/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) CR [EQUIVALENT, 0 ms] (4) HASKELL (5) IFR [EQUIVALENT, 0 ms] (6) HASKELL (7) BR [EQUIVALENT, 0 ms] (8) HASKELL (9) COR [EQUIVALENT, 0 ms] (10) HASKELL (11) LetRed [EQUIVALENT, 0 ms] (12) HASKELL (13) NumRed [SOUND, 7 ms] (14) HASKELL (15) Narrow [SOUND, 0 ms] (16) AND (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPOrderProof [EQUIVALENT, 195 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) TRUE (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) QDPSizeChangeProof [EQUIVALENT, 0 ms] (30) YES (31) QDP (32) QDPSizeChangeProof [EQUIVALENT, 0 ms] (33) YES (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) AND (37) QDP (38) TransformationProof [EQUIVALENT, 1307 ms] (39) QDP (40) DependencyGraphProof [EQUIVALENT, 0 ms] (41) QDP (42) TransformationProof [EQUIVALENT, 0 ms] (43) QDP (44) TransformationProof [EQUIVALENT, 0 ms] (45) QDP (46) TransformationProof [EQUIVALENT, 0 ms] (47) QDP (48) QDPSizeChangeProof [EQUIVALENT, 0 ms] (49) YES (50) QDP (51) QDPSizeChangeProof [EQUIVALENT, 0 ms] (52) YES (53) QDP (54) QDPSizeChangeProof [EQUIVALENT, 0 ms] (55) YES (56) QDP (57) QDPSizeChangeProof [EQUIVALENT, 0 ms] (58) YES (59) QDP (60) QDPSizeChangeProof [EQUIVALENT, 0 ms] (61) YES (62) QDP (63) QDPSizeChangeProof [EQUIVALENT, 0 ms] (64) YES (65) QDP (66) QDPSizeChangeProof [EQUIVALENT, 0 ms] (67) YES (68) QDP (69) QDPSizeChangeProof [EQUIVALENT, 0 ms] (70) YES (71) QDP (72) QDPSizeChangeProof [EQUIVALENT, 0 ms] (73) YES (74) QDP (75) QDPSizeChangeProof [EQUIVALENT, 0 ms] (76) YES (77) QDP (78) QDPSizeChangeProof [EQUIVALENT, 0 ms] (79) YES (80) QDP (81) QDPSizeChangeProof [EQUIVALENT, 0 ms] (82) YES (83) QDP (84) QDPSizeChangeProof [EQUIVALENT, 0 ms] (85) YES (86) QDP (87) QDPSizeChangeProof [EQUIVALENT, 0 ms] (88) YES (89) QDP (90) QDPSizeChangeProof [EQUIVALENT, 0 ms] (91) YES (92) QDP (93) QDPSizeChangeProof [EQUIVALENT, 0 ms] (94) YES (95) QDP (96) QDPSizeChangeProof [EQUIVALENT, 0 ms] (97) YES (98) QDP (99) QDPSizeChangeProof [EQUIVALENT, 0 ms] (100) YES (101) QDP (102) QDPOrderProof [EQUIVALENT, 89 ms] (103) QDP (104) DependencyGraphProof [EQUIVALENT, 0 ms] (105) AND (106) QDP (107) QDPSizeChangeProof [EQUIVALENT, 0 ms] (108) YES (109) QDP (110) QDPSizeChangeProof [EQUIVALENT, 0 ms] (111) YES (112) QDP (113) QDPOrderProof [EQUIVALENT, 42 ms] (114) QDP (115) QDPSizeChangeProof [EQUIVALENT, 0 ms] (116) YES (117) QDP (118) QDPSizeChangeProof [EQUIVALENT, 0 ms] (119) YES (120) QDP (121) QDPSizeChangeProof [EQUIVALENT, 0 ms] (122) YES (123) QDP (124) QDPSizeChangeProof [EQUIVALENT, 0 ms] (125) YES (126) QDP (127) QDPSizeChangeProof [EQUIVALENT, 0 ms] (128) YES (129) QDP (130) QDPSizeChangeProof [EQUIVALENT, 0 ms] (131) YES (132) QDP (133) QDPSizeChangeProof [EQUIVALENT, 0 ms] (134) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C (\old new ->new) fm key elt; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; filterFM :: Ord b => (b -> a -> Bool) -> FiniteMap b a -> FiniteMap b a; filterFM p EmptyFM = emptyFM; filterFM p (Branch key elt _ fm_l fm_r) | p key elt = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) | otherwise = glueVBal (filterFM p fm_l) (filterFM p fm_r); findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM (\key elt rest ->(key,elt) : rest) [] fm; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = (\(_,mid_elt1) ->mid_elt1) vv2; mid_elt2 = (\(_,mid_elt2) ->mid_elt2) vv3; mid_key1 = (\(mid_key1,_) ->mid_key1) vv2; mid_key2 = (\(mid_key2,_) ->mid_key2) vv3; vv2 = findMax fm1; vv3 = findMin fm2; }; glueVBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueVBal EmptyFM fm2 = fm2; glueVBal fm1 EmptyFM = fm1; glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r) | otherwise = glueBal fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\oldnew->new" is transformed to "addToFM0 old new = new; " The following Lambda expression "\(_,mid_elt2)->mid_elt2" is transformed to "mid_elt20 (_,mid_elt2) = mid_elt2; " The following Lambda expression "\(mid_key2,_)->mid_key2" is transformed to "mid_key20 (mid_key2,_) = mid_key2; " The following Lambda expression "\(mid_key1,_)->mid_key1" is transformed to "mid_key10 (mid_key1,_) = mid_key1; " The following Lambda expression "\(_,mid_elt1)->mid_elt1" is transformed to "mid_elt10 (_,mid_elt1) = mid_elt1; " The following Lambda expression "\keyeltrest->(key,elt) : rest" is transformed to "fmToList0 key elt rest = (key,elt) : rest; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; deleteMax :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; filterFM :: Ord a => (a -> b -> Bool) -> FiniteMap a b -> FiniteMap a b; filterFM p EmptyFM = emptyFM; filterFM p (Branch key elt _ fm_l fm_r) | p key elt = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) | otherwise = glueVBal (filterFM p fm_l) (filterFM p fm_r); findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> c -> b -> b) -> b -> FiniteMap a c -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (_,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (_,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,_) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,_) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; glueVBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueVBal EmptyFM fm2 = fm2; glueVBal fm1 EmptyFM = fm1; glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r) | otherwise = glueBal fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) CR (EQUIVALENT) Case Reductions: The following Case expression "case compare x y of { EQ -> o; LT -> LT; GT -> GT} " is transformed to "primCompAux0 o EQ = o; primCompAux0 o LT = LT; primCompAux0 o GT = GT; " The following Case expression "case fm_r of { EmptyFM -> True; Branch right_key _ _ _ _ -> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key} " is transformed to "right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; " The following Case expression "case fm_l of { EmptyFM -> True; Branch left_key _ _ _ _ -> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key} " is transformed to "left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; " The following Case expression "case fm_R of { Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} " is transformed to "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " The following Case expression "case fm_L of { Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} " is transformed to "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; filterFM :: Ord a => (a -> b -> Bool) -> FiniteMap a b -> FiniteMap a b; filterFM p EmptyFM = emptyFM; filterFM p (Branch key elt _ fm_l fm_r) | p key elt = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) | otherwise = glueVBal (filterFM p fm_l) (filterFM p fm_r); findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> c -> a -> a) -> a -> FiniteMap b c -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (_,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (_,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,_) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,_) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; glueVBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueVBal EmptyFM fm2 = fm2; glueVBal fm1 EmptyFM = fm1; glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r) | otherwise = glueBal fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) IFR (EQUIVALENT) If Reductions: The following If expression "if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero" is transformed to "primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y)); primDivNatS0 x y False = Zero; " The following If expression "if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x" is transformed to "primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y); primModNatS0 x y False = Succ x; " ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; deleteMax :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l; deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r; deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; filterFM :: Ord b => (b -> a -> Bool) -> FiniteMap b a -> FiniteMap b a; filterFM p EmptyFM = emptyFM; filterFM p (Branch key elt _ fm_l fm_r) | p key elt = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) | otherwise = glueVBal (filterFM p fm_l) (filterFM p fm_r); findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> b -> a -> a) -> a -> FiniteMap c b -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (_,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (_,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,_) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,_) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; glueVBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueVBal EmptyFM fm2 = fm2; glueVBal fm1 EmptyFM = fm1; glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r) | otherwise = glueBal fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. Binding Reductions: The bind variable of the following binding Pattern "fm_l@(Branch vuu vuv vuw vux vuy)" is replaced by the following term "Branch vuu vuv vuw vux vuy" The bind variable of the following binding Pattern "fm_r@(Branch vvu vvv vvw vvx vvy)" is replaced by the following term "Branch vvu vvv vvw vvx vvy" The bind variable of the following binding Pattern "fm_l@(Branch wvu wvv wvw wvx wvy)" is replaced by the following term "Branch wvu wvv wvw wvx wvy" The bind variable of the following binding Pattern "fm_r@(Branch wwu wwv www wwx wwy)" is replaced by the following term "Branch wwu wwv www wwx wwy" ---------------------------------------- (8) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt vvz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vwu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMin (Branch key elt wxy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt wxz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; filterFM :: Ord b => (b -> a -> Bool) -> FiniteMap b a -> FiniteMap b a; filterFM p EmptyFM = emptyFM; filterFM p (Branch key elt wyu fm_l fm_r) | p key elt = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) | otherwise = glueVBal (filterFM p fm_l) (filterFM p fm_r); findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt vxx vxy EmptyFM) = (key,elt); findMax (Branch key elt vxz vyu fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt wyv EmptyFM wyw) = (key,elt); findMin (Branch key elt wyx fm_l wyy) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> c -> a -> a) -> a -> FiniteMap b c -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wwz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2 | sizeFM fm2 > sizeFM fm1 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) | otherwise = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; mid_elt10 (wuw,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (wuv,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,wux) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,wuy) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; glueVBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueVBal EmptyFM fm2 = fm2; glueVBal fm1 EmptyFM = fm1; glueVBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) | sIZE_RATIO * size_l < size_r = mkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy | sIZE_RATIO * size_r < size_l = mkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy)) | otherwise = glueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) where { size_l = sizeFM (Branch wvu wvv wvw wvx wvy); size_r = sizeFM (Branch wwu wwv www wwx wwy); }; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vwv vww vwx vwy) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vwz vxu vxv vxw) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) | sIZE_RATIO * size_l < size_r = mkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy | sIZE_RATIO * size_r < size_l = mkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy)) | otherwise = mkBranch 13 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) where { size_l = sizeFM (Branch vuu vuv vuw vux vuy); size_r = sizeFM (Branch vvu vvv vvw vvx vvy); }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wxu wxv size wxw wxx) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (9) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "absReal x|x >= 0x|otherwise`negate` x; " is transformed to "absReal x = absReal2 x; " "absReal1 x True = x; absReal1 x False = absReal0 x otherwise; " "absReal0 x True = `negate` x; " "absReal2 x = absReal1 x (x >= 0); " The following Function with conditions "gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); " is transformed to "gcd' x wyz = gcd'2 x wyz; gcd' x y = gcd'0 x y; " "gcd'0 x y = gcd' y (x `rem` y); " "gcd'1 True x wyz = x; gcd'1 wzu wzv wzw = gcd'0 wzv wzw; " "gcd'2 x wyz = gcd'1 (wyz == 0) x wyz; gcd'2 wzx wzy = gcd'0 wzx wzy; " The following Function with conditions "gcd 0 0 = error []; gcd x y = gcd' (abs x) (abs y) where { gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); } ; " is transformed to "gcd wzz xuu = gcd3 wzz xuu; gcd x y = gcd0 x y; " "gcd0 x y = gcd' (abs x) (abs y) where { gcd' x wyz = gcd'2 x wyz; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x wyz = x; gcd'1 wzu wzv wzw = gcd'0 wzv wzw; ; gcd'2 x wyz = gcd'1 (wyz == 0) x wyz; gcd'2 wzx wzy = gcd'0 wzx wzy; } ; " "gcd1 True wzz xuu = error []; gcd1 xuv xuw xux = gcd0 xuw xux; " "gcd2 True wzz xuu = gcd1 (xuu == 0) wzz xuu; gcd2 xuy xuz xvu = gcd0 xuz xvu; " "gcd3 wzz xuu = gcd2 (wzz == 0) wzz xuu; gcd3 xvv xvw = gcd0 xvv xvw; " The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "reduce x y|y == 0error []|otherwisex `quot` d :% (y `quot` d) where { d = gcd x y; } ; " is transformed to "reduce x y = reduce2 x y; " "reduce2 x y = reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } ; " The following Function with conditions "compare x y|x == yEQ|x <= yLT|otherwiseGT; " is transformed to "compare x y = compare3 x y; " "compare0 x y True = GT; " "compare2 x y True = EQ; compare2 x y False = compare1 x y (x <= y); " "compare1 x y True = LT; compare1 x y False = compare0 x y otherwise; " "compare3 x y = compare2 x y (x == y); " The following Function with conditions "addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; " is transformed to "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; " "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); " "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; " "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; " "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); " "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 xvz xwu xwv xww = addToFM_C3 xvz xwu xwv xww; " The following Function with conditions "mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy)|sIZE_RATIO * size_l < size_rmkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy|sIZE_RATIO * size_r < size_lmkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy))|otherwisemkBranch 13 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) where { size_l = sizeFM (Branch vuu vuv vuw vux vuy); ; size_r = sizeFM (Branch vvu vvv vvw vvx vvy); } ; " is transformed to "mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); " "mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBranch 13 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); ; mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy)); mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch0 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy otherwise; ; mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy; mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch vuu vuv vuw vux vuy); ; size_r = sizeFM (Branch vvu vvv vvw vvx vvy); } ; " "mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xxu xxv