv3002, app(ty_[], dch)) -> new_esEs11(xwv4002, xwv3002, dch) new_esEs25(xwv4000, xwv3000, ty_@0) -> new_esEs18(xwv4000, xwv3000) new_esEs29(xwv4410, xwv4610, app(ty_[], cdb)) -> new_esEs11(xwv4410, xwv4610, cdb) new_esEs28(xwv4411, xwv4611, app(ty_Maybe, cdh)) -> new_esEs6(xwv4411, xwv4611, cdh) new_mkBalBranch6Size_l(xwv200, xwv201, xwv240, xwv204, ee, ef, eg) -> new_sizeFM0(xwv240, ee, ef, eg) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_ltEs8(Just(xwv4410), Just(xwv4610), ty_Integer) -> new_ltEs17(xwv4410, xwv4610) new_lt19(xwv440, xwv460, app(app(app(ty_@3, bab), bac), bad)) -> new_lt5(xwv440, xwv460, bab, bac, bad) new_lt20(xwv4410, xwv4610, app(ty_[], cdb)) -> new_lt18(xwv4410, xwv4610, cdb) new_primMulNat0(Succ(xwv400100), Succ(xwv300000)) -> new_primPlusNat0(new_primMulNat0(xwv400100, Succ(xwv300000)), xwv300000) new_esEs28(xwv4411, xwv4611, app(app(ty_@2, cdc), cdd)) -> new_esEs4(xwv4411, xwv4611, cdc, cdd) new_compare17(@0, @0) -> EQ new_delFromFM10(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, ee, ef, eg) -> new_delFromFM00(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, new_esEs4(@2(xwv15, xwv16), @2(xwv21, xwv22), ee, ef), ee, ef, eg) new_compare7(Char(xwv4400), Char(xwv4600)) -> new_primCmpNat0(xwv4400, xwv4600) new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_Bool) -> new_esEs8(xwv4000, xwv3000) new_ltEs13(Left(xwv4410), Left(xwv4610), ty_Ordering, bea) -> new_ltEs4(xwv4410, xwv4610) new_sizeFM0(Branch(xwv360, xwv361, xwv362, xwv363, xwv364), ee, ef, eg) -> xwv362 new_mkBalBranch6MkBalBranch4(xwv200, xwv201, xwv240, EmptyFM, True, ee, ef, eg) -> error([]) new_primCmpNat0(Succ(xwv44000), Succ(xwv46000)) -> new_primCmpNat0(xwv44000, xwv46000) new_lt8(xwv440, xwv460) -> new_esEs9(new_compare7(xwv440, xwv460), LT) new_glueBal2Mid_elt200(xwv278, xwv279, xwv280, xwv281, xwv282, xwv283, xwv284, xwv285, xwv286, xwv287, xwv288, xwv289, xwv290, Branch(xwv2910, xwv2911, xwv2912, xwv2913, xwv2914), xwv292, cfg, cfh) -> new_glueBal2Mid_elt200(xwv278, xwv279, xwv280, xwv281, xwv282, xwv283, xwv284, xwv285, xwv286, xwv287, xwv2910, xwv2911, xwv2912, xwv2913, xwv2914, cfg, cfh) new_lt20(xwv4410, xwv4610, ty_@0) -> new_lt16(xwv4410, xwv4610) new_mkBalBranch6MkBalBranch3(xwv200, xwv201, EmptyFM, xwv204, True, ee, ef, eg) -> error([]) new_ltEs8(Nothing, Nothing, fb) -> True new_glueBal2Mid_elt100(xwv341, xwv342, xwv343, xwv344, xwv345, xwv346, xwv347, xwv348, xwv349, xwv350, xwv351, xwv352, xwv353, xwv354, EmptyFM, bdg, bdh) -> xwv352 new_mkBalBranch6MkBalBranch4(xwv200, xwv201, xwv240, xwv204, False, ee, ef, eg) -> new_mkBalBranch6MkBalBranch3(xwv200, xwv201, xwv240, xwv204, new_gt(new_mkBalBranch6Size_l(xwv200, xwv201, xwv240, xwv204, ee, ef, eg), new_sr(new_sIZE_RATIO, new_mkBalBranch6Size_r(xwv200, xwv201, xwv240, xwv204, ee, ef, eg))), ee, ef, eg) new_ltEs8(Just(xwv4410), Nothing, fb) -> False new_compare14(xwv440, xwv460, ed) -> new_compare23(xwv440, xwv460, new_esEs6(xwv440, xwv460, ed), ed) new_delFromFM20(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, True, ee, ef, eg) -> new_mkBalBranch(@2(xwv15, xwv16), xwv17, xwv19, new_delFromFM0(xwv20, @2(xwv21, xwv22), ee, ef, eg), ee, ef, eg) new_lt20(xwv4410, xwv4610, app(app(ty_@2, cca), ccb)) -> new_lt14(xwv4410, xwv4610, cca, ccb) new_ltEs20(xwv4412, xwv4612, ty_Ordering) -> new_ltEs4(xwv4412, xwv4612) new_compare6(xwv4400, xwv4600, ty_Ordering) -> new_compare19(xwv4400, xwv4600) new_primMinusNat0(Zero, Succ(xwv24500)) -> Neg(Succ(xwv24500)) new_ltEs8(Just(xwv4410), Just(xwv4610), app(ty_Ratio, ff)) -> new_ltEs11(xwv4410, xwv4610, ff) new_delFromFM00(xwv15, xwv16, xwv17, xwv18, xwv19, xwv20, xwv21, xwv22, False, ee, ef, eg) -> error([]) new_esEs29(xwv4410, xwv4610, ty_Integer) -> new_esEs10(xwv4410, xwv4610) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_esEs29(xwv4410, xwv4610, app(app(ty_@2, cca), ccb)) -> new_esEs4(xwv4410, xwv4610, cca, ccb) new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_Ordering) -> new_esEs9(xwv4000, xwv3000) new_lt21(xwv4411, xwv4611, ty_@0) -> new_lt16(xwv4411, xwv4611) new_ltEs19(xwv441, xwv461, ty_Ordering) -> new_ltEs4(xwv441, xwv461) new_esEs28(xwv4411, xwv4611, app(app(ty_Either, cdf), cdg)) -> new_esEs5(xwv4411, xwv4611, cdf, cdg) new_primEqNat0(Zero, Zero) -> True