xxw xxx = mkVBalBranch3 xxu xxv xxw xxx; " "mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xxz xyu xyv xyw = mkVBalBranch4 xxz xyu xyv xyw; " The following Function with conditions "mkBalBranch1 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " is transformed to "mkBalBranch1 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr); " "mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = double_R fm_L fm_R; " "mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr otherwise; " "mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " The following Function with conditions "mkBalBranch0 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " is transformed to "mkBalBranch0 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr); " "mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = double_L fm_L fm_R; " "mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr otherwise; " "mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " The following Function with conditions "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; ; mkBalBranch1 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; ; single_L fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " is transformed to "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; " "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " The following Function with conditions "glueBal EmptyFM fm2 = fm2; glueBal fm1 EmptyFM = fm1; glueBal fm1 fm2|sizeFM fm2 > sizeFM fm1mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2)|otherwisemkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 where { mid_elt1 = mid_elt10 vv2; ; mid_elt10 (wuw,mid_elt1) = mid_elt1; ; mid_elt2 = mid_elt20 vv3; ; mid_elt20 (wuv,mid_elt2) = mid_elt2; ; mid_key1 = mid_key10 vv2; ; mid_key10 (mid_key1,wux) = mid_key1; ; mid_key2 = mid_key20 vv3; ; mid_key20 (mid_key2,wuy) = mid_key2; ; vv2 = findMax fm1; ; vv3 = findMin fm2; } ; " is transformed to "glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; " "glueBal2 fm1 fm2 = glueBal1 fm1 fm2 (sizeFM fm2 > sizeFM fm1) where { glueBal0 fm1 fm2 True = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2; ; glueBal1 fm1 fm2 True = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2); glueBal1 fm1 fm2 False = glueBal0 fm1 fm2 otherwise; ; mid_elt1 = mid_elt10 vv2; ; mid_elt10 (wuw,mid_elt1) = mid_elt1; ; mid_elt2 = mid_elt20 vv3; ; mid_elt20 (wuv,mid_elt2) = mid_elt2; ; mid_key1 = mid_key10 vv2; ; mid_key10 (mid_key1,wux) = mid_key1; ; mid_key2 = mid_key20 vv3; ; mid_key20 (mid_key2,wuy) = mid_key2; ; vv2 = findMax fm1; ; vv3 = findMin fm2; } ; " "glueBal3 fm1 EmptyFM = fm1; glueBal3 xzu xzv = glueBal2 xzu xzv; " "glueBal4 EmptyFM fm2 = fm2; glueBal4 xzx xzy = glueBal3 xzx xzy; " The following Function with conditions "glueVBal EmptyFM fm2 = fm2; glueVBal fm1 EmptyFM = fm1; glueVBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy)|sIZE_RATIO * size_l < size_rmkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy|sIZE_RATIO * size_r < size_lmkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy))|otherwiseglueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) where { size_l = sizeFM (Branch wvu wvv wvw wvx wvy); ; size_r = sizeFM (Branch wwu wwv www wwx wwy); } ; " is transformed to "glueVBal EmptyFM fm2 = glueVBal5 EmptyFM fm2; glueVBal fm1 EmptyFM = glueVBal4 fm1 EmptyFM; glueVBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); " "glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * size_l < size_r) where { glueVBal0 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = glueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); ; glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy)); glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal0 wvu wvv wvw wvx wvy wwu wwv www wwx wwy otherwise; ; glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy; glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch wvu wvv wvw wvx wvy); ; size_r = sizeFM (Branch wwu wwv www wwx wwy); } ; " "glueVBal4 fm1 EmptyFM = fm1; glueVBal4 yuw yux = glueVBal3 yuw yux; " "glueVBal5 EmptyFM fm2 = fm2; glueVBal5 yuz yvu = glueVBal4 yuz yvu; " The following Function with conditions "filterFM p EmptyFM = emptyFM; filterFM p (Branch key elt wyu fm_l fm_r)|p key eltmkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r)|otherwiseglueVBal (filterFM p fm_l) (filterFM p fm_r); " is transformed to "filterFM p EmptyFM = filterFM3 p EmptyFM; filterFM p (Branch key elt wyu fm_l fm_r) = filterFM2 p (Branch key elt wyu fm_l fm_r); " "filterFM0 p key elt wyu fm_l fm_r True = glueVBal (filterFM p fm_l) (filterFM p fm_r); " "filterFM1 p key elt wyu fm_l fm_r True = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r); filterFM1 p key elt wyu fm_l fm_r False = filterFM0 p key elt wyu fm_l fm_r otherwise; " "filterFM2 p (Branch key elt wyu fm_l fm_r) = filterFM1 p key elt wyu fm_l fm_r (p key elt); " "filterFM3 p EmptyFM = emptyFM; filterFM3 yvx yvy = filterFM2 yvx yvy; " ---------------------------------------- (10) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 xvz xwu xwv xww = addToFM_C3 xvz xwu xwv xww; deleteMax :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMax (Branch key elt vvz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vwu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMin (Branch key elt wxy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt wxz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; filterFM :: Ord a => (a -> b -> Bool) -> FiniteMap a b -> FiniteMap a b; filterFM p EmptyFM = filterFM3 p EmptyFM; filterFM p (Branch key elt wyu fm_l fm_r) = filterFM2 p (Branch key elt wyu fm_l fm_r); filterFM0 p key elt wyu fm_l fm_r True = glueVBal (filterFM p fm_l) (filterFM p fm_r); filterFM1 p key elt wyu fm_l fm_r True = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r); filterFM1 p key elt wyu fm_l fm_r False = filterFM0 p key elt wyu fm_l fm_r otherwise; filterFM2 p (Branch key elt wyu fm_l fm_r) = filterFM1 p key elt wyu fm_l fm_r (p key elt); filterFM3 p EmptyFM = emptyFM; filterFM3 yvx yvy = filterFM2 yvx yvy; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt vxx vxy EmptyFM) = (key,elt); findMax (Branch key elt vxz vyu fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wyv EmptyFM wyw) = (key,elt); findMin (Branch key elt wyx fm_l wyy) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> a -> b -> b) -> b -> FiniteMap c a -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wwz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; glueBal2 fm1 fm2 = glueBal1 fm1 fm2 (sizeFM fm2 > sizeFM fm1) where { glueBal0 fm1 fm2 True = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2; glueBal1 fm1 fm2 True = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2); glueBal1 fm1 fm2 False = glueBal0 fm1 fm2 otherwise; mid_elt1 = mid_elt10 vv2; mid_elt10 (wuw,mid_elt1) = mid_elt1; mid_elt2 = mid_elt20 vv3; mid_elt20 (wuv,mid_elt2) = mid_elt2; mid_key1 = mid_key10 vv2; mid_key10 (mid_key1,wux) = mid_key1; mid_key2 = mid_key20 vv3; mid_key20 (mid_key2,wuy) = mid_key2; vv2 = findMax fm1; vv3 = findMin fm2; }; glueBal3 fm1 EmptyFM = fm1; glueBal3 xzu xzv = glueBal2 xzu xzv; glueBal4 EmptyFM fm2 = fm2; glueBal4 xzx xzy = glueBal3 xzx xzy; glueVBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueVBal EmptyFM fm2 = glueVBal5 EmptyFM fm2; glueVBal fm1 EmptyFM = glueVBal4 fm1 EmptyFM; glueVBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * size_l < size_r) where { glueVBal0 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = glueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy)); glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal0 wvu wvv wvw wvx wvy wwu wwv www wwx wwy otherwise; glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy; glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * size_r < size_l); size_l = sizeFM (Branch wvu wvv wvw wvx wvy); size_r = sizeFM (Branch wwu wwv www wwx wwy); }; glueVBal4 fm1 EmptyFM = fm1; glueVBal4 yuw yux = glueVBal3 yuw yux; glueVBal5 EmptyFM fm2 = fm2; glueVBal5 yuz yvu = glueVBal4 yuz yvu; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr); mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = double_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr otherwise; mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch1 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr); mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = double_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr otherwise; mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); single_L fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vwv vww vwx vwy) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vwz vxu vxv vxw) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBranch 13 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy)); mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch0 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy otherwise; mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy; mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * size_r < size_l); size_l = sizeFM (Branch vuu vuv vuw vux vuy); size_r = sizeFM (Branch vvu vvv vvw vvx vvy); }; mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xxu xxv xxw xxx = mkVBalBranch3 xxu xxv xxw xxx; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xxz xyu xyv xyw = mkVBalBranch4 xxz xyu xyv xyw; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wxu wxv size wxw wxx) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (11) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "gcd' (abs x) (abs y) where { gcd' x wyz = gcd'2 x wyz; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x wyz = x; gcd'1 wzu wzv wzw = gcd'0 wzv wzw; ; gcd'2 x wyz = gcd'1 (wyz == 0) x wyz; gcd'2 wzx wzy = gcd'0 wzx wzy; } " are unpacked to the following functions on top level "gcd0Gcd'0 x y = gcd0Gcd' y (x `rem` y); " "gcd0Gcd'2 x wyz = gcd0Gcd'1 (wyz == 0) x wyz; gcd0Gcd'2 wzx wzy = gcd0Gcd'0 wzx wzy; " "gcd0Gcd' x wyz = gcd0Gcd'2 x wyz; gcd0Gcd' x y = gcd0Gcd'0 x y; " "gcd0Gcd'1 True x wyz = x; gcd0Gcd'1 wzu wzv wzw = gcd0Gcd'0 wzv wzw; " The bindings of the following Let/Where expression "reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } " are unpacked to the following functions on top level "reduce2Reduce0 yvz ywu x y True = x `quot` reduce2D yvz ywu :% (y `quot` reduce2D yvz ywu); " "reduce2Reduce1 yvz ywu x y True = error []; reduce2Reduce1 yvz ywu x y False = reduce2Reduce0 yvz ywu x y otherwise; " "reduce2D yvz ywu = gcd yvz ywu; " The bindings of the following Let/Where expression "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzx vzy vzz fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzx vzy vzz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyy vyz vzu fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyy vyz vzu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } " are unpacked to the following functions on top level "mkBalBranch6MkBalBranch2 ywv yww ywx ywy key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; " "mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr True = mkBalBranch6Single_L ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr otherwise; " "mkBalBranch6MkBalBranch5 ywv yww ywx ywy key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R (mkBalBranch6Size_r ywv yww ywx ywy > sIZE_RATIO * mkBalBranch6Size_l ywv yww ywx ywy); " "mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 ywv yww ywx ywy fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R (mkBalBranch6Size_l ywv yww ywx ywy > sIZE_RATIO * mkBalBranch6Size_r ywv yww ywx ywy); " "mkBalBranch6Size_r ywv yww ywx ywy = sizeFM ywv; " "mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr True = mkBalBranch6Single_R ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr otherwise; " "mkBalBranch6MkBalBranch10 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr True = mkBalBranch6Double_R ywv yww ywx ywy fm_L fm_R; " "mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 ywv yww ywx ywy fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 ywv yww ywx ywy key elt fm_L fm_R otherwise; " "mkBalBranch6MkBalBranch00 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr True = mkBalBranch6Double_L ywv yww ywx ywy fm_L fm_R; " "mkBalBranch6Single_L ywv yww ywx ywy fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 yww ywx fm_l fm_rl) fm_rr; " "mkBalBranch6MkBalBranch12 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " "mkBalBranch6Size_l ywv yww ywx ywy = sizeFM ywy; " "mkBalBranch6Double_L ywv yww ywx ywy fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 yww ywx fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); " "mkBalBranch6Double_R ywv yww ywx ywy (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 yww ywx fm_lrr fm_r); " "mkBalBranch6Single_R ywv yww ywx ywy (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 yww ywx fm_lr fm_r); " "mkBalBranch6MkBalBranch02 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " "mkBalBranch6MkBalBranch1 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr); " "mkBalBranch6MkBalBranch0 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr); " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; ; left_ok = left_ok0 fm_l key fm_l; ; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vwv vww vwx vwy) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; ; left_size = sizeFM fm_l; ; right_ok = right_ok0 fm_r key fm_r; ; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vwz vxu vxv vxw) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; ; right_size = sizeFM fm_r; ; unbox x = x; } " are unpacked to the following functions on top level "mkBranchBalance_ok ywz yxu yxv = True; " "mkBranchRight_ok ywz yxu yxv = mkBranchRight_ok0 ywz yxu yxv ywz yxu ywz; " "mkBranchUnbox ywz yxu yxv x = x; " "mkBranchLeft_ok ywz yxu yxv = mkBranchLeft_ok0 ywz yxu yxv yxv yxu yxv; " "mkBranchLeft_size ywz yxu yxv = sizeFM yxv; " "mkBranchRight_size ywz yxu yxv = sizeFM ywz; " "mkBranchRight_ok0 ywz yxu yxv fm_r key EmptyFM = True; mkBranchRight_ok0 ywz yxu yxv fm_r key (Branch right_key vwz vxu vxv vxw) = key < mkBranchRight_ok0Smallest_right_key fm_r; " "mkBranchLeft_ok0 ywz yxu yxv fm_l key EmptyFM = True; mkBranchLeft_ok0 ywz yxu yxv fm_l key (Branch left_key vwv vww vwx vwy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result" are unpacked to the following functions on top level "mkBranchResult yxw yxx yxy yxz = Branch yxw yxx (mkBranchUnbox yxy yxw yxz (1 + mkBranchLeft_size yxy yxw yxz + mkBranchRight_size yxy yxw yxz)) yxz yxy; " The bindings of the following Let/Where expression "glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * size_l < size_r) where { glueVBal0 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = glueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); ; glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy)); glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal0 wvu wvv wvw wvx wvy wwu wwv www wwx wwy otherwise; ; glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy; glueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal1 wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch wvu wvv wvw wvx wvy); ; size_r = sizeFM (Branch wwu wwv www wwx wwy); } " are unpacked to the following functions on top level "glueVBal3GlueVBal0 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = glueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); " "glueVBal3Size_l yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx = sizeFM (Branch yyu yyv yyw yyx yyy); " "glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy)); glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal3GlueVBal0 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy otherwise; " "glueVBal3GlueVBal2 