new_glueBal2Mid_key200(xwv262, xwv263, xwv264, xwv265, xwv266, xwv267, xwv268, xwv269, xwv270, xwv271, xwv272, xwv273, xwv274, EmptyFM, xwv276, eh, fa) -> xwv272 new_esEs6(Just(xwv4000), Just(xwv3000), ty_Char) -> new_esEs15(xwv4000, xwv3000) new_esEs15(Char(xwv4000), Char(xwv3000)) -> new_primEqNat0(xwv4000, xwv3000) new_primPlusInt2(Neg(xwv2440), xwv200, xwv201, xwv240, xwv204, ee, ef, eg) -> new_primPlusInt1(xwv2440, new_sizeFM0(xwv204, ee, ef, eg)) new_lt21(xwv4411, xwv4611, ty_Double) -> new_lt17(xwv4411, xwv4611) new_esEs11([], [], df) -> True new_primCmpInt(Neg(Succ(xwv4400)), Neg(Succ(xwv4600))) -> new_primCmpNat0(xwv4600, xwv4400) new_ltEs8(Just(xwv4410), Just(xwv4610), app(app(app(ty_@3, gb), gc), gd)) -> new_ltEs16(xwv4410, xwv4610, gb, gc, gd) new_ltEs4(GT, GT) -> True new_esEs9(LT, GT) -> False new_esEs9(GT, LT) -> False new_esEs5(Right(xwv4000), Right(xwv3000), da, ty_Integer) -> new_esEs10(xwv4000, xwv3000) new_compare12(Float(xwv4400, Pos(xwv44010)), Float(xwv4600, Pos(xwv46010))) -> new_compare13(new_sr(xwv4400, Pos(xwv46010)), new_sr(Pos(xwv44010), xwv4600)) new_asAs(False, xwv62) -> False new_ltEs17(xwv441, xwv461) -> new_fsEs(new_compare16(xwv441, xwv461)) new_esEs19(xwv4002, xwv3002, ty_Int) -> new_esEs17(xwv4002, xwv3002) new_compare6(xwv4400, xwv4600, ty_Char) -> new_compare7(xwv4400, xwv4600) new_esEs29(xwv4410, xwv4610, ty_Ordering) -> new_esEs9(xwv4410, xwv4610) new_lt21(xwv4411, xwv4611, ty_Integer) -> new_lt6(xwv4411, xwv4611) new_lt19(xwv440, xwv460, app(ty_[], bc)) -> new_lt18(xwv440, xwv460, bc) new_mkBalBranch6MkBalBranch5(xwv200, xwv201, xwv240, xwv204, True, ee, ef, eg) -> new_mkBranch(Zero, xwv200, xwv201, xwv240, xwv204, app(app(ty_@2, ee), ef), eg) new_compare28(xwv44, xwv46, True, dfh, dga) -> EQ new_esEs25(xwv4000, xwv3000, ty_Float) -> new_esEs13(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Integer) -> new_compare16(xwv4400, xwv4600) new_mkBalBranch6MkBalBranch01(xwv200, xwv201, xwv240, xwv2040, xwv2041, xwv2042, Branch(xwv20430, xwv20431, xwv20432, xwv20433, xwv20434), xwv2044, False, ee, ef, eg) -> new_mkBranch(Succ(Succ(Succ(Succ(Zero)))), xwv20430, xwv20431, new_mkBranch(Succ(Succ(Succ(Succ(Succ(Zero))))), xwv200, xwv201, xwv240, xwv20433, app(app(ty_@2, ee), ef), eg), new_mkBranch(Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))), xwv2040, xwv2041, xwv20434, xwv2044, app(app(ty_@2, ee), ef), eg), app(app(ty_@2, ee), ef), eg) new_lt20(xwv4410, xwv4610, app(app(app(ty_@3, ccg), cch), cda)) -> new_lt5(xwv4410, xwv4610, ccg, cch, cda) new_esEs29(xwv4410, xwv4610, ty_Bool) -> new_esEs8(xwv4410, xwv4610) new_lt13(xwv4410, xwv4610, app(ty_Ratio, bbe)) -> new_lt4(xwv4410, xwv4610, bbe) new_esEs25(xwv4000, xwv3000, ty_Double) -> new_esEs16(xwv4000, xwv3000) new_compare6(xwv4400, xwv4600, ty_Float) -> new_compare12(xwv4400, xwv4600) new_lt19(xwv440, xwv460, app(app(ty_@2, cbc), cbd)) -> new_lt14(xwv440, xwv460, cbc, cbd) new_esEs20(xwv4001, xwv3001, ty_Int) -> new_esEs17(xwv4001, xwv3001) new_primPlusInt1(xwv2440, Pos(xwv2460)) -> new_primMinusNat0(xwv2460, xwv2440) new_ltEs11(xwv441, xwv461, cbe) -> new_fsEs(new_compare9(xwv441, xwv461, cbe)) new_esEs5(Left(xwv4000), Left(xwv3000), app(app(app(ty_@3, dae), daf), dag), db) -> new_esEs7(xwv4000, xwv3000, dae, daf, dag) new_esEs5(Left(xwv4000), Left(xwv3000), app(ty_[], dad), db) -> new_esEs11(xwv4000, xwv3000, dad) The set Q consists of the following terms: new_glueBal2GlueBal1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, False, x10, x11, x12) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_ltEs8(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs32(x0, x1, ty_Char) new_esEs22(x0, x1, ty_Integer) new_primCompAux00(x0, LT) new_primCmpInt(Pos(Succ(x0)), Pos(Zero)) new_compare25(x0, x1, True) new_esEs23(x0, x1, app(ty_[], x2)) new_primCmpInt(Neg(Succ(x0)), Neg(Zero)) new_esEs5(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs12(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs24(x0, x1, ty_Int) new_ltEs13(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs20(x0, x1, ty_Int) new_lt13(x0, x1, ty_Int) new_mkBalBranch6MkBalBranch3(x0, x1, EmptyFM, x2, True, x3, x4, x5) new_ltEs13(Left(x0), Left(x1), ty_Double, x2) new_lt13(x0, x1, ty_Ordering) new_esEs32(x0, x1, ty_Int) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs4(LT, LT) new_lt21(x0, x1, app(ty_Maybe, x2)) new_primPlusNat1(Zero, Zero) new_ltEs20(x0, x1, ty_Ordering) new_sr0(Integer(x0), Integer(x1)) new_ltEs10(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs31(x0, x1, app(app(ty_@2, x2), x3)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_compare6(x0, x1, ty_@0) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs6(Just(x0), Just(x1), ty_Int) new_esEs24(x0, x1, ty_Double) new_ltEs13(Left(x0), Left(x1), ty_Int, x2) new_compare6(x0, x1, ty_Bool) new_sr(x0, x1) new_gt(x0, x1) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs26(x0, x1, ty_Int) new_compare115(x0, x1, x2, x3, False, x4, x5, x6) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs31(x0, x1, ty_Float) new_deleteMax0(x0, x1, x2, x3, Branch(x4, x5, x6, x7, x8), x9, x10, x11) new_esEs28(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, ty_Double) new_esEs24(x0, x1, ty_Char) new_lt21(x0, x1, app(ty_Ratio, x2)) new_ltEs8(Just(x0), Just(x1), ty_Integer) new_primEqInt(Pos(Zero), Pos(Zero)) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_primMinusNat0(Zero, Zero) new_compare1([], [], x0) new_ltEs8(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_ltEs7(x0, x1) new_compare6(x0, x1, app(ty_Ratio, x2)) new_ltEs19(x0, x1, ty_Float) new_esEs12(x0, x1, ty_Bool) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare1(:(x0, x1), [], x2) new_lt14(x0, x1, x2, x3) new_esEs25(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Bool) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs8(Just(x0), Just(x1), ty_@0) new_mkBalBranch6MkBalBranch4(x0, x1, x2, x3, False, x4, x5, x6) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs31(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(ty_[], x2)) new_ltEs18(x0, x1, ty_Bool) new_esEs5(Right(x0), Right(x1), x2, ty_Bool) new_esEs21(x0, x1, ty_Ordering) new_esEs5(Left(x0), Left(x1), ty_Double, x2) new_delFromFM0(EmptyFM, x0, x1, x2, x3) new_compare17(@0, @0) new_esEs32(x0, x1, app(ty_[], x2)) new_compare1(:(x0, x1), :(x2, x3), x4) new_mkBalBranch6MkBalBranch01(x0, x1, x2, x3, x4, x5, EmptyFM, x6, False, x7, x8, x9) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primEqInt(Neg(Zero), Neg(Zero)) new_esEs32(x0, x1, ty_Double) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_lt13(x0, x1, ty_Char) new_esEs21(x0, x1, ty_Int) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_esEs10(Integer(x0), Integer(x1)) new_sIZE_RATIO new_lt19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs32(x0, x1, ty_@0) new_esEs31(x0, x1, app(app(ty_Either, x2), x3)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_esEs9(LT, LT) new_lt19(x0, x1, app(app(ty_Either, x2), x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs5(Left(x0), Left(x1), ty_Int, x2) new_esEs20(x0, x1, ty_@0) new_lt13(x0, x1, app(ty_[], x2)) new_compare6(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Int) new_esEs9(EQ, GT) new_esEs9(GT, EQ) new_esEs22(x0, x1, ty_@0) new_mkBalBranch6MkBalBranch11(x0, x1, x2, x3, x4, x5, x6, x7, True, x8, x9, x10) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs8(False, True) new_esEs8(True, False) new_lt19(x0, x1, ty_Double) new_esEs12(x0, x1, ty_@0) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_ltEs18(x0, x1, ty_Char) new_deleteMax0(x0, x1, x2, x3, EmptyFM, x4, x5, x6) new_esEs8(True, True) new_esEs32(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_compare112(x0, x1, False) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Bool) new_ltEs20(x0, x1, ty_@0) new_esEs19(x0, x1, app(ty_[], x2)) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_delFromFM00(x0, x1, x2, x3, x4, x5, x6, x7, False, x8, x9, x10) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6, x7) new_ltEs11(x0, x1, x2) new_mkBalBranch(x0, x1, x2, x3, x4, x5, x6) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs22(x0, x1, ty_Float) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_pePe(False, x0) new_esEs5(Right(x0), Right(x1), x2, ty_Integer) new_compare10(x0, x1) new_ltEs4(GT, EQ) new_esEs12(x0, x1, ty_Float) new_ltEs4(EQ, GT) new_esEs19(x0, x1, ty_Ordering) new_compare9(:%(x0, x1), :%(x2, x3), ty_Int) new_esEs5(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primPlusInt2(Pos(x0), x1, x2, x