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy; glueVBal3GlueVBal2 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * glueVBal3Size_r yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx < glueVBal3Size_l yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx); " "glueVBal3Size_r yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx = sizeFM (Branch yyz yzu yzv yzw yzx); " The bindings of the following Let/Where expression "glueBal1 fm1 fm2 (sizeFM fm2 > sizeFM fm1) where { glueBal0 fm1 fm2 True = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2; ; glueBal1 fm1 fm2 True = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2); glueBal1 fm1 fm2 False = glueBal0 fm1 fm2 otherwise; ; mid_elt1 = mid_elt10 vv2; ; mid_elt10 (wuw,mid_elt1) = mid_elt1; ; mid_elt2 = mid_elt20 vv3; ; mid_elt20 (wuv,mid_elt2) = mid_elt2; ; mid_key1 = mid_key10 vv2; ; mid_key10 (mid_key1,wux) = mid_key1; ; mid_key2 = mid_key20 vv3; ; mid_key20 (mid_key2,wuy) = mid_key2; ; vv2 = findMax fm1; ; vv3 = findMin fm2; } " are unpacked to the following functions on top level "glueBal2Mid_elt10 yzy yzz (wuw,mid_elt1) = mid_elt1; " "glueBal2Mid_key2 yzy yzz = glueBal2Mid_key20 yzy yzz (glueBal2Vv3 yzy yzz); " "glueBal2Mid_elt1 yzy yzz = glueBal2Mid_elt10 yzy yzz (glueBal2Vv2 yzy yzz); " "glueBal2Vv3 yzy yzz = findMin yzy; " "glueBal2Mid_elt20 yzy yzz (wuv,mid_elt2) = mid_elt2; " "glueBal2Vv2 yzy yzz = findMax yzz; " "glueBal2GlueBal1 yzy yzz fm1 fm2 True = mkBalBranch (glueBal2Mid_key2 yzy yzz) (glueBal2Mid_elt2 yzy yzz) fm1 (deleteMin fm2); glueBal2GlueBal1 yzy yzz fm1 fm2 False = glueBal2GlueBal0 yzy yzz fm1 fm2 otherwise; " "glueBal2Mid_key10 yzy yzz (mid_key1,wux) = mid_key1; " "glueBal2Mid_elt2 yzy yzz = glueBal2Mid_elt20 yzy yzz (glueBal2Vv3 yzy yzz); " "glueBal2Mid_key20 yzy yzz (mid_key2,wuy) = mid_key2; " "glueBal2Mid_key1 yzy yzz = glueBal2Mid_key10 yzy yzz (glueBal2Vv2 yzy yzz); " "glueBal2GlueBal0 yzy yzz fm1 fm2 True = mkBalBranch (glueBal2Mid_key1 yzy yzz) (glueBal2Mid_elt1 yzy yzz) (deleteMax fm1) fm2; " The bindings of the following Let/Where expression "mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBranch 13 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); ; mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy)); mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch0 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy otherwise; ; mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy; mkVBalBranch2 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch1 key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch vuu vuv vuw vux vuy); ; size_r = sizeFM (Branch vvu vvv vvw vvx vvy); } " are unpacked to the following functions on top level "mkVBalBranch3MkVBalBranch0 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBranch 13 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); " "mkVBalBranch3MkVBalBranch2 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy; mkVBalBranch3MkVBalBranch2 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * mkVBalBranch3Size_r zuu zuv zuw zux zuy zuz zvu zvv zvw zvx < mkVBalBranch3Size_l zuu zuv zuw zux zuy zuz zvu zvv zvw zvx); " "mkVBalBranch3Size_r zuu zuv zuw zux zuy zuz zvu zvv zvw zvx = sizeFM (Branch zuu zuv zuw zux zuy); " "mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy)); mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch3MkVBalBranch0 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy otherwise; " "mkVBalBranch3Size_l zuu zuv zuw zux zuy zuz zvu zvv zvw zvx = sizeFM (Branch zuz zvu zvv zvw zvx); " The bindings of the following Let/Where expression "let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key" are unpacked to the following functions on top level "mkBranchRight_ok0Smallest_right_key zvy = fst (findMin zvy); " The bindings of the following Let/Where expression "let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key" are unpacked to the following functions on top level "mkBranchLeft_ok0Biggest_left_key zvz = fst (findMax zvz); " ---------------------------------------- (12) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 xvz xwu xwv xww = addToFM_C3 xvz xwu xwv xww; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt vvz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vwu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMin (Branch key elt wxy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt wxz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; filterFM :: Ord a => (a -> b -> Bool) -> FiniteMap a b -> FiniteMap a b; filterFM p EmptyFM = filterFM3 p EmptyFM; filterFM p (Branch key elt wyu fm_l fm_r) = filterFM2 p (Branch key elt wyu fm_l fm_r); filterFM0 p key elt wyu fm_l fm_r True = glueVBal (filterFM p fm_l) (filterFM p fm_r); filterFM1 p key elt wyu fm_l fm_r True = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r); filterFM1 p key elt wyu fm_l fm_r False = filterFM0 p key elt wyu fm_l fm_r otherwise; filterFM2 p (Branch key elt wyu fm_l fm_r) = filterFM1 p key elt wyu fm_l fm_r (p key elt); filterFM3 p EmptyFM = emptyFM; filterFM3 yvx yvy = filterFM2 yvx yvy; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt vxx vxy EmptyFM) = (key,elt); findMax (Branch key elt vxz vyu fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wyv EmptyFM wyw) = (key,elt); findMin (Branch key elt wyx fm_l wyy) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wwz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; glueBal2 fm1 fm2 = glueBal2GlueBal1 fm2 fm1 fm1 fm2 (sizeFM fm2 > sizeFM fm1); glueBal2GlueBal0 yzy yzz fm1 fm2 True = mkBalBranch (glueBal2Mid_key1 yzy yzz) (glueBal2Mid_elt1 yzy yzz) (deleteMax fm1) fm2; glueBal2GlueBal1 yzy yzz fm1 fm2 True = mkBalBranch (glueBal2Mid_key2 yzy yzz) (glueBal2Mid_elt2 yzy yzz) fm1 (deleteMin fm2); glueBal2GlueBal1 yzy yzz fm1 fm2 False = glueBal2GlueBal0 yzy yzz fm1 fm2 otherwise; glueBal2Mid_elt1 yzy yzz = glueBal2Mid_elt10 yzy yzz (glueBal2Vv2 yzy yzz); glueBal2Mid_elt10 yzy yzz (wuw,mid_elt1) = mid_elt1; glueBal2Mid_elt2 yzy yzz = glueBal2Mid_elt20 yzy yzz (glueBal2Vv3 yzy yzz); glueBal2Mid_elt20 yzy yzz (wuv,mid_elt2) = mid_elt2; glueBal2Mid_key1 yzy yzz = glueBal2Mid_key10 yzy yzz (glueBal2Vv2 yzy yzz); glueBal2Mid_key10 yzy yzz (mid_key1,wux) = mid_key1; glueBal2Mid_key2 yzy yzz = glueBal2Mid_key20 yzy yzz (glueBal2Vv3 yzy yzz); glueBal2Mid_key20 yzy yzz (mid_key2,wuy) = mid_key2; glueBal2Vv2 yzy yzz = findMax yzz; glueBal2Vv3 yzy yzz = findMin yzy; glueBal3 fm1 EmptyFM = fm1; glueBal3 xzu xzv = glueBal2 xzu xzv; glueBal4 EmptyFM fm2 = fm2; glueBal4 xzx xzy = glueBal3 xzx xzy; glueVBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueVBal EmptyFM fm2 = glueVBal5 EmptyFM fm2; glueVBal fm1 EmptyFM = glueVBal4 fm1 EmptyFM; glueVBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal3GlueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * glueVBal3Size_l wvu wvv wvw wvx wvy wwu wwv www wwx wwy < glueVBal3Size_r wvu wvv wvw wvx wvy wwu wwv www wwx wwy); glueVBal3GlueVBal0 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = glueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy)); glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal3GlueVBal0 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy otherwise; glueVBal3GlueVBal2 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy; glueVBal3GlueVBal2 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * glueVBal3Size_r yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx < glueVBal3Size_l yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx); glueVBal3Size_l yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx = sizeFM (Branch yyu yyv yyw yyx yyy); glueVBal3Size_r yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx = sizeFM (Branch yyz yzu yzv yzw yzx); glueVBal4 fm1 EmptyFM = fm1; glueVBal4 yuw yux = glueVBal3 yuw yux; glueVBal5 EmptyFM fm2 = fm2; glueVBal5 yuz yvu = glueVBal4 yuz yvu; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 fm_R key elt fm_L key elt fm_L fm_R (mkBalBranch6Size_l fm_R key elt fm_L + mkBalBranch6Size_r fm_R key elt fm_L < 2); mkBalBranch6Double_L ywv yww ywx ywy fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 yww ywx fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R ywv yww ywx ywy (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 yww ywx fm_lrr fm_r); mkBalBranch6MkBalBranch0 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr); mkBalBranch6MkBalBranch00 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr True = mkBalBranch6Double_L ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr True = mkBalBranch6Single_L ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch6MkBalBranch1 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr); mkBalBranch6MkBalBranch10 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr True = mkBalBranch6Double_R ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr True = mkBalBranch6Single_R ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch6MkBalBranch2 ywv yww ywx ywy key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 ywv yww ywx ywy fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 ywv yww ywx ywy key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 ywv yww ywx ywy fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R (mkBalBranch6Size_l ywv yww ywx ywy > sIZE_RATIO * mkBalBranch6Size_r ywv yww ywx ywy); mkBalBranch6MkBalBranch5 ywv yww ywx ywy key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R (mkBalBranch6Size_r ywv yww ywx ywy > sIZE_RATIO * mkBalBranch6Size_l ywv yww ywx ywy); mkBalBranch6Single_L ywv yww ywx ywy fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 yww ywx fm_l fm_rl) fm_rr; mkBalBranch6Single_R ywv yww ywx ywy (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 yww ywx fm_lr fm_r); mkBalBranch6Size_l ywv yww ywx ywy = sizeFM ywy; mkBalBranch6Size_r ywv yww ywx ywy = sizeFM ywv; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; mkBranchBalance_ok ywz yxu yxv = True; mkBranchLeft_ok ywz yxu yxv = mkBranchLeft_ok0 ywz yxu yxv yxv yxu yxv; mkBranchLeft_ok0 ywz yxu yxv fm_l key EmptyFM = True; mkBranchLeft_ok0 ywz yxu yxv fm_l key (Branch left_key vwv vww vwx vwy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key zvz = fst (findMax zvz); mkBranchLeft_size ywz yxu yxv = sizeFM yxv; mkBranchResult yxw yxx yxy yxz = Branch yxw yxx (mkBranchUnbox yxy yxw yxz (1 + mkBranchLeft_size yxy yxw yxz + mkBranchRight_size yxy yxw yxz)) yxz yxy; mkBranchRight_ok ywz yxu yxv = mkBranchRight_ok0 ywz yxu yxv ywz yxu ywz; mkBranchRight_ok0 ywz yxu yxv fm_r key EmptyFM = True; mkBranchRight_ok0 ywz yxu yxv fm_r key (Branch right_key vwz vxu vxv vxw) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key zvy = fst (findMin zvy); mkBranchRight_size ywz yxu yxv = sizeFM ywz; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox ywz yxu yxv x = x; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch3MkVBalBranch2 vvu vvv vvw vvx vvy vuu vuv vuw vux vuy key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * mkVBalBranch3Size_l vvu vvv vvw vvx vvy vuu vuv vuw vux vuy < mkVBalBranch3Size_r vvu vvv vvw vvx vvy vuu vuv vuw vux vuy); mkVBalBranch3MkVBalBranch0 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBranch 13 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy)); mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch3MkVBalBranch0 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy otherwise; mkVBalBranch3MkVBalBranch2 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy; mkVBalBranch3MkVBalBranch2 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * mkVBalBranch3Size_r zuu zuv zuw zux zuy zuz zvu zvv zvw zvx < mkVBalBranch3Size_l zuu zuv zuw zux zuy zuz zvu zvv zvw zvx); mkVBalBranch3Size_l zuu zuv zuw zux zuy zuz zvu zvv zvw zvx = sizeFM (Branch zuz zvu zvv zvw zvx); mkVBalBranch3Size_r zuu zuv zuw zux zuy zuz zvu zvv zvw zvx = sizeFM (Branch zuu zuv zuw zux zuy); mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xxu xxv xxw xxx = mkVBalBranch3 xxu xxv xxw xxx; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xxz xyu xyv xyw = mkVBalBranch4 xxz xyu xyv xyw; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wxu wxv size wxw wxx) = size; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (13) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (14) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 xvz xwu xwv xww = addToFM_C3 xvz xwu xwv xww; deleteMax :: Ord a => FiniteMap a b -> FiniteMap a b; deleteMax (Branch key elt vvz fm_l EmptyFM) = fm_l; deleteMax (Branch key elt vwu fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r); deleteMin :: Ord b => FiniteMap b a -> FiniteMap b a; deleteMin (Branch key elt wxy EmptyFM fm_r) = fm_r; deleteMin (Branch key elt wxz fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; filterFM :: Ord a => (a -> b -> Bool) -> FiniteMap a b -> FiniteMap a b; filterFM p EmptyFM = filterFM3 p EmptyFM; filterFM p (Branch key elt wyu fm_l fm_r) = filterFM2 p (Branch key elt wyu fm_l fm_r); filterFM0 p key elt wyu fm_l fm_r True = glueVBal (filterFM p fm_l) (filterFM p fm_r); filterFM1 p key elt wyu fm_l fm_r True = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r); filterFM1 p key elt wyu fm_l fm_r False = filterFM0 p key elt wyu fm_l fm_r otherwise; filterFM2 p (Branch key elt wyu fm_l fm_r) = filterFM1 p key elt wyu fm_l fm_r (p key elt); filterFM3 p EmptyFM = emptyFM; filterFM3 yvx yvy = filterFM2 yvx yvy; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt vxx vxy EmptyFM) = (key,elt); findMax (Branch key elt vxz vyu fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wyv EmptyFM wyw) = (key,elt); findMin (Branch key elt wyx fm_l wyy) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> b -> c -> c) -> c -> FiniteMap a b -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wwz fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; glueBal :: Ord b => FiniteMap b a -> FiniteMap b a -> FiniteMap b a; glueBal EmptyFM fm2 = glueBal4 EmptyFM fm2; glueBal fm1 EmptyFM = glueBal3 fm1 EmptyFM; glueBal fm1 fm2 = glueBal2 fm1 fm2; glueBal2 fm1 fm2 = glueBal2GlueBal1 fm2 fm1 fm1 fm2 (sizeFM fm2 > sizeFM fm1); glueBal2GlueBal0 yzy yzz fm1 fm2 True = mkBalBranch (glueBal2Mid_key1 yzy yzz) (glueBal2Mid_elt1 yzy yzz) (deleteMax fm1) fm2; glueBal2GlueBal1 yzy yzz fm1 fm2 True = mkBalBranch (glueBal2Mid_key2 yzy yzz) (glueBal2Mid_elt2 yzy yzz) fm1 (deleteMin fm2); glueBal2GlueBal1 yzy yzz fm1 fm2 False = glueBal2GlueBal0 yzy yzz fm1 fm2 otherwise; glueBal2Mid_elt1 yzy yzz = glueBal2Mid_elt10 yzy yzz (glueBal2Vv2 yzy yzz); glueBal2Mid_elt10 yzy yzz (wuw,mid_elt1) = mid_elt1; glueBal2Mid_elt2 yzy yzz = glueBal2Mid_elt20 yzy yzz (glueBal2Vv3 yzy yzz); glueBal2Mid_elt20 yzy yzz (wuv,mid_elt2) = mid_elt2; glueBal2Mid_key1 yzy yzz = glueBal2Mid_key10 yzy yzz (glueBal2Vv2 yzy yzz); glueBal2Mid_key10 yzy yzz (mid_key1,wux) = mid_key1; glueBal2Mid_key2 yzy yzz = glueBal2Mid_key20 yzy yzz (glueBal2Vv3 yzy yzz); glueBal2Mid_key20 yzy yzz (mid_key2,wuy) = mid_key2; glueBal2Vv2 yzy yzz = findMax yzz; glueBal2Vv3 yzy yzz = findMin yzy; glueBal3 fm1 EmptyFM = fm1; glueBal3 xzu xzv = glueBal2 xzu xzv; glueBal4 EmptyFM fm2 = fm2; glueBal4 xzx xzy = glueBal3 xzx xzy; glueVBal :: Ord a => FiniteMap a b -> FiniteMap a b -> FiniteMap a b; glueVBal EmptyFM fm2 = glueVBal5 EmptyFM fm2; glueVBal fm1 EmptyFM = glueVBal4 fm1 EmptyFM; glueVBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); glueVBal3 (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy) = glueVBal3GlueVBal2 wvu wvv wvw wvx wvy wwu wwv www wwx wwy wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * glueVBal3Size_l wvu wvv wvw wvx wvy wwu wwv www wwx wwy < glueVBal3Size_r wvu wvv wvw wvx wvy wwu wwv www wwx wwy); glueVBal3GlueVBal0 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = glueBal (Branch wvu wvv wvw wvx wvy) (Branch wwu wwv www wwx wwy); glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wvu wvv wvx (glueVBal wvy (Branch wwu wwv www wwx wwy)); glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal3GlueVBal0 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy otherwise; glueVBal3GlueVBal2 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy True = mkBalBranch wwu wwv (glueVBal (Branch wvu wvv wvw wvx wvy) wwx) wwy; glueVBal3GlueVBal2 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy False = glueVBal3GlueVBal1 yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx wvu wvv wvw wvx wvy wwu wwv www wwx wwy (sIZE_RATIO * glueVBal3Size_r yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx < glueVBal3Size_l yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx); glueVBal3Size_l yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx = sizeFM (Branch yyu yyv yyw yyx yyy); glueVBal3Size_r yyu yyv yyw yyx yyy yyz yzu yzv yzw yzx = sizeFM (Branch yyz yzu yzv yzw yzx); glueVBal4 fm1 EmptyFM = fm1; glueVBal4 yuw yux = glueVBal3 yuw yux; glueVBal5 EmptyFM fm2 = fm2; glueVBal5 yuz yvu = glueVBal4 yuz yvu; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 fm_R key elt fm_L key elt fm_L fm_R (mkBalBranch6Size_l fm_R key elt fm_L + mkBalBranch6Size_r fm_R key elt fm_L < Pos (Succ (Succ Zero))); mkBalBranch6Double_L ywv yww ywx ywy fm_l (Branch key_r elt_r vzv (Branch key_rl elt_rl vzw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) yww ywx fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R ywv yww ywx ywy (Branch key_l elt_l vyw fm_ll (Branch key_lr elt_lr vyx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) yww ywx fm_lrr fm_r); mkBalBranch6MkBalBranch0 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr); mkBalBranch6MkBalBranch00 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr True = mkBalBranch6Double_L ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr True = mkBalBranch6Single_L ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 ywv yww ywx ywy fm_L fm_R (Branch vzx vzy vzz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 ywv yww ywx ywy fm_L fm_R vzx vzy vzz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); mkBalBranch6MkBalBranch1 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr); mkBalBranch6MkBalBranch10 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr True = mkBalBranch6Double_R ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr True = mkBalBranch6Single_R ywv yww ywx ywy fm_L fm_R; mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 ywv yww ywx ywy fm_L fm_R (Branch vyy vyz vzu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 ywv yww ywx ywy fm_L fm_R vyy vyz vzu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); mkBalBranch6MkBalBranch2 ywv yww ywx ywy key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 ywv yww ywx ywy fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 ywv yww ywx ywy key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 ywv yww ywx ywy fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 ywv yww ywx ywy key elt fm_L fm_R (mkBalBranch6Size_l ywv yww ywx ywy > sIZE_RATIO * mkBalBranch6Size_r ywv yww ywx ywy); mkBalBranch6MkBalBranch5 ywv yww ywx ywy key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; mkBalBranch6MkBalBranch5 ywv yww ywx ywy key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 ywv yww ywx ywy key elt fm_L fm_R (mkBalBranch6Size_r ywv yww ywx ywy > sIZE_RATIO * mkBalBranch6Size_l ywv yww ywx ywy); mkBalBranch6Single_L ywv yww ywx ywy fm_l (Branch key_r elt_r wuu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) yww ywx fm_l fm_rl) fm_rr; mkBalBranch6Single_R ywv yww ywx ywy (Branch key_l elt_l vyv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) yww ywx fm_lr fm_r); mkBalBranch6Size_l ywv yww ywx ywy = sizeFM ywy; mkBalBranch6Size_r ywv yww ywx ywy = sizeFM ywv; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; mkBranchBalance_ok ywz yxu yxv = True; mkBranchLeft_ok ywz yxu yxv = mkBranchLeft_ok0 ywz yxu yxv yxv yxu yxv; mkBranchLeft_ok0 ywz yxu yxv fm_l key EmptyFM = True; mkBranchLeft_ok0 ywz yxu yxv fm_l key (Branch left_key vwv vww vwx vwy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key zvz = fst (findMax zvz); mkBranchLeft_size ywz yxu yxv = sizeFM yxv; mkBranchResult yxw yxx yxy yxz = Branch yxw yxx (mkBranchUnbox yxy yxw yxz (Pos (Succ Zero) + mkBranchLeft_size yxy yxw yxz + mkBranchRight_size yxy yxw yxz)) yxz yxy; mkBranchRight_ok ywz yxu yxv = mkBranchRight_ok0 ywz yxu yxv ywz yxu ywz; mkBranchRight_ok0 ywz yxu yxv fm_r key EmptyFM = True; mkBranchRight_ok0 ywz yxu yxv fm_r key (Branch right_key vwz vxu vxv vxw) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key zvy = fst (findMin zvy); mkBranchRight_size ywz yxu yxv = sizeFM ywz; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox ywz yxu yxv x = x; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); mkVBalBranch3 key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy) = mkVBalBranch3MkVBalBranch2 vvu vvv vvw vvx vvy vuu vuv vuw vux vuy key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * mkVBalBranch3Size_l vvu vvv vvw vvx vvy vuu vuv vuw vux vuy < mkVBalBranch3Size_r vvu vvv vvw vvx vvy vuu vuv vuw vux vuy); mkVBalBranch3MkVBalBranch0 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))))) key elt (Branch vuu vuv vuw vux vuy) (Branch vvu vvv vvw vvx vvy); mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vuu vuv vux (mkVBalBranch key elt vuy (Branch vvu vvv vvw vvx vvy)); mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch3MkVBalBranch0 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy otherwise; mkVBalBranch3MkVBalBranch2 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy True = mkBalBranch vvu vvv (mkVBalBranch key elt (Branch vuu vuv vuw vux vuy) vvx) vvy; mkVBalBranch3MkVBalBranch2 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy False = mkVBalBranch3MkVBalBranch1 zuu zuv zuw zux zuy zuz zvu zvv zvw zvx key elt vuu vuv vuw vux vuy vvu vvv vvw vvx vvy (sIZE_RATIO * mkVBalBranch3Size_r zuu zuv zuw zux zuy zuz zvu zvv zvw zvx < mkVBalBranch3Size_l zuu zuv zuw zux zuy zuz zvu zvv zvw zvx); mkVBalBranch3Size_l zuu zuv zuw zux zuy zuz zvu zvv zvw zvx = sizeFM (Branch zuz zvu zvv zvw zvx); mkVBalBranch3Size_r zuu zuv zuw zux zuy zuz zvu zvv zvw zvx = sizeFM (Branch zuu zuv zuw zux zuy); mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xxu xxv xxw xxx = mkVBalBranch3 xxu xxv xxw xxx; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xxz xyu xyv xyw = mkVBalBranch4 xxz xyu xyv xyw; sIZE_RATIO :: Int; sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = Pos Zero; sizeFM (Branch wxu wxv size wxw wxx) = size; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (15) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.filterFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.filterFM zwu3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="FiniteMap.filterFM zwu3 zwu4",fontsize=16,color="burlywood",shape="triangle"];6825[label="zwu4/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];4 -> 6825[label="",style="solid", color="burlywood", weight=9]; 6825 -> 5[label="",style="solid", color="burlywood", weight=3]; 6826[label="zwu4/FiniteMap.Branch zwu40 zwu41 zwu42 zwu43 zwu44",fontsize=10,color="white",style="solid",shape="box"];4 -> 6826[label="",style="solid", color="burlywood", weight=9]; 6826 -> 6[label="",style="solid", color="burlywood", weight=3]; 5[label="FiniteMap.filterFM zwu3 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="FiniteMap.filterFM zwu3 (FiniteMap.Branch zwu40 zwu41 zwu42 zwu43 zwu44)",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7[label="FiniteMap.filterFM3 zwu3 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="FiniteMap.filterFM2 zwu3 (FiniteMap.Branch zwu40 zwu41 zwu42 zwu43 zwu44)",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="FiniteMap.emptyFM",fontsize=16,color="black",shape="triangle"];9 -> 11[label="",style="solid", color="black", weight=3]; 10 -> 12[label="",style="dashed", color="red", weight=0]; 10[label="FiniteMap.filterFM1 zwu3 zwu40 zwu41 zwu42 zwu43 zwu44 (zwu3 zwu40 zwu41)",fontsize=16,color="magenta"];10 -> 13[label="",style="dashed", color="magenta", weight=3]; 11[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];13[label="zwu3 zwu40 zwu41",fontsize=16,color="green",shape="box"];13 -> 18[label="",style="dashed", color="green", weight=3]; 13 -> 19[label="",style="dashed", color="green", weight=3]; 12[label="FiniteMap.filterFM1 zwu3 zwu40 zwu41 zwu42 zwu43 zwu44 zwu5",fontsize=16,color="burlywood",shape="triangle"];6827[label="zwu5/False",fontsize=10,color="white",style="solid",shape="box"];12 -> 6827[label="",style="solid", color="burlywood", weight=9]; 6827 -> 16[label="",style="solid", color="burlywood", weight=3]; 6828[label="zwu5/True",fontsize=10,color="white",style="solid",shape="box"];12 -> 6828[label="",style="solid", color="burlywood", weight=9]; 6828 -> 17[label="",style="solid", color="burlywood", weight=3]; 18[label="zwu40",fontsize=16,color="green",shape="box"];19[label="zwu41",fontsize=16,color="green",shape="box"];16[label="FiniteMap.filterFM1 zwu3 zwu40 zwu41 zwu42 zwu43 zwu44 False",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 17[label="FiniteMap.filterFM1 zwu3 zwu40 zwu41 zwu42 zwu43 zwu44 True",fontsize=16,color="black",shape="box"];17 -> 21[label="",style="solid", color="black", weight=3]; 20[label="FiniteMap.filterFM0 zwu3 zwu40 zwu41 zwu42 zwu43 zwu44 otherwise",fontsize=16,color="black",shape="box"];20 -> 22[label="",style="solid", color="black", weight=3]; 21 -> 23[label="",style="dashed", color="red", weight=0]; 21[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.filterFM zwu3 zwu43) (FiniteMap.filterFM zwu3 zwu44)",fontsize=16,color="magenta"];21 -> 24[label="",style="dashed", color="magenta", weight=3]; 21 -> 25[label="",style="dashed", color="magenta", weight=3]; 22[label="FiniteMap.filterFM0 zwu3 zwu40 zwu41 zwu42 zwu43 zwu44 True",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 24 -> 4[label="",style="dashed", color="red", weight=0]; 24[label="FiniteMap.filterFM zwu3 zwu44",fontsize=16,color="magenta"];24 -> 27[label="",style="dashed", color="magenta", weight=3]; 25 -> 4[label="",style="dashed", color="red", weight=0]; 25[label="FiniteMap.filterFM zwu3 zwu43",fontsize=16,color="magenta"];25 -> 28[label="",style="dashed", color="magenta", weight=3]; 23[label="FiniteMap.mkVBalBranch zwu40 zwu41 zwu7 zwu6",fontsize=16,color="burlywood",shape="triangle"];6829[label="zwu7/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];23 -> 6829[label="",style="solid", color="burlywood", weight=9]; 6829 -> 29[label="",style="solid", color="burlywood", weight=3]; 6830[label="zwu7/FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74",fontsize=10,color="white",style="solid",shape="box"];23 -> 6830[label="",style="solid", color="burlywood", weight=9]; 6830 -> 30[label="",style="solid", color="burlywood", weight=3]; 26 -> 31[label="",style="dashed", color="red", weight=0]; 26[label="FiniteMap.glueVBal (FiniteMap.filterFM zwu3 zwu43) (FiniteMap.filterFM zwu3 zwu44)",fontsize=16,color="magenta"];26 -> 32[label="",style="dashed", color="magenta", weight=3]; 26 -> 33[label="",style="dashed", color="magenta", weight=3]; 27[label="zwu44",fontsize=16,color="green",shape="box"];28[label="zwu43",fontsize=16,color="green",shape="box"];29[label="FiniteMap.mkVBalBranch zwu40 zwu41 FiniteMap.EmptyFM zwu6",fontsize=16,color="black",shape="box"];29 -> 34[label="",style="solid", color="black", weight=3]; 30[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74) zwu6",fontsize=16,color="burlywood",shape="box"];6831[label="zwu6/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];30 -> 6831[label="",style="solid", color="burlywood", weight=9]; 6831 -> 35[label="",style="solid", color="burlywood", weight=3]; 6832[label="zwu6/FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=10,color="white",style="solid",shape="box"];30 -> 6832[label="",style="solid", color="burlywood", weight=9]; 6832 -> 36[label="",style="solid", color="burlywood", weight=3]; 32 -> 4[label="",style="dashed", color="red", weight=0]; 32[label="FiniteMap.filterFM zwu3 zwu44",fontsize=16,color="magenta"];32 -> 37[label="",style="dashed", color="magenta", weight=3]; 33 -> 4[label="",style="dashed", color="red", weight=0]; 33[label="FiniteMap.filterFM zwu3 zwu43",fontsize=16,color="magenta"];33 -> 38[label="",style="dashed", color="magenta", weight=3]; 31[label="FiniteMap.glueVBal zwu9 zwu8",fontsize=16,color="burlywood",shape="triangle"];6833[label="zwu9/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];31 -> 6833[label="",style="solid", color="burlywood", weight=9]; 6833 -> 39[label="",style="solid", color="burlywood", weight=3]; 6834[label="zwu9/FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94",fontsize=10,color="white",style="solid",shape="box"];31 -> 6834[label="",style="solid", color="burlywood", weight=9]; 6834 -> 40[label="",style="solid", color="burlywood", weight=3]; 34[label="FiniteMap.mkVBalBranch5 zwu40 zwu41 FiniteMap.EmptyFM zwu6",fontsize=16,color="black",shape="box"];34 -> 41[label="",style="solid", color="black", weight=3]; 35[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74) FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];35 -> 42[label="",style="solid", color="black", weight=3]; 36[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74) (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="black",shape="box"];36 -> 43[label="",style="solid", color="black", weight=3]; 37[label="zwu44",fontsize=16,color="green",shape="box"];38[label="zwu43",fontsize=16,color="green",shape="box"];39[label="FiniteMap.glueVBal FiniteMap.EmptyFM zwu8",fontsize=16,color="black",shape="box"];39 -> 44[label="",style="solid", color="black", weight=3]; 40[label="FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94) zwu8",fontsize=16,color="burlywood",shape="box"];6835[label="zwu8/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];40 -> 6835[label="",style="solid", color="burlywood", weight=9]; 6835 -> 45[label="",style="solid", color="burlywood", weight=3]; 6836[label="zwu8/FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=10,color="white",style="solid",shape="box"];40 -> 6836[label="",style="solid", color="burlywood", weight=9]; 6836 -> 46[label="",style="solid", color="burlywood", weight=3]; 41[label="FiniteMap.addToFM zwu6 zwu40 zwu41",fontsize=16,color="black",shape="triangle"];41 -> 47[label="",style="solid", color="black", weight=3]; 42[label="FiniteMap.mkVBalBranch4 zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74) FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];42 -> 48[label="",style="solid", color="black", weight=3]; 43[label="FiniteMap.mkVBalBranch3 zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74) (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="black",shape="box"];43 -> 49[label="",style="solid", color="black", weight=3]; 44[label="FiniteMap.glueVBal5 FiniteMap.EmptyFM zwu8",fontsize=16,color="black",shape="box"];44 -> 50[label="",style="solid", color="black", weight=3]; 45[label="FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94) FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];45 -> 51[label="",style="solid", color="black", weight=3]; 46[label="FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];46 -> 52[label="",style="solid", color="black", weight=3]; 47[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu6 zwu40 zwu41",fontsize=16,color="burlywood",shape="triangle"];6837[label="zwu6/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];47 -> 6837[label="",style="solid", color="burlywood", weight=9]; 6837 -> 53[label="",style="solid", color="burlywood", weight=3]; 6838[label="zwu6/FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=10,color="white",style="solid",shape="box"];47 -> 6838[label="",style="solid", color="burlywood", weight=9]; 6838 -> 54[label="",style="solid", color="burlywood", weight=3]; 48 -> 41[label="",style="dashed", color="red", weight=0]; 48[label="FiniteMap.addToFM (FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74) zwu40 zwu41",fontsize=16,color="magenta"];48 -> 55[label="",style="dashed", color="magenta", weight=3]; 49[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 zwu72 zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74)",fontsize=16,color="black",shape="box"];49 -> 56[label="",style="solid", color="black", weight=3]; 50[label="zwu8",fontsize=16,color="green",shape="box"];51[label="FiniteMap.glueVBal4 (FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94) FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];51 -> 57[label="",style="solid", color="black", weight=3]; 52[label="FiniteMap.glueVBal3 (FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];52 -> 58[label="",style="solid", color="black", weight=3]; 53[label="FiniteMap.addToFM_C FiniteMap.addToFM0 FiniteMap.EmptyFM zwu40 zwu41",fontsize=16,color="black",shape="box"];53 -> 59[label="",style="solid", color="black", weight=3]; 54[label="FiniteMap.addToFM_C FiniteMap.addToFM0 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64) zwu40 zwu41",fontsize=16,color="black",shape="box"];54 -> 60[label="",style="solid", color="black", weight=3]; 55[label="FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74",fontsize=16,color="green",shape="box"];56[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 zwu72 zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];56 -> 61[label="",style="solid", color="black", weight=3]; 57[label="FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94",fontsize=16,color="green",shape="box"];58[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_l zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_r zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];58 -> 62[label="",style="solid", color="black", weight=3]; 59[label="FiniteMap.addToFM_C4 FiniteMap.addToFM0 FiniteMap.EmptyFM zwu40 zwu41",fontsize=16,color="black",shape="box"];59 -> 63[label="",style="solid", color="black", weight=3]; 60[label="FiniteMap.addToFM_C3 FiniteMap.addToFM0 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64) zwu40 zwu41",fontsize=16,color="black",shape="box"];60 -> 64[label="",style="solid", color="black", weight=3]; 61[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 zwu72 zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];61 -> 65[label="",style="solid", color="black", weight=3]; 62[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_l zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_r zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];62 -> 66[label="",style="solid", color="black", weight=3]; 63[label="FiniteMap.unitFM zwu40 zwu41",fontsize=16,color="black",shape="box"];63 -> 67[label="",style="solid", color="black", weight=3]; 64[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu40 zwu41 (zwu40 < zwu60)",fontsize=16,color="black",shape="box"];64 -> 68[label="",style="solid", color="black", weight=3]; 65[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 zwu72 zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (primMulInt FiniteMap.sIZE_RATIO (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];65 -> 69[label="",style="solid", color="black", weight=3]; 66[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_l zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_r zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];66 -> 70[label="",style="solid", color="black", weight=3]; 67[label="FiniteMap.Branch zwu40 zwu41 (Pos (Succ Zero)) FiniteMap.emptyFM FiniteMap.emptyFM",fontsize=16,color="green",shape="box"];67 -> 71[label="",style="dashed", color="green", weight=3]; 67 -> 72[label="",style="dashed", color="green", weight=3]; 68[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu40 zwu41 (compare zwu40 zwu60 == LT)",fontsize=16,color="black",shape="box"];68 -> 73[label="",style="solid", color="black", weight=3]; 69[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 zwu72 zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];69 -> 74[label="",style="solid", color="black", weight=3]; 70[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (primMulInt FiniteMap.sIZE_RATIO (FiniteMap.glueVBal3Size_l zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];70 -> 75[label="",style="solid", color="black", weight=3]; 71 -> 9[label="",style="dashed", color="red", weight=0]; 71[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];72 -> 9[label="",style="dashed", color="red", weight=0]; 72[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];73[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu40 zwu41 (compare3 zwu40 zwu60 == LT)",fontsize=16,color="black",shape="box"];73 -> 76[label="",style="solid", color="black", weight=3]; 74[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 zwu72 zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 zwu72 zwu73 zwu74))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];74 -> 77[label="",style="solid", color="black", weight=3]; 75[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (FiniteMap.glueVBal3Size_l zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];75 -> 78[label="",style="solid", color="black", weight=3]; 76[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu40 zwu41 (compare2 zwu40 zwu60 (zwu40 == zwu60) == LT)",fontsize=16,color="burlywood",shape="box"];6839[label="zwu40/Nothing",fontsize=10,color="white",style="solid",shape="box"];76 -> 6839[label="",style="solid", color="burlywood", weight=9]; 6839 -> 79[label="",style="solid", color="burlywood", weight=3]; 6840[label="zwu40/Just zwu400",fontsize=10,color="white",style="solid",shape="box"];76 -> 6840[label="",style="solid", color="burlywood", weight=9]; 6840 -> 80[label="",style="solid", color="burlywood", weight=3]; 77[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 zwu72 zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) zwu72) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 zwu72 zwu73 zwu74) == LT)",fontsize=16,color="burlywood",shape="box"];6841[label="zwu72/Pos zwu720",fontsize=10,color="white",style="solid",shape="box"];77 -> 6841[label="",style="solid", color="burlywood", weight=9]; 6841 -> 81[label="",style="solid", color="burlywood", weight=3]; 6842[label="zwu72/Neg zwu720",fontsize=10,color="white",style="solid",shape="box"];77 -> 6842[label="",style="solid", color="burlywood", weight=9]; 6842 -> 82[label="",style="solid", color="burlywood", weight=3]; 78[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 zwu92 zwu93 zwu94))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];78 -> 83[label="",style="solid", color="black", weight=3]; 79[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 zwu60 zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (compare2 Nothing zwu60 (Nothing == zwu60) == LT)",fontsize=16,color="burlywood",shape="box"];6843[label="zwu60/Nothing",fontsize=10,color="white",style="solid",shape="box"];79 -> 6843[label="",style="solid", color="burlywood", weight=9]; 6843 -> 84[label="",style="solid", color="burlywood", weight=3]; 6844[label="zwu60/Just zwu600",fontsize=10,color="white",style="solid",shape="box"];79 -> 6844[label="",style="solid", color="burlywood", weight=9]; 6844 -> 85[label="",style="solid", color="burlywood", weight=3]; 80[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 zwu60 zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 (compare2 (Just zwu400) zwu60 (Just zwu400 == zwu60) == LT)",fontsize=16,color="burlywood",shape="box"];6845[label="zwu60/Nothing",fontsize=10,color="white",style="solid",shape="box"];80 -> 6845[label="",style="solid", color="burlywood", weight=9]; 6845 -> 86[label="",style="solid", color="burlywood", weight=3]; 6846[label="zwu60/Just zwu600",fontsize=10,color="white",style="solid",shape="box"];80 -> 6846[label="",style="solid", color="burlywood", weight=9]; 6846 -> 87[label="",style="solid", color="burlywood", weight=3]; 81[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos zwu720) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos zwu720) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (Pos zwu720)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos zwu720) zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];81 -> 88[label="",style="solid", color="black", weight=3]; 82[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg zwu720) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg zwu720) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (Neg zwu720)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg zwu720) zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];82 -> 89[label="",style="solid", color="black", weight=3]; 83[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) zwu92) (FiniteMap.glueVBal3Size_r zwu90 zwu91 zwu92 zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="burlywood",shape="box"];6847[label="zwu92/Pos zwu920",fontsize=10,color="white",style="solid",shape="box"];83 -> 6847[label="",style="solid", color="burlywood", weight=9]; 6847 -> 90[label="",style="solid", color="burlywood", weight=3]; 6848[label="zwu92/Neg zwu920",fontsize=10,color="white",style="solid",shape="box"];83 -> 6848[label="",style="solid", color="burlywood", weight=9]; 6848 -> 91[label="",style="solid", color="burlywood", weight=3]; 84[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (compare2 Nothing Nothing (Nothing == Nothing) == LT)",fontsize=16,color="black",shape="box"];84 -> 92[label="",style="solid", color="black", weight=3]; 85[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (compare2 Nothing (Just zwu600) (Nothing == Just zwu600) == LT)",fontsize=16,color="black",shape="box"];85 -> 93[label="",style="solid", color="black", weight=3]; 86[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 (compare2 (Just zwu400) Nothing (Just zwu400 == Nothing) == LT)",fontsize=16,color="black",shape="box"];86 -> 94[label="",style="solid", color="black", weight=3]; 87[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 (compare2 (Just zwu400) (Just zwu600) (Just zwu400 == Just zwu600) == LT)",fontsize=16,color="black",shape="box"];87 -> 95[label="",style="solid", color="black", weight=3]; 88[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos zwu720) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos zwu720) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Pos (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) zwu720)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos zwu720) zwu73 zwu74) == LT)",fontsize=16,color="burlywood",shape="box"];6849[label="zwu720/Succ zwu7200",fontsize=10,color="white",style="solid",shape="box"];88 -> 6849[label="",style="solid", color="burlywood", weight=9]; 6849 -> 96[label="",style="solid", color="burlywood", weight=3]; 6850[label="zwu720/Zero",fontsize=10,color="white",style="solid",shape="box"];88 -> 6850[label="",style="solid", color="burlywood", weight=9]; 6850 -> 97[label="",style="solid", color="burlywood", weight=3]; 89[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg zwu720) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg zwu720) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Neg (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) zwu720)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg zwu720) zwu73 zwu74) == LT)",fontsize=16,color="burlywood",shape="box"];6851[label="zwu720/Succ zwu7200",fontsize=10,color="white",style="solid",shape="box"];89 -> 6851[label="",style="solid", color="burlywood", weight=9]; 6851 -> 98[label="",style="solid", color="burlywood", weight=3]; 6852[label="zwu720/Zero",fontsize=10,color="white",style="solid",shape="box"];89 -> 6852[label="",style="solid", color="burlywood", weight=9]; 6852 -> 99[label="",style="solid", color="burlywood", weight=3]; 90[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (Pos zwu920)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];90 -> 100[label="",style="solid", color="black", weight=3]; 91[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (primMulInt (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) (Neg zwu920)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];91 -> 101[label="",style="solid", color="black", weight=3]; 92[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (compare2 Nothing Nothing True == LT)",fontsize=16,color="black",shape="box"];92 -> 102[label="",style="solid", color="black", weight=3]; 93 -> 211[label="",style="dashed", color="red", weight=0]; 93[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (compare2 Nothing (Just zwu600) False == LT)",fontsize=16,color="magenta"];93 -> 212[label="",style="dashed", color="magenta", weight=3]; 94 -> 220[label="",style="dashed", color="red", weight=0]; 94[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 (compare2 (Just zwu400) Nothing False == LT)",fontsize=16,color="magenta"];94 -> 221[label="",style="dashed", color="magenta", weight=3]; 95 -> 267[label="",style="dashed", color="red", weight=0]; 95[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 (compare2 (Just zwu400) (Just zwu600) (zwu400 == zwu600) == LT)",fontsize=16,color="magenta"];95 -> 268[label="",style="dashed", color="magenta", weight=3]; 95 -> 269[label="",style="dashed", color="magenta", weight=3]; 95 -> 270[label="",style="dashed", color="magenta", weight=3]; 95 -> 271[label="",style="dashed", color="magenta", weight=3]; 95 -> 272[label="",style="dashed", color="magenta", weight=3]; 95 -> 273[label="",style="dashed", color="magenta", weight=3]; 95 -> 274[label="",style="dashed", color="magenta", weight=3]; 95 -> 275[label="",style="dashed", color="magenta", weight=3]; 96[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Pos (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];96 -> 114[label="",style="solid", color="black", weight=3]; 97[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Pos (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) Zero)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];97 -> 115[label="",style="solid", color="black", weight=3]; 98[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Neg (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];98 -> 116[label="",style="solid", color="black", weight=3]; 99[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Neg (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) Zero)) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74) == LT)",fontsize=16,color="black",shape="box"];99 -> 117[label="",style="solid", color="black", weight=3]; 100[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Pos (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) zwu920)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="burlywood",shape="box"];6853[label="zwu920/Succ zwu9200",fontsize=10,color="white",style="solid",shape="box"];100 -> 6853[label="",style="solid", color="burlywood", weight=9]; 6853 -> 118[label="",style="solid", color="burlywood", weight=3]; 6854[label="zwu920/Zero",fontsize=10,color="white",style="solid",shape="box"];100 -> 6854[label="",style="solid", color="burlywood", weight=9]; 6854 -> 119[label="",style="solid", color="burlywood", weight=3]; 101[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Neg (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) zwu920)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg zwu920) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="burlywood",shape="box"];6855[label="zwu920/Succ zwu9200",fontsize=10,color="white",style="solid",shape="box"];101 -> 6855[label="",style="solid", color="burlywood", weight=9]; 6855 -> 120[label="",style="solid", color="burlywood", weight=3]; 6856[label="zwu920/Zero",fontsize=10,color="white",style="solid",shape="box"];101 -> 6856[label="",style="solid", color="burlywood", weight=9]; 6856 -> 121[label="",style="solid", color="burlywood", weight=3]; 102[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (EQ == LT)",fontsize=16,color="black",shape="box"];102 -> 122[label="",style="solid", color="black", weight=3]; 212 -> 135[label="",style="dashed", color="red", weight=0]; 212[label="compare2 Nothing (Just zwu600) False == LT",fontsize=16,color="magenta"];212 -> 216[label="",style="dashed", color="magenta", weight=3]; 212 -> 217[label="",style="dashed", color="magenta", weight=3]; 211[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 zwu35",fontsize=16,color="burlywood",shape="triangle"];6857[label="zwu35/False",fontsize=10,color="white",style="solid",shape="box"];211 -> 6857[label="",style="solid", color="burlywood", weight=9]; 6857 -> 218[label="",style="solid", color="burlywood", weight=3]; 6858[label="zwu35/True",fontsize=10,color="white",style="solid",shape="box"];211 -> 6858[label="",style="solid", color="burlywood", weight=9]; 6858 -> 219[label="",style="solid", color="burlywood", weight=3]; 221 -> 135[label="",style="dashed", color="red", weight=0]; 221[label="compare2 (Just zwu400) Nothing False == LT",fontsize=16,color="magenta"];221 -> 225[label="",style="dashed", color="magenta", weight=3]; 221 -> 226[label="",style="dashed", color="magenta", weight=3]; 220[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 zwu36",fontsize=16,color="burlywood",shape="triangle"];6859[label="zwu36/False",fontsize=10,color="white",style="solid",shape="box"];220 -> 6859[label="",style="solid", color="burlywood", weight=9]; 6859 -> 227[label="",style="solid", color="burlywood", weight=3]; 6860[label="zwu36/True",fontsize=10,color="white",style="solid",shape="box"];220 -> 6860[label="",style="solid", color="burlywood", weight=9]; 6860 -> 228[label="",style="solid", color="burlywood", weight=3]; 268 -> 135[label="",style="dashed", color="red", weight=0]; 268[label="compare2 (Just zwu400) (Just zwu600) (zwu400 == zwu600) == LT",fontsize=16,color="magenta"];268 -> 279[label="",style="dashed", color="magenta", weight=3]; 268 -> 280[label="",style="dashed", color="magenta", weight=3]; 269[label="zwu63",fontsize=16,color="green",shape="box"];270[label="zwu400",fontsize=16,color="green",shape="box"];271[label="zwu62",fontsize=16,color="green",shape="box"];272[label="zwu600",fontsize=16,color="green",shape="box"];273[label="zwu64",fontsize=16,color="green",shape="box"];274[label="zwu61",fontsize=16,color="green",shape="box"];275[label="zwu41",fontsize=16,color="green",shape="box"];267[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 zwu37",fontsize=16,color="burlywood",shape="triangle"];6861[label="zwu37/False",fontsize=10,color="white",style="solid",shape="box"];267 -> 6861[label="",style="solid", color="burlywood", weight=9]; 6861 -> 281[label="",style="solid", color="burlywood", weight=3]; 6862[label="zwu37/True",fontsize=10,color="white",style="solid",shape="box"];267 -> 6862[label="",style="solid", color="burlywood", weight=9]; 6862 -> 282[label="",style="solid", color="burlywood", weight=3]; 114 -> 174[label="",style="dashed", color="red", weight=0]; 114[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Pos (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) == LT)",fontsize=16,color="magenta"];114 -> 175[label="",style="dashed", color="magenta", weight=3]; 115 -> 181[label="",style="dashed", color="red", weight=0]; 115[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Pos Zero) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74) == LT)",fontsize=16,color="magenta"];115 -> 182[label="",style="dashed", color="magenta", weight=3]; 116 -> 188[label="",style="dashed", color="red", weight=0]; 116[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Neg (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) == LT)",fontsize=16,color="magenta"];116 -> 189[label="",style="dashed", color="magenta", weight=3]; 117 -> 195[label="",style="dashed", color="red", weight=0]; 117[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (primCmpInt (Neg Zero) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74) == LT)",fontsize=16,color="magenta"];117 -> 196[label="",style="dashed", color="magenta", weight=3]; 118[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Pos (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];118 -> 145[label="",style="solid", color="black", weight=3]; 119[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Pos (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) Zero)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];119 -> 146[label="",style="solid", color="black", weight=3]; 120[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Neg (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];120 -> 147[label="",style="solid", color="black", weight=3]; 121[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Neg (primMulNat (Succ (Succ (Succ (Succ (Succ Zero))))) Zero)) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="black",shape="box"];121 -> 148[label="",style="solid", color="black", weight=3]; 122[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 False",fontsize=16,color="black",shape="box"];122 -> 149[label="",style="solid", color="black", weight=3]; 216[label="LT",fontsize=16,color="green",shape="box"];217 -> 2775[label="",style="dashed", color="red", weight=0]; 217[label="compare2 Nothing (Just zwu600) False",fontsize=16,color="magenta"];217 -> 2776[label="",style="dashed", color="magenta", weight=3]; 217 -> 2777[label="",style="dashed", color="magenta", weight=3]; 217 -> 2778[label="",style="dashed", color="magenta", weight=3]; 135[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6863[label="zwu400/LT",fontsize=10,color="white",style="solid",shape="box"];135 -> 6863[label="",style="solid", color="burlywood", weight=9]; 6863 -> 165[label="",style="solid", color="burlywood", weight=3]; 6864[label="zwu400/EQ",fontsize=10,color="white",style="solid",shape="box"];135 -> 6864[label="",style="solid", color="burlywood", weight=9]; 6864 -> 166[label="",style="solid", color="burlywood", weight=3]; 6865[label="zwu400/GT",fontsize=10,color="white",style="solid",shape="box"];135 -> 6865[label="",style="solid", color="burlywood", weight=9]; 6865 -> 167[label="",style="solid", color="burlywood", weight=3]; 218[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 False",fontsize=16,color="black",shape="box"];218 -> 230[label="",style="solid", color="black", weight=3]; 219[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 True",fontsize=16,color="black",shape="box"];219 -> 231[label="",style="solid", color="black", weight=3]; 225[label="LT",fontsize=16,color="green",shape="box"];226 -> 2775[label="",style="dashed", color="red", weight=0]; 226[label="compare2 (Just zwu400) Nothing False",fontsize=16,color="magenta"];226 -> 2779[label="",style="dashed", color="magenta", weight=3]; 226 -> 2780[label="",style="dashed", color="magenta", weight=3]; 226 -> 2781[label="",style="dashed", color="magenta", weight=3]; 227[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 False",fontsize=16,color="black",shape="box"];227 -> 284[label="",style="solid", color="black", weight=3]; 228[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 True",fontsize=16,color="black",shape="box"];228 -> 285[label="",style="solid", color="black", weight=3]; 279[label="LT",fontsize=16,color="green",shape="box"];280 -> 2775[label="",style="dashed", color="red", weight=0]; 280[label="compare2 (Just zwu400) (Just zwu600) (zwu400 == zwu600)",fontsize=16,color="magenta"];280 -> 2782[label="",style="dashed", color="magenta", weight=3]; 280 -> 2783[label="",style="dashed", color="magenta", weight=3]; 280 -> 2784[label="",style="dashed", color="magenta", weight=3]; 281[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 False",fontsize=16,color="black",shape="box"];281 -> 294[label="",style="solid", color="black", weight=3]; 282[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 True",fontsize=16,color="black",shape="box"];282 -> 295[label="",style="solid", color="black", weight=3]; 175 -> 135[label="",style="dashed", color="red", weight=0]; 175[label="primCmpInt (Pos (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) == LT",fontsize=16,color="magenta"];175 -> 177[label="",style="dashed", color="magenta", weight=3]; 175 -> 178[label="",style="dashed", color="magenta", weight=3]; 174[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu27",fontsize=16,color="burlywood",shape="triangle"];6866[label="zwu27/False",fontsize=10,color="white",style="solid",shape="box"];174 -> 6866[label="",style="solid", color="burlywood", weight=9]; 6866 -> 179[label="",style="solid", color="burlywood", weight=3]; 6867[label="zwu27/True",fontsize=10,color="white",style="solid",shape="box"];174 -> 6867[label="",style="solid", color="burlywood", weight=9]; 6867 -> 180[label="",style="solid", color="burlywood", weight=3]; 182 -> 135[label="",style="dashed", color="red", weight=0]; 182[label="primCmpInt (Pos Zero) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74) == LT",fontsize=16,color="magenta"];182 -> 184[label="",style="dashed", color="magenta", weight=3]; 182 -> 185[label="",style="dashed", color="magenta", weight=3]; 181[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu28",fontsize=16,color="burlywood",shape="triangle"];6868[label="zwu28/False",fontsize=10,color="white",style="solid",shape="box"];181 -> 6868[label="",style="solid", color="burlywood", weight=9]; 6868 -> 186[label="",style="solid", color="burlywood", weight=3]; 6869[label="zwu28/True",fontsize=10,color="white",style="solid",shape="box"];181 -> 6869[label="",style="solid", color="burlywood", weight=9]; 6869 -> 187[label="",style="solid", color="burlywood", weight=3]; 189 -> 135[label="",style="dashed", color="red", weight=0]; 189[label="primCmpInt (Neg (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) == LT",fontsize=16,color="magenta"];189 -> 191[label="",style="dashed", color="magenta", weight=3]; 189 -> 192[label="",style="dashed", color="magenta", weight=3]; 188[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu29",fontsize=16,color="burlywood",shape="triangle"];6870[label="zwu29/False",fontsize=10,color="white",style="solid",shape="box"];188 -> 6870[label="",style="solid", color="burlywood", weight=9]; 6870 -> 193[label="",style="solid", color="burlywood", weight=3]; 6871[label="zwu29/True",fontsize=10,color="white",style="solid",shape="box"];188 -> 6871[label="",style="solid", color="burlywood", weight=9]; 6871 -> 194[label="",style="solid", color="burlywood", weight=3]; 196 -> 135[label="",style="dashed", color="red", weight=0]; 196[label="primCmpInt (Neg Zero) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74) == LT",fontsize=16,color="magenta"];196 -> 198[label="",style="dashed", color="magenta", weight=3]; 196 -> 199[label="",style="dashed", color="magenta", weight=3]; 195[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu30",fontsize=16,color="burlywood",shape="triangle"];6872[label="zwu30/False",fontsize=10,color="white",style="solid",shape="box"];195 -> 6872[label="",style="solid", color="burlywood", weight=9]; 6872 -> 200[label="",style="solid", color="burlywood", weight=3]; 6873[label="zwu30/True",fontsize=10,color="white",style="solid",shape="box"];195 -> 6873[label="",style="solid", color="burlywood", weight=9]; 6873 -> 201[label="",style="solid", color="burlywood", weight=3]; 145 -> 202[label="",style="dashed", color="red", weight=0]; 145[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Pos (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="magenta"];145 -> 203[label="",style="dashed", color="magenta", weight=3]; 146 -> 204[label="",style="dashed", color="red", weight=0]; 146[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Pos Zero) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="magenta"];146 -> 205[label="",style="dashed", color="magenta", weight=3]; 147 -> 206[label="",style="dashed", color="red", weight=0]; 147[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Neg (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="magenta"];147 -> 207[label="",style="dashed", color="magenta", weight=3]; 148 -> 208[label="",style="dashed", color="red", weight=0]; 148[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (primCmpInt (Neg Zero) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT)",fontsize=16,color="magenta"];148 -> 209[label="",style="dashed", color="magenta", weight=3]; 149 -> 349[label="",style="dashed", color="red", weight=0]; 149[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (Nothing > Nothing)",fontsize=16,color="magenta"];149 -> 350[label="",style="dashed", color="magenta", weight=3]; 2776[label="Nothing",fontsize=16,color="green",shape="box"];2777[label="Just zwu600",fontsize=16,color="green",shape="box"];2778[label="False",fontsize=16,color="green",shape="box"];2775[label="compare2 zwu430 zwu440 zwu200",fontsize=16,color="burlywood",shape="triangle"];6874[label="zwu200/False",fontsize=10,color="white",style="solid",shape="box"];2775 -> 6874[label="",style="solid", color="burlywood", weight=9]; 6874 -> 2810[label="",style="solid", color="burlywood", weight=3]; 6875[label="zwu200/True",fontsize=10,color="white",style="solid",shape="box"];2775 -> 6875[label="",style="solid", color="burlywood", weight=9]; 6875 -> 2811[label="",style="solid", color="burlywood", weight=3]; 165[label="LT == zwu600",fontsize=16,color="burlywood",shape="box"];6876[label="zwu600/LT",fontsize=10,color="white",style="solid",shape="box"];165 -> 6876[label="",style="solid", color="burlywood", weight=9]; 6876 -> 232[label="",style="solid", color="burlywood", weight=3]; 6877[label="zwu600/EQ",fontsize=10,color="white",style="solid",shape="box"];165 -> 6877[label="",style="solid", color="burlywood", weight=9]; 6877 -> 233[label="",style="solid", color="burlywood", weight=3]; 6878[label="zwu600/GT",fontsize=10,color="white",style="solid",shape="box"];165 -> 6878[label="",style="solid", color="burlywood", weight=9]; 6878 -> 234[label="",style="solid", color="burlywood", weight=3]; 166[label="EQ == zwu600",fontsize=16,color="burlywood",shape="box"];6879[label="zwu600/LT",fontsize=10,color="white",style="solid",shape="box"];166 -> 6879[label="",style="solid", color="burlywood", weight=9]; 6879 -> 235[label="",style="solid", color="burlywood", weight=3]; 6880[label="zwu600/EQ",fontsize=10,color="white",style="solid",shape="box"];166 -> 6880[label="",style="solid", color="burlywood", weight=9]; 6880 -> 236[label="",style="solid", color="burlywood", weight=3]; 6881[label="zwu600/GT",fontsize=10,color="white",style="solid",shape="box"];166 -> 6881[label="",style="solid", color="burlywood", weight=9]; 6881 -> 237[label="",style="solid", color="burlywood", weight=3]; 167[label="GT == zwu600",fontsize=16,color="burlywood",shape="box"];6882[label="zwu600/LT",fontsize=10,color="white",style="solid",shape="box"];167 -> 6882[label="",style="solid", color="burlywood", weight=9]; 6882 -> 238[label="",style="solid", color="burlywood", weight=3]; 6883[label="zwu600/EQ",fontsize=10,color="white",style="solid",shape="box"];167 -> 6883[label="",style="solid", color="burlywood", weight=9]; 6883 -> 239[label="",style="solid", color="burlywood", weight=3]; 6884[label="zwu600/GT",fontsize=10,color="white",style="solid",shape="box"];167 -> 6884[label="",style="solid", color="burlywood", weight=9]; 6884 -> 