3, x4, x5, x6, x7) new_compare28(@2(x0, x1), @2(x2, x3), False, x4, x5) new_esEs28(x0, x1, ty_Double) new_esEs20(x0, x1, ty_Double) new_compare6(x0, x1, ty_Double) new_esEs24(x0, x1, ty_Ordering) new_ltEs13(Right(x0), Right(x1), x2, ty_Float) new_esEs20(x0, x1, ty_Int) new_esEs20(x0, x1, ty_Char) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs20(x0, x1, ty_Double) new_esEs5(Left(x0), Left(x1), app(ty_[], x2), x3) new_compare6(x0, x1, ty_Char) new_mkBalBranch6MkBalBranch11(x0, x1, x2, x3, x4, x5, EmptyFM, x6, False, x7, x8, x9) new_ltEs5(x0, x1) new_ltEs20(x0, x1, ty_Char) new_glueBal2Mid_elt200(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, EmptyFM, x13, x14, x15) new_glueBal2Mid_key200(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, Branch(x13, x14, x15, x16, x17), x18, x19, x20) new_ltEs19(x0, x1, ty_Integer) new_ltEs13(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs29(x0, x1, ty_Double) new_compare28(x0, x1, True, x2, x3) new_ltEs8(Just(x0), Just(x1), ty_Ordering) new_esEs14(:%(x0, x1), :%(x2, x3), x4) new_esEs22(x0, x1, ty_Int) new_ltEs8(Just(x0), Just(x1), ty_Float) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs12(x0, x1, app(app(ty_Either, x2), x3)) new_mkBranch(x0, x1, x2, x3, x4, x5, x6) new_esEs32(x0, x1, ty_Integer) new_ltEs8(Just(x0), Nothing, x1) new_esEs21(x0, x1, ty_@0) new_esEs12(x0, x1, ty_Int) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_ltEs13(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs28(x0, x1, ty_Int) new_lt4(x0, x1, x2) new_deleteMin0(x0, x1, x2, Branch(x3, x4, x5, x6, x7), x8, x9, x10, x11) new_glueBal2GlueBal1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, True, x10, x11, x12) new_esEs28(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, ty_Bool) new_mkBalBranch6MkBalBranch11(x0, x1, x2, x3, x4, x5, Branch(x6, x7, x8, x9, x10), x11, False, x12, x13, x14) new_esEs29(x0, x1, ty_Ordering) new_ltEs4(EQ, LT) new_ltEs4(LT, EQ) new_esEs5(Right(x0), Right(x1), x2, ty_Float) new_compare6(x0, x1, ty_Float) new_compare115(x0, x1, x2, x3, True, x4, x5, x6) new_ltEs13(Left(x0), Right(x1), x2, x3) new_ltEs13(Right(x0), Left(x1), x2, x3) new_lt13(x0, x1, ty_Bool) new_ltEs13(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt20(x0, x1, ty_Float) new_ltEs4(GT, GT) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, ty_Double) new_compare26(x0, x1, False) new_esEs31(x0, x1, app(ty_[], x2)) new_lt12(x0, x1) new_ltEs8(Nothing, Nothing, x0) new_esEs16(Double(x0, x1), Double(x2, x3)) new_ltEs8(Just(x0), Just(x1), ty_Int) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs6(x0, x1, x2) new_glueBal2Mid_key100(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, Branch(x14, x15, x16, x17, x18), x19, x20) new_primCompAux00(x0, EQ) new_esEs5(Left(x0), Left(x1), ty_Bool, x2) new_lt11(x0, x1, x2, x3) new_ltEs20(x0, x1, ty_Integer) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_compare18(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs28(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3, x4) new_esEs32(x0, x1, ty_Bool) new_esEs6(Just(x0), Just(x1), ty_@0) new_ltEs13(Right(x0), Right(x1), x2, ty_Bool) new_delFromFM20(x0, x1, x2, x3, x4, x5, x6, x7, True, x8, x9, x10) new_compare111(x0, x1, False) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs28(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt6(x0, x1) new_primMinusNat0(Succ(x0), Zero) new_ltEs8(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_lt5(x0, x1, x2, x3, x4) new_esEs30(x0, x1, x2, x3, True, x4, x5) new_esEs5(Left(x0), Left(x1), ty_Char, x2) new_esEs32(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs22(x0, x1, ty_Char) new_esEs11([], [], x0) new_esEs12(x0, x1, ty_Char) new_compare25(x0, x1, False) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat1(Zero, Succ(x0)) new_lt19(x0, x1, app(ty_[], x2)) new_compare6(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt19(x0, x1, ty_Ordering) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs25(x0, x1, ty_Int) new_compare27(x0, x1, True, x2, x3) new_esEs5(Left(x0), Left(x1), ty_Integer, x2) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_compare8(x0, x1, x2, x3) new_lt17(x0, x1) new_esEs25(x0, x1, app(ty_[], x2)) new_lt19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs17(x