240[label="",style="solid", color="burlywood", weight=3]; 230 -> 365[label="",style="dashed", color="red", weight=0]; 230[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 (Nothing > Just zwu600)",fontsize=16,color="magenta"];230 -> 366[label="",style="dashed", color="magenta", weight=3]; 231 -> 414[label="",style="dashed", color="red", weight=0]; 231[label="FiniteMap.mkBalBranch (Just zwu600) zwu61 (FiniteMap.addToFM_C FiniteMap.addToFM0 zwu63 Nothing zwu41) zwu64",fontsize=16,color="magenta"];231 -> 415[label="",style="dashed", color="magenta", weight=3]; 231 -> 416[label="",style="dashed", color="magenta", weight=3]; 2779[label="Just zwu400",fontsize=16,color="green",shape="box"];2780[label="Nothing",fontsize=16,color="green",shape="box"];2781[label="False",fontsize=16,color="green",shape="box"];284 -> 375[label="",style="dashed", color="red", weight=0]; 284[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 (Just zwu400 > Nothing)",fontsize=16,color="magenta"];284 -> 376[label="",style="dashed", color="magenta", weight=3]; 285 -> 414[label="",style="dashed", color="red", weight=0]; 285[label="FiniteMap.mkBalBranch Nothing zwu61 (FiniteMap.addToFM_C FiniteMap.addToFM0 zwu63 (Just zwu400) zwu41) zwu64",fontsize=16,color="magenta"];285 -> 417[label="",style="dashed", color="magenta", weight=3]; 285 -> 418[label="",style="dashed", color="magenta", weight=3]; 2782[label="Just zwu400",fontsize=16,color="green",shape="box"];2783[label="Just zwu600",fontsize=16,color="green",shape="box"];2784[label="zwu400 == zwu600",fontsize=16,color="blue",shape="box"];6885[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6885[label="",style="solid", color="blue", weight=9]; 6885 -> 2812[label="",style="solid", color="blue", weight=3]; 6886[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6886[label="",style="solid", color="blue", weight=9]; 6886 -> 2813[label="",style="solid", color="blue", weight=3]; 6887[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6887[label="",style="solid", color="blue", weight=9]; 6887 -> 2814[label="",style="solid", color="blue", weight=3]; 6888[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6888[label="",style="solid", color="blue", weight=9]; 6888 -> 2815[label="",style="solid", color="blue", weight=3]; 6889[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6889[label="",style="solid", color="blue", weight=9]; 6889 -> 2816[label="",style="solid", color="blue", weight=3]; 6890[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6890[label="",style="solid", color="blue", weight=9]; 6890 -> 2817[label="",style="solid", color="blue", weight=3]; 6891[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6891[label="",style="solid", color="blue", weight=9]; 6891 -> 2818[label="",style="solid", color="blue", weight=3]; 6892[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6892[label="",style="solid", color="blue", weight=9]; 6892 -> 2819[label="",style="solid", color="blue", weight=3]; 6893[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6893[label="",style="solid", color="blue", weight=9]; 6893 -> 2820[label="",style="solid", color="blue", weight=3]; 6894[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6894[label="",style="solid", color="blue", weight=9]; 6894 -> 2821[label="",style="solid", color="blue", weight=3]; 6895[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6895[label="",style="solid", color="blue", weight=9]; 6895 -> 2822[label="",style="solid", color="blue", weight=3]; 6896[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6896[label="",style="solid", color="blue", weight=9]; 6896 -> 2823[label="",style="solid", color="blue", weight=3]; 6897[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6897[label="",style="solid", color="blue", weight=9]; 6897 -> 2824[label="",style="solid", color="blue", weight=3]; 6898[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2784 -> 6898[label="",style="solid", color="blue", weight=9]; 6898 -> 2825[label="",style="solid", color="blue", weight=3]; 294 -> 403[label="",style="dashed", color="red", weight=0]; 294[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 (Just zwu24 > Just zwu19)",fontsize=16,color="magenta"];294 -> 404[label="",style="dashed", color="magenta", weight=3]; 295 -> 414[label="",style="dashed", color="red", weight=0]; 295[label="FiniteMap.mkBalBranch (Just zwu19) zwu20 (FiniteMap.addToFM_C FiniteMap.addToFM0 zwu22 (Just zwu24) zwu25) zwu23",fontsize=16,color="magenta"];295 -> 419[label="",style="dashed", color="magenta", weight=3]; 295 -> 420[label="",style="dashed", color="magenta", weight=3]; 295 -> 421[label="",style="dashed", color="magenta", weight=3]; 295 -> 422[label="",style="dashed", color="magenta", weight=3]; 177[label="LT",fontsize=16,color="green",shape="box"];178[label="primCmpInt (Pos (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];178 -> 321[label="",style="solid", color="black", weight=3]; 179[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];179 -> 322[label="",style="solid", color="black", weight=3]; 180[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];180 -> 323[label="",style="solid", color="black", weight=3]; 184[label="LT",fontsize=16,color="green",shape="box"];185[label="primCmpInt (Pos Zero) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];185 -> 324[label="",style="solid", color="black", weight=3]; 186[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];186 -> 325[label="",style="solid", color="black", weight=3]; 187[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];187 -> 326[label="",style="solid", color="black", weight=3]; 191[label="LT",fontsize=16,color="green",shape="box"];192[label="primCmpInt (Neg (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];192 -> 327[label="",style="solid", color="black", weight=3]; 193[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];193 -> 328[label="",style="solid", color="black", weight=3]; 194[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];194 -> 329[label="",style="solid", color="black", weight=3]; 198[label="LT",fontsize=16,color="green",shape="box"];199[label="primCmpInt (Neg Zero) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];199 -> 330[label="",style="solid", color="black", weight=3]; 200[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];200 -> 331[label="",style="solid", color="black", weight=3]; 201[label="FiniteMap.mkVBalBranch3MkVBalBranch2 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];201 -> 332[label="",style="solid", color="black", weight=3]; 203 -> 135[label="",style="dashed", color="red", weight=0]; 203[label="primCmpInt (Pos (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];203 -> 333[label="",style="dashed", color="magenta", weight=3]; 203 -> 334[label="",style="dashed", color="magenta", weight=3]; 202[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu31",fontsize=16,color="burlywood",shape="triangle"];6899[label="zwu31/False",fontsize=10,color="white",style="solid",shape="box"];202 -> 6899[label="",style="solid", color="burlywood", weight=9]; 6899 -> 335[label="",style="solid", color="burlywood", weight=3]; 6900[label="zwu31/True",fontsize=10,color="white",style="solid",shape="box"];202 -> 6900[label="",style="solid", color="burlywood", weight=9]; 6900 -> 336[label="",style="solid", color="burlywood", weight=3]; 205 -> 135[label="",style="dashed", color="red", weight=0]; 205[label="primCmpInt (Pos Zero) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];205 -> 337[label="",style="dashed", color="magenta", weight=3]; 205 -> 338[label="",style="dashed", color="magenta", weight=3]; 204[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu32",fontsize=16,color="burlywood",shape="triangle"];6901[label="zwu32/False",fontsize=10,color="white",style="solid",shape="box"];204 -> 6901[label="",style="solid", color="burlywood", weight=9]; 6901 -> 339[label="",style="solid", color="burlywood", weight=3]; 6902[label="zwu32/True",fontsize=10,color="white",style="solid",shape="box"];204 -> 6902[label="",style="solid", color="burlywood", weight=9]; 6902 -> 340[label="",style="solid", color="burlywood", weight=3]; 207 -> 135[label="",style="dashed", color="red", weight=0]; 207[label="primCmpInt (Neg (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];207 -> 341[label="",style="dashed", color="magenta", weight=3]; 207 -> 342[label="",style="dashed", color="magenta", weight=3]; 206[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu33",fontsize=16,color="burlywood",shape="triangle"];6903[label="zwu33/False",fontsize=10,color="white",style="solid",shape="box"];206 -> 6903[label="",style="solid", color="burlywood", weight=9]; 6903 -> 343[label="",style="solid", color="burlywood", weight=3]; 6904[label="zwu33/True",fontsize=10,color="white",style="solid",shape="box"];206 -> 6904[label="",style="solid", color="burlywood", weight=9]; 6904 -> 344[label="",style="solid", color="burlywood", weight=3]; 209 -> 135[label="",style="dashed", color="red", weight=0]; 209[label="primCmpInt (Neg Zero) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];209 -> 345[label="",style="dashed", color="magenta", weight=3]; 209 -> 346[label="",style="dashed", color="magenta", weight=3]; 208[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu34",fontsize=16,color="burlywood",shape="triangle"];6905[label="zwu34/False",fontsize=10,color="white",style="solid",shape="box"];208 -> 6905[label="",style="solid", color="burlywood", weight=9]; 6905 -> 347[label="",style="solid", color="burlywood", weight=3]; 6906[label="zwu34/True",fontsize=10,color="white",style="solid",shape="box"];208 -> 6906[label="",style="solid", color="burlywood", weight=9]; 6906 -> 348[label="",style="solid", color="burlywood", weight=3]; 350[label="Nothing > Nothing",fontsize=16,color="black",shape="box"];350 -> 352[label="",style="solid", color="black", weight=3]; 349[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 zwu47",fontsize=16,color="burlywood",shape="triangle"];6907[label="zwu47/False",fontsize=10,color="white",style="solid",shape="box"];349 -> 6907[label="",style="solid", color="burlywood", weight=9]; 6907 -> 353[label="",style="solid", color="burlywood", weight=3]; 6908[label="zwu47/True",fontsize=10,color="white",style="solid",shape="box"];349 -> 6908[label="",style="solid", color="burlywood", weight=9]; 6908 -> 354[label="",style="solid", color="burlywood", weight=3]; 2810[label="compare2 zwu430 zwu440 False",fontsize=16,color="black",shape="box"];2810 -> 2887[label="",style="solid", color="black", weight=3]; 2811[label="compare2 zwu430 zwu440 True",fontsize=16,color="black",shape="box"];2811 -> 2888[label="",style="solid", color="black", weight=3]; 232[label="LT == LT",fontsize=16,color="black",shape="box"];232 -> 356[label="",style="solid", color="black", weight=3]; 233[label="LT == EQ",fontsize=16,color="black",shape="box"];233 -> 357[label="",style="solid", color="black", weight=3]; 234[label="LT == GT",fontsize=16,color="black",shape="box"];234 -> 358[label="",style="solid", color="black", weight=3]; 235[label="EQ == LT",fontsize=16,color="black",shape="box"];235 -> 359[label="",style="solid", color="black", weight=3]; 236[label="EQ == EQ",fontsize=16,color="black",shape="box"];236 -> 360[label="",style="solid", color="black", weight=3]; 237[label="EQ == GT",fontsize=16,color="black",shape="box"];237 -> 361[label="",style="solid", color="black", weight=3]; 238[label="GT == LT",fontsize=16,color="black",shape="box"];238 -> 362[label="",style="solid", color="black", weight=3]; 239[label="GT == EQ",fontsize=16,color="black",shape="box"];239 -> 363[label="",style="solid", color="black", weight=3]; 240[label="GT == GT",fontsize=16,color="black",shape="box"];240 -> 364[label="",style="solid", color="black", weight=3]; 366[label="Nothing > Just zwu600",fontsize=16,color="black",shape="box"];366 -> 368[label="",style="solid", color="black", weight=3]; 365[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 zwu48",fontsize=16,color="burlywood",shape="triangle"];6909[label="zwu48/False",fontsize=10,color="white",style="solid",shape="box"];365 -> 6909[label="",style="solid", color="burlywood", weight=9]; 6909 -> 369[label="",style="solid", color="burlywood", weight=3]; 6910[label="zwu48/True",fontsize=10,color="white",style="solid",shape="box"];365 -> 6910[label="",style="solid", color="burlywood", weight=9]; 6910 -> 370[label="",style="solid", color="burlywood", weight=3]; 415 -> 47[label="",style="dashed", color="red", weight=0]; 415[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu63 Nothing zwu41",fontsize=16,color="magenta"];415 -> 431[label="",style="dashed", color="magenta", weight=3]; 415 -> 432[label="",style="dashed", color="magenta", weight=3]; 416[label="Just zwu600",fontsize=16,color="green",shape="box"];414[label="FiniteMap.mkBalBranch zwu60 zwu61 zwu51 zwu64",fontsize=16,color="black",shape="triangle"];414 -> 433[label="",style="solid", color="black", weight=3]; 376[label="Just zwu400 > Nothing",fontsize=16,color="black",shape="box"];376 -> 378[label="",style="solid", color="black", weight=3]; 375[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 zwu49",fontsize=16,color="burlywood",shape="triangle"];6911[label="zwu49/False",fontsize=10,color="white",style="solid",shape="box"];375 -> 6911[label="",style="solid", color="burlywood", weight=9]; 6911 -> 379[label="",style="solid", color="burlywood", weight=3]; 6912[label="zwu49/True",fontsize=10,color="white",style="solid",shape="box"];375 -> 6912[label="",style="solid", color="burlywood", weight=9]; 6912 -> 380[label="",style="solid", color="burlywood", weight=3]; 417 -> 47[label="",style="dashed", color="red", weight=0]; 417[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu63 (Just zwu400) zwu41",fontsize=16,color="magenta"];417 -> 434[label="",style="dashed", color="magenta", weight=3]; 417 -> 435[label="",style="dashed", color="magenta", weight=3]; 418[label="Nothing",fontsize=16,color="green",shape="box"];2812[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6913[label="zwu400/Nothing",fontsize=10,color="white",style="solid",shape="box"];2812 -> 6913[label="",style="solid", color="burlywood", weight=9]; 6913 -> 2889[label="",style="solid", color="burlywood", weight=3]; 6914[label="zwu400/Just zwu4000",fontsize=10,color="white",style="solid",shape="box"];2812 -> 6914[label="",style="solid", color="burlywood", weight=9]; 6914 -> 2890[label="",style="solid", color="burlywood", weight=3]; 2813[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6915[label="zwu400/zwu4000 :% zwu4001",fontsize=10,color="white",style="solid",shape="box"];2813 -> 6915[label="",style="solid", color="burlywood", weight=9]; 6915 -> 2891[label="",style="solid", color="burlywood", weight=3]; 2814[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6916[label="zwu400/(zwu4000,zwu4001,zwu4002)",fontsize=10,color="white",style="solid",shape="box"];2814 -> 6916[label="",style="solid", color="burlywood", weight=9]; 6916 -> 2892[label="",style="solid", color="burlywood", weight=3]; 2815[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6917[label="zwu400/Left zwu4000",fontsize=10,color="white",style="solid",shape="box"];2815 -> 6917[label="",style="solid", color="burlywood", weight=9]; 6917 -> 2893[label="",style="solid", color="burlywood", weight=3]; 6918[label="zwu400/Right zwu4000",fontsize=10,color="white",style="solid",shape="box"];2815 -> 6918[label="",style="solid", color="burlywood", weight=9]; 6918 -> 2894[label="",style="solid", color="burlywood", weight=3]; 2816[label="zwu400 == zwu600",fontsize=16,color="black",shape="triangle"];2816 -> 2895[label="",style="solid", color="black", weight=3]; 2817[label="zwu400 == zwu600",fontsize=16,color="black",shape="triangle"];2817 -> 