0, x1) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_primPlusNat0(Succ(x0), x1) new_primEqNat0(Succ(x0), Zero) new_esEs12(x0, x1, app(ty_Ratio, x2)) new_primMinusNat0(Succ(x0), Succ(x1)) new_compare14(x0, x1, x2) new_delFromFM10(x0, x1, x2, x3, x4, x5, x6, x7, False, x8, x9, x10) new_ltEs8(Just(x0), Just(x1), ty_Char) new_esEs5(Right(x0), Right(x1), x2, ty_Char) new_ltEs13(Right(x0), Right(x1), x2, ty_Ordering) new_esEs32(x0, x1, ty_Ordering) new_ltEs9(x0, x1) new_compare16(Integer(x0), Integer(x1)) new_delFromFM00(x0, x1, x2, x3, EmptyFM, x4, x5, x6, True, x7, x8, x9) new_esEs12(x0, x1, ty_Ordering) new_ltEs8(Nothing, Just(x0), x1) new_compare116(x0, x1, False, x2) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Bool) new_esEs5(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs7(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primPlusNat1(Succ(x0), Zero) new_lt21(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, ty_Ordering) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs13(Float(x0, x1), Float(x2, x3)) new_esEs24(x0, x1, ty_@0) new_mkBalBranch6MkBalBranch5(x0, x1, x2, x3, True, x4, x5, x6) new_lt13(x0, x1, ty_Float) new_compare112(x0, x1, True) new_esEs25(x0, x1, ty_Char) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt21(x0, x1, ty_Double) new_esEs19(x0, x1, ty_@0) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs13(Left(x0), Left(x1), ty_@0, x2) new_lt21(x0, x1, ty_@0) new_esEs5(Right(x0), Right(x1), x2, ty_Int) new_esEs17(x0, x1) new_sizeFM(EmptyFM, x0, x1) new_esEs12(x0, x1, app(ty_[], x2)) new_mkBalBranch6MkBalBranch01(x0, x1, x2, x3, x4, x5, x6, x7, True, x8, x9, x10) new_ltEs8(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, ty_Integer) new_esEs32(x0, x1, app(app(ty_@2, x2), x3)) new_mkBalBranch6MkBalBranch4(x0, x1, x2, Branch(x3, x4, x5, x6, x7), True, x8, x9, x10) new_primMulInt(Pos(x0), Pos(x1)) new_lt13(x0, x1, app(ty_Maybe, x2)) new_esEs5(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_ltEs8(Just(x0), Just(x1), ty_Bool) new_esEs31(x0, x1, ty_Int) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_compare15(x0, x1, x2, x3, x4) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs13(Right(x0), Right(x1), x2, ty_Char) new_lt20(x0, x1, ty_@0) new_compare26(x0, x1, True) new_compare24(x0, x1, True, x2, x3, x4) new_esEs9(EQ, EQ) new_esEs11(:(x0, x1), [], x2) new_ltEs19(x0, x1, ty_Int) new_mkBalBranch6MkBalBranch3(x0, x1, x2, x3, False, x4, x5, x6) new_lt19(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_@0) new_delFromFM20(x0, x1, x2, x3, x4, x5, x6, x7, False, x8, x9, x10) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs28(x0, x1, ty_Integer) new_esEs28(x0, x1, app(ty_[], x2)) new_lt20(x0, x1, ty_Bool) new_ltEs13(Right(x0), Right(x1), x2, ty_Int) new_primCmpInt(Neg(Succ(x0)), Neg(Succ(x1))) new_primMulNat0(Zero, Zero) new_lt21(x0, x1, ty_Integer) new_esEs28(x0, x1, app(app(ty_Either, x2), x3)) new_delFromFM00(x0, x1, x2, x3, Branch(x4, x5, x6, x7, x8), Branch(x9, x10, x11, x12, x13), x14, x15, True, x16, x17, x18) new_esEs11(:(x0, x1), :(x2, x3), x4) new_esEs12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(ty_[], x2)) new_mkBalBranch6MkBalBranch5(x0, x1, x2, x3, False, x4, x5, x6) new_esEs6(Nothing, Nothing, x0) new_lt21(x0, x1, ty_Bool) new_compare6(x0, x1, app(app(ty_@2, x2), x3)) new_compare12(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_esEs29(x0, x1, ty_Bool) new_compare12(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare12(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_glueBal2Mid_key100(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, EmptyFM, x14, x15) new_ltEs19(x0, x1, ty_Ordering) new_compare114(x0, x1, False, x2, x3) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs20(x0, x1, app(ty_[], x2)) new_ltEs13(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_primMinusNat0(Zero, Succ(x0)) new_esEs24(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs15(Char(x0), Char(x1)) new_primCmpNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, ty_Float) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_pePe(True, x0) new_esEs5(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_deleteMin0(x0, x1, x2, EmptyFM, x3, x4, x5, x6) new_delFromFM00(x0, x1, x2, x3, Branch(x4, x5, x6, x7, x8), EmptyFM, x9, x10, True, x11, x12, x13) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_esEs25(x0, x1, ty_Integer) new_ltEs13(Right(x0), Right(x1), x2, ty_Double) new_esEs6(Just(x0), Just(x1), ty_Float) new_primCompAux00(x0, GT) new_compare6(x0, x1, app(ty_[], x2)) new_asAs(True, x0) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs25(x0, x1, ty_Float) new_ltEs13(Right(x0), Right(x1), x2, app(ty_[], x3)) new_ltEs14(x0, x1) new_ltEs4(LT, GT) new_lt19(x0, x1, ty_@0) new_ltEs4(GT, LT) new_primEqNat0(Zero, Succ(x0)) new_ltEs13(Right(x0), Right(x1), x2, ty_@0) new_not(True) new_lt20(x0, x1, ty_Char) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs29(x0, x1, ty_Char) new_lt16(x0, x1) new_ltEs13(Left(x0), Left(x1), app(ty_[], x2), x3) new_ltEs12(True, True) new_esEs21(x0, x1, app(ty_[], x2)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Integer) new_esEs5(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_primPlusInt(Neg(x0), x1, x2, x3, x4, x5) new_compare116(x0, x1, True, x2) new_esEs19(x0, x1, ty_Integer) new_primPlusInt(Pos(x0), x1, x2, x3, x4, x5) new_esEs20(x0, x1, ty_Float) new_compare113(x0, x1, x2, x3, False, x4, x5) new_esEs28(x0, x1, ty_Bool) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_esEs28(x0, x1, ty_@0) new_compare7(Char(x0), Char(x1)) new_esEs23(x0, x1, ty_Bool) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs19(x0, x1, ty_@0) new_lt21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs12(False, True) new_ltEs12(True, False) new_primMulNat0(Zero, Succ(x0)) new_esEs5(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_ltEs13(Left(x0), Left(x1), ty_Integer, x2) new_esEs9(LT, EQ) new_esEs9(EQ, LT) new_delFromFM10(x0, x1, x2, x3, x4, x5, x6, x7, True, x8, x9, x10) new_primCompAux0(x0, x1, x2, x3) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs19(x0, x1, ty_Bool) new_esEs23(x0, x1, ty_@0) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_ltEs4(EQ, EQ) new_esEs5(Left(x0), Left(x1), ty_Float, x2) new_esEs31(x0, x1, ty_Char) new_esEs9(GT, GT) new_esEs31(x0, x1, ty_Double) new_compare111(x0, x1, True) new_esEs23(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Double) new_esEs31(x0, x1, ty_@0) new_compare19(x0, x1) new_lt20(x0, x1, ty_Int) new_compare23(x0, x1, True, x2) new_ltEs19(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Float) new_delFromFM0(Branch(@2(x0, x1), x2, x3, x4, x5), @2(x6, x7), x8, x9, x10) new_esEs27(x0, x1, ty_Integer) new_lt19(x0, x1, ty_Bool) new_lt10(x0, x1) new_esEs24(x0, x1, ty_Integer) new_esEs32(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Char) new_lt20(x0, x1, ty_Double) new_ltEs16(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_esEs5(Right(x0), Right(x1), x2, ty_Ordering) new_esEs30(x0, x1, x2, x3, False, x4, x5) new_esEs23(x0, x1, ty_Int) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs9(LT, GT) new_esEs9(GT, LT) new_primCmpInt(Pos(Succ(x0)), Pos(Succ(x1))) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare12(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs32(x0, x1, app(app(ty_Either, x2), x3)) new_esEs28(x0, x1, ty_Char) new_esEs5(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_glueBal2Mid_elt100(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, EmptyFM, x14, x15) new_lt19(x0, x1, ty_Char) new_esEs29(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Integer) new_compare6(x0, x1, app(app(ty_Either, x2), x3)) new_asAs(False, x0) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs21(x0, x1, ty_Bool) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_compare24(x0, x1, False, x2, x3, x4) new_ltEs8(Just(x0), Just(x1), ty_Double) new_lt9(x0, x1, x2) new_lt19(x0, x1, app(ty_Ratio, x2)) new_primMulNat0(Succ(x0), Zero) new_compare18(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_primPlusInt1(x0, Neg(x1)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt21(x0, x1, ty_Ordering) new_lt13(x0, x1, ty_Integer) new_glueBal2Mid_elt100(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, Branch(x14, x15, x16, x17, x18), x19, x20) new_compare18(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare18(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt21(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs8(Just(x0), Just(x1), app(ty_[], x2)) new_lt21(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs5(Right(x0), Right(x1), x2, ty_Double) new_esEs31(x0, x1, ty_Integer) new_sizeFM(Branch(x0, x1, x2, x3, x4), x5, x6) new_esEs11([], :(x0, x1), x2) new_lt7(x0, x1) new_compare1([], :(x0, x1), x2) new_esEs5(Left(x0), Left(x1), ty_@0, x2) new_primPlusInt2(Neg(x0), x1, x2, x3, x4, x5, x6, x7) new_compare11(x0, x1, x2, x3) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Integer) new_esEs31(x0, x1, ty_Bool) new_lt13(x0, x1, ty_@0) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs29(x0, x1, ty_Int) new_glueBal2Mid_elt200(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, Branch(x13, x14, x15, x16, x17), x18, x19, x20) new_mkBalBranch6Size_r(x0, x1, x2, x3, x4, x5, x6) new_esEs5(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_primPlusInt0(x0, Pos(x1)) new_mkBalBranch6MkBalBranch3(x0, x1, Branch(x2, x3, x4, x5, x6), x7, True, x8, x9, x10) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_esEs25(x0, x1, ty_@0) new_esEs31(x0, x1, app(ty_Maybe, x2)) new_ltEs8(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primPlusInt1(x0, Pos(x1)) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_lt19(x0, x1, ty_Int) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Bool) new_compare6(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(Zero, Succ(x0)) new_lt15(x0, x1) new_esEs12(x0, x1, app(ty_Maybe, x2)) new_fsEs(x0) new_ltEs13(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs13(Left(x0), Left(x1), ty_Bool, x2) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs22(x0, x1, ty_Double) new_esEs18(@0, @0) new_compare13(x0, x1) new_primPlusNat0(Zero, x0) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs6(Nothing, Just(x0), x1) new_lt21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs5(Right(x0), Right(x1), x2, app(ty_[], x3)) new_primPlusNat1(Succ(x0), Succ(x1)) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs12(x0, x1, ty_Double) new_compare27(x0, x1, False, x2, x3) new_esEs5(Left(x0), Right(x1), x2, x3) new_esEs5(Right(x0), Left(x1), x2, x3) new_primEqNat0(Zero, Zero) new_mkBalBranch6Size_l(x0, x1, x2, x3, x4, x5, x6) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_compare6(x0, x1, ty_Integer) new_ltEs15(x0, x1) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs19(x0, x1, ty_Int) new_not(False) new_compare113(x0, x1, x2, x3, True, x4, x5) new_ltEs18(x0, x1, ty_Integer) new_lt19(x0, x1, ty_Float) new_sizeFM0(EmptyFM, x0, x1, x2) new_esEs8(False, False) new_esEs28(x0, x1, app(ty_Ratio, x2)) new_compare23(x0, x1, False, x2) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs12(False, False) new_esEs6(Just(x0), Just(x1), ty_Char) new_ltEs13(Left(x0), Left(x1), ty_Char, x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs27(x0, x1, ty_Int) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_compare110(x0, x1, True, x2, x3, x4) new_mkBalBranch6MkBalBranch4(x0, x1, x2, EmptyFM, True, x3, x4, x5) new_lt20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Bool) new_lt18(x0, x1, x2) new_ltEs13(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs19(x0, x1, ty_Float) new_esEs28(x0, x1, ty_Ordering) new_primCmpNat0(Succ(x0), Zero) new_esEs23(x0, x1, ty_Integer) new_compare9(:%(x0, x1), :%(x2, x3), ty_Integer) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_lt8(x0, x1) new_lt21(x0, x1, ty_Char) new_mkBalBranch6MkBalBranch01(x0, x1, x2, x3, x4, x5, Branch(x6, x7, x8, x9, x10), x11, False, x12, x13, x14) new_esEs20(x0, x1, ty_Ordering) new_compare114(x0, x1, True, x2, x3) new_esEs19(x0, x1, ty_Char) new_compare6(x0, x1, ty_Ordering) new_esEs32(x0, x1, app(ty_Maybe, x2)) new_esEs4(@2(x0, x1), @2(x2, x3), x4, x5) new_glueBal2Mid_key200(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, EmptyFM, x13, x14, x15) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_lt20(x0, x1, ty_Ordering) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, ty_Ordering) new_esEs5(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs25(x0, x1, ty_Double) new_esEs31(x0, x1, ty_Ordering) new_lt13(x0, x1, app(ty_Ratio, x2)) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Float) new_esEs12(x0, x1, app(app(ty_@2, x2), x3)) new_esEs6(Just(x0), Nothing, x1) new_ltEs18(x0, x1, ty_Ordering) new_esEs22(x0, x1, app(ty_[], x2)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs13(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_lt21(x0, x1, ty_Int) new_primCmpNat0(Zero, Zero) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs6(Just(x0), Just(x1), ty_Bool) new_ltEs13(Left(x0), Left(x1), ty_Float, x2) new_lt19(x0, x1, app(ty_Maybe, x2)) new_esEs5(Right(x0), Right(x1), x2, ty_@0) new_primPlusInt0(x0, Neg(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldl(xwv3, :(xwv40, xwv41), h, ba, bb) -> new_foldl(new_delFromFM0(xwv3, xwv40, h, ba, bb), xwv41, h, ba, bb) The graph contains the following edges 2 > 2, 3 >= 3, 4 >= 4, 5 >= 5 ---------------------------------------- (48) YES ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt20(xwv278, xwv279, xwv280, xwv281, xwv282, xwv283, xwv284, xwv285, xwv286, xwv287, xwv288, xwv289, xwv290, Branch(xwv2910, xwv2911, xwv2912, xwv2913, xwv2914), xwv292, h, ba) -> new_glueBal2Mid_elt20(xwv278, xwv279, xwv280, xwv281, xwv282, xwv283, xwv284, xwv285, xwv286, xwv287, xwv2910, xwv2911, xwv2912, xwv2913, xwv2914, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt20(xwv278, xwv279, xwv280, xwv281, xwv282, xwv283, xwv284, xwv285, xwv286, xwv287, xwv288, xwv289, xwv290, Branch(xwv2910, xwv2911, xwv2912, xwv2913, xwv2914), xwv292, h, ba) -> new_glueBal2Mid_elt20(xwv278, xwv279, xwv280, xwv281, xwv282, xwv283, xwv284, xwv285, xwv286, xwv287, xwv2910, xwv2911, xwv2912, xwv2913, xwv2914, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 14 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (51) YES ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key20(xwv262, xwv263, xwv264, xwv265, xwv266, xwv267, xwv268, xwv269, xwv270, xwv271, xwv272, xwv273, xwv274, Branch(xwv2750, xwv2751, xwv2752, xwv2753, xwv2754), xwv276, h, ba) -> new_glueBal2Mid_key20(xwv262, xwv263, xwv264, xwv265, xwv266, xwv267, xwv268, xwv269, xwv270, xwv271, xwv2750, xwv2751, xwv2752, xwv2753, xwv2754, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key20(xwv262, xwv263, xwv264, xwv265, xwv266, xwv267, xwv268, xwv269, xwv270, xwv271, xwv272, xwv273, xwv274, Branch(xwv2750, xwv2751, xwv2752, xwv2753, xwv2754), xwv276, h, ba) -> new_glueBal2Mid_key20(xwv262, xwv263, xwv264, xwv265, xwv266, xwv267, xwv268, xwv269, xwv270, xwv271, xwv2750, xwv2751, xwv2752, xwv2753, xwv2754, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 14 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (54) YES ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: new_deleteMin(xwv200, xwv201, xwv202, Branch(xwv2030, xwv2031, xwv2032, xwv2033, xwv2034), xwv204, h, ba, bb) -> new_deleteMin(xwv2030, xwv2031, xwv2032, xwv2033, xwv2034, h, ba, bb) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_deleteMin(xwv200, xwv201, xwv202, Branch(xwv2030, xwv2031, xwv2032, xwv2033, xwv2034), xwv204, h, ba, bb) -> new_deleteMin(xwv2030, xwv2031, xwv2032, xwv2033, xwv2034, h, ba, bb) The graph contains the following edges 4 > 1, 4 > 2, 4 > 3, 4 > 4, 4 > 5, 6 >= 6, 7 >= 7, 8 >= 8 ---------------------------------------- (57) YES ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt10(xwv341, xwv342, xwv343, xwv344, xwv345, xwv346, xwv347, xwv348, xwv349, xwv350, xwv351, xwv352, xwv353, xwv354, Branch(xwv3550, xwv3551, xwv3552, xwv3553, xwv3554), h, ba) -> new_glueBal2Mid_elt10(xwv341, xwv342, xwv343, xwv344, xwv345, xwv346, xwv347, xwv348, xwv349, xwv350, xwv3550, xwv3551, xwv3552, xwv3553, xwv3554, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt10(xwv341, xwv342, xwv343, xwv344, xwv345, xwv346, xwv347, xwv348, xwv349, xwv350, xwv351, xwv352, xwv353, xwv354, Branch(xwv3550, xwv3551, xwv3552, xwv3553, xwv3554), h, ba) -> new_glueBal2Mid_elt10(xwv341, xwv342, xwv343, xwv344, xwv345, xwv346, xwv347, xwv348, xwv349, xwv350, xwv3550, xwv3551, xwv3552, xwv3553, xwv3554, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 15 > 11, 15 > 12, 15 > 13, 15 > 14, 15 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (60) YES ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: new_primEqNat(Succ(xwv40000), Succ(xwv30000)) -> new_primEqNat(xwv40000, xwv30000) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primEqNat(Succ(xwv40000), Succ(xwv30000)) -> new_primEqNat(xwv40000, xwv30000) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (63) YES