2896[label="",style="solid", color="black", weight=3]; 2818[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6919[label="zwu400/False",fontsize=10,color="white",style="solid",shape="box"];2818 -> 6919[label="",style="solid", color="burlywood", weight=9]; 6919 -> 2897[label="",style="solid", color="burlywood", weight=3]; 6920[label="zwu400/True",fontsize=10,color="white",style="solid",shape="box"];2818 -> 6920[label="",style="solid", color="burlywood", weight=9]; 6920 -> 2898[label="",style="solid", color="burlywood", weight=3]; 2819[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6921[label="zwu400/()",fontsize=10,color="white",style="solid",shape="box"];2819 -> 6921[label="",style="solid", color="burlywood", weight=9]; 6921 -> 2899[label="",style="solid", color="burlywood", weight=3]; 2820[label="zwu400 == zwu600",fontsize=16,color="black",shape="triangle"];2820 -> 2900[label="",style="solid", color="black", weight=3]; 2821[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6922[label="zwu400/Integer zwu4000",fontsize=10,color="white",style="solid",shape="box"];2821 -> 6922[label="",style="solid", color="burlywood", weight=9]; 6922 -> 2901[label="",style="solid", color="burlywood", weight=3]; 2822 -> 135[label="",style="dashed", color="red", weight=0]; 2822[label="zwu400 == zwu600",fontsize=16,color="magenta"];2823[label="zwu400 == zwu600",fontsize=16,color="black",shape="triangle"];2823 -> 2902[label="",style="solid", color="black", weight=3]; 2824[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6923[label="zwu400/(zwu4000,zwu4001)",fontsize=10,color="white",style="solid",shape="box"];2824 -> 6923[label="",style="solid", color="burlywood", weight=9]; 6923 -> 2903[label="",style="solid", color="burlywood", weight=3]; 2825[label="zwu400 == zwu600",fontsize=16,color="burlywood",shape="triangle"];6924[label="zwu400/zwu4000 : zwu4001",fontsize=10,color="white",style="solid",shape="box"];2825 -> 6924[label="",style="solid", color="burlywood", weight=9]; 6924 -> 2904[label="",style="solid", color="burlywood", weight=3]; 6925[label="zwu400/[]",fontsize=10,color="white",style="solid",shape="box"];2825 -> 6925[label="",style="solid", color="burlywood", weight=9]; 6925 -> 2905[label="",style="solid", color="burlywood", weight=3]; 404[label="Just zwu24 > Just zwu19",fontsize=16,color="black",shape="box"];404 -> 406[label="",style="solid", color="black", weight=3]; 403[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 zwu50",fontsize=16,color="burlywood",shape="triangle"];6926[label="zwu50/False",fontsize=10,color="white",style="solid",shape="box"];403 -> 6926[label="",style="solid", color="burlywood", weight=9]; 6926 -> 407[label="",style="solid", color="burlywood", weight=3]; 6927[label="zwu50/True",fontsize=10,color="white",style="solid",shape="box"];403 -> 6927[label="",style="solid", color="burlywood", weight=9]; 6927 -> 408[label="",style="solid", color="burlywood", weight=3]; 419 -> 47[label="",style="dashed", color="red", weight=0]; 419[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu22 (Just zwu24) zwu25",fontsize=16,color="magenta"];419 -> 436[label="",style="dashed", color="magenta", weight=3]; 419 -> 437[label="",style="dashed", color="magenta", weight=3]; 419 -> 438[label="",style="dashed", color="magenta", weight=3]; 420[label="zwu20",fontsize=16,color="green",shape="box"];421[label="zwu23",fontsize=16,color="green",shape="box"];422[label="Just zwu19",fontsize=16,color="green",shape="box"];321[label="primCmpInt (Pos (primPlusNat (primPlusNat (primMulNat (Succ (Succ (Succ Zero))) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];321 -> 412[label="",style="solid", color="black", weight=3]; 322 -> 502[label="",style="dashed", color="red", weight=0]; 322[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];322 -> 503[label="",style="dashed", color="magenta", weight=3]; 323 -> 414[label="",style="dashed", color="red", weight=0]; 323[label="FiniteMap.mkBalBranch zwu60 zwu61 (FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) zwu63) zwu64",fontsize=16,color="magenta"];323 -> 427[label="",style="dashed", color="magenta", weight=3]; 324[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64))",fontsize=16,color="black",shape="box"];324 -> 439[label="",style="solid", color="black", weight=3]; 325 -> 513[label="",style="dashed", color="red", weight=0]; 325[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="magenta"];325 -> 514[label="",style="dashed", color="magenta", weight=3]; 326 -> 414[label="",style="dashed", color="red", weight=0]; 326[label="FiniteMap.mkBalBranch zwu60 zwu61 (FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74) zwu63) zwu64",fontsize=16,color="magenta"];326 -> 428[label="",style="dashed", color="magenta", weight=3]; 327[label="primCmpInt (Neg (primPlusNat (primPlusNat (primMulNat (Succ (Succ (Succ Zero))) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];327 -> 441[label="",style="solid", color="black", weight=3]; 328 -> 522[label="",style="dashed", color="red", weight=0]; 328[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];328 -> 523[label="",style="dashed", color="magenta", weight=3]; 329 -> 414[label="",style="dashed", color="red", weight=0]; 329[label="FiniteMap.mkBalBranch zwu60 zwu61 (FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) zwu63) zwu64",fontsize=16,color="magenta"];329 -> 429[label="",style="dashed", color="magenta", weight=3]; 330[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64))",fontsize=16,color="black",shape="box"];330 -> 443[label="",style="solid", color="black", weight=3]; 331 -> 532[label="",style="dashed", color="red", weight=0]; 331[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="magenta"];331 -> 533[label="",style="dashed", color="magenta", weight=3]; 332 -> 414[label="",style="dashed", color="red", weight=0]; 332[label="FiniteMap.mkBalBranch zwu60 zwu61 (FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74) zwu63) zwu64",fontsize=16,color="magenta"];332 -> 430[label="",style="dashed", color="magenta", weight=3]; 333[label="LT",fontsize=16,color="green",shape="box"];334[label="primCmpInt (Pos (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];334 -> 445[label="",style="solid", color="black", weight=3]; 335[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];335 -> 446[label="",style="solid", color="black", weight=3]; 336[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];336 -> 447[label="",style="solid", color="black", weight=3]; 337[label="LT",fontsize=16,color="green",shape="box"];338[label="primCmpInt (Pos Zero) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];338 -> 448[label="",style="solid", color="black", weight=3]; 339[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];339 -> 449[label="",style="solid", color="black", weight=3]; 340[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];340 -> 450[label="",style="solid", color="black", weight=3]; 341[label="LT",fontsize=16,color="green",shape="box"];342[label="primCmpInt (Neg (primPlusNat (primMulNat (Succ (Succ (Succ (Succ Zero)))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];342 -> 451[label="",style="solid", color="black", weight=3]; 343[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];343 -> 452[label="",style="solid", color="black", weight=3]; 344[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];344 -> 453[label="",style="solid", color="black", weight=3]; 345[label="LT",fontsize=16,color="green",shape="box"];346[label="primCmpInt (Neg Zero) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];346 -> 454[label="",style="solid", color="black", weight=3]; 347[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];347 -> 455[label="",style="solid", color="black", weight=3]; 348[label="FiniteMap.glueVBal3GlueVBal2 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];348 -> 456[label="",style="solid", color="black", weight=3]; 352 -> 135[label="",style="dashed", color="red", weight=0]; 352[label="compare Nothing Nothing == GT",fontsize=16,color="magenta"];352 -> 457[label="",style="dashed", color="magenta", weight=3]; 352 -> 458[label="",style="dashed", color="magenta", weight=3]; 353[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 False",fontsize=16,color="black",shape="box"];353 -> 459[label="",style="solid", color="black", weight=3]; 354[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 True",fontsize=16,color="black",shape="box"];354 -> 460[label="",style="solid", color="black", weight=3]; 2887[label="compare1 zwu430 zwu440 (zwu430 <= zwu440)",fontsize=16,color="burlywood",shape="box"];6928[label="zwu430/Nothing",fontsize=10,color="white",style="solid",shape="box"];2887 -> 6928[label="",style="solid", color="burlywood", weight=9]; 6928 -> 2990[label="",style="solid", color="burlywood", weight=3]; 6929[label="zwu430/Just zwu4300",fontsize=10,color="white",style="solid",shape="box"];2887 -> 6929[label="",style="solid", color="burlywood", weight=9]; 6929 -> 2991[label="",style="solid", color="burlywood", weight=3]; 2888[label="EQ",fontsize=16,color="green",shape="box"];356[label="True",fontsize=16,color="green",shape="box"];357[label="False",fontsize=16,color="green",shape="box"];358[label="False",fontsize=16,color="green",shape="box"];359[label="False",fontsize=16,color="green",shape="box"];360[label="True",fontsize=16,color="green",shape="box"];361[label="False",fontsize=16,color="green",shape="box"];362[label="False",fontsize=16,color="green",shape="box"];363[label="False",fontsize=16,color="green",shape="box"];364[label="True",fontsize=16,color="green",shape="box"];368 -> 135[label="",style="dashed", color="red", weight=0]; 368[label="compare Nothing (Just zwu600) == GT",fontsize=16,color="magenta"];368 -> 461[label="",style="dashed", color="magenta", weight=3]; 368 -> 462[label="",style="dashed", color="magenta", weight=3]; 369[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 False",fontsize=16,color="black",shape="box"];369 -> 463[label="",style="solid", color="black", weight=3]; 370[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 True",fontsize=16,color="black",shape="box"];370 -> 464[label="",style="solid", color="black", weight=3]; 431[label="zwu63",fontsize=16,color="green",shape="box"];432[label="Nothing",fontsize=16,color="green",shape="box"];433[label="FiniteMap.mkBalBranch6 zwu60 zwu61 zwu51 zwu64",fontsize=16,color="black",shape="box"];433 -> 505[label="",style="solid", color="black", weight=3]; 378 -> 135[label="",style="dashed", color="red", weight=0]; 378[label="compare (Just zwu400) Nothing == GT",fontsize=16,color="magenta"];378 -> 466[label="",style="dashed", color="magenta", weight=3]; 378 -> 467[label="",style="dashed", color="magenta", weight=3]; 379[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 False",fontsize=16,color="black",shape="box"];379 -> 468[label="",style="solid", color="black", weight=3]; 380[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 True",fontsize=16,color="black",shape="box"];380 -> 469[label="",style="solid", color="black", weight=3]; 434[label="zwu63",fontsize=16,color="green",shape="box"];435[label="Just zwu400",fontsize=16,color="green",shape="box"];2889[label="Nothing == zwu600",fontsize=16,color="burlywood",shape="box"];6930[label="zwu600/Nothing",fontsize=10,color="white",style="solid",shape="box"];2889 -> 6930[label="",style="solid", color="burlywood", weight=9]; 6930 -> 2992[label="",style="solid", color="burlywood", weight=3]; 6931[label="zwu600/Just zwu6000",fontsize=10,color="white",style="solid",shape="box"];2889 -> 6931[label="",style="solid", color="burlywood", weight=9]; 6931 -> 2993[label="",style="solid", color="burlywood", weight=3]; 2890[label="Just zwu4000 == zwu600",fontsize=16,color="burlywood",shape="box"];6932[label="zwu600/Nothing",fontsize=10,color="white",style="solid",shape="box"];2890 -> 6932[label="",style="solid", color="burlywood", weight=9]; 6932 -> 2994[label="",style="solid", color="burlywood", weight=3]; 6933[label="zwu600/Just zwu6000",fontsize=10,color="white",style="solid",shape="box"];2890 -> 6933[label="",style="solid", color="burlywood", weight=9]; 6933 -> 2995[label="",style="solid", color="burlywood", weight=3]; 2891[label="zwu4000 :% zwu4001 == zwu600",fontsize=16,color="burlywood",shape="box"];6934[label="zwu600/zwu6000 :% zwu6001",fontsize=10,color="white",style="solid",shape="box"];2891 -> 6934[label="",style="solid", color="burlywood", weight=9]; 6934 -> 2996[label="",style="solid", color="burlywood", weight=3]; 2892[label="(zwu4000,zwu4001,zwu4002) == zwu600",fontsize=16,color="burlywood",shape="box"];6935[label="zwu600/(zwu6000,zwu6001,zwu6002)",fontsize=10,color="white",style="solid",shape="box"];2892 -> 6935[label="",style="solid", color="burlywood", weight=9]; 6935 -> 2997[label="",style="solid", color="burlywood", weight=3]; 2893[label="Left zwu4000 == zwu600",fontsize=16,color="burlywood",shape="box"];6936[label="zwu600/Left zwu6000",fontsize=10,color="white",style="solid",shape="box"];2893 -> 6936[label="",style="solid", color="burlywood", weight=9]; 6936 -> 2998[label="",style="solid", color="burlywood", weight=3]; 6937[label="zwu600/Right zwu6000",fontsize=10,color="white",style="solid",shape="box"];2893 -> 6937[label="",style="solid", color="burlywood", weight=9]; 6937 -> 2999[label="",style="solid", color="burlywood", weight=3]; 2894[label="Right zwu4000 == zwu600",fontsize=16,color="burlywood",shape="box"];6938[label="zwu600/Left zwu6000",fontsize=10,color="white",style="solid",shape="box"];2894 -> 6938[label="",style="solid", color="burlywood", weight=9]; 6938 -> 3000[label="",style="solid", color="burlywood", weight=3]; 6939[label="zwu600/Right zwu6000",fontsize=10,color="white",style="solid",shape="box"];2894 -> 6939[label="",style="solid", color="burlywood", weight=9]; 6939 -> 3001[label="",style="solid", color="burlywood", weight=3]; 2895[label="primEqInt zwu400 zwu600",fontsize=16,color="burlywood",shape="triangle"];6940[label="zwu400/Pos zwu4000",fontsize=10,color="white",style="solid",shape="box"];2895 -> 6940[label="",style="solid", color="burlywood", weight=9]; 6940 -> 3002[label="",style="solid", color="burlywood", weight=3]; 6941[label="zwu400/Neg zwu4000",fontsize=10,color="white",style="solid",shape="box"];2895 -> 6941[label="",style="solid", color="burlywood", weight=9]; 6941 -> 3003[label="",style="solid", color="burlywood", weight=3]; 2896[label="primEqFloat zwu400 zwu600",fontsize=16,color="burlywood",shape="box"];6942[label="zwu400/Float zwu4000 zwu4001",fontsize=10,color="white",style="solid",shape="box"];2896 -> 6942[label="",style="solid", color="burlywood", weight=9]; 6942 -> 3004[label="",style="solid", color="burlywood", weight=3]; 2897[label="False == zwu600",fontsize=16,color="burlywood",shape="box"];6943[label="zwu600/False",fontsize=10,color="white",style="solid",shape="box"];2897 -> 6943[label="",style="solid", color="burlywood", weight=9]; 6943 -> 3005[label="",style="solid", color="burlywood", weight=3]; 6944[label="zwu600/True",fontsize=10,color="white",style="solid",shape="box"];2897 -> 6944[label="",style="solid", color="burlywood", weight=9]; 6944 -> 3006[label="",style="solid", color="burlywood", weight=3]; 2898[label="True == zwu600",fontsize=16,color="burlywood",shape="box"];6945[label="zwu600/False",fontsize=10,color="white",style="solid",shape="box"];2898 -> 6945[label="",style="solid", color="burlywood", weight=9]; 6945 -> 3007[label="",style="solid", color="burlywood", weight=3]; 6946[label="zwu600/True",fontsize=10,color="white",style="solid",shape="box"];2898 -> 6946[label="",style="solid", color="burlywood", weight=9]; 6946 -> 3008[label="",style="solid", color="burlywood", weight=3]; 2899[label="() == zwu600",fontsize=16,color="burlywood",shape="box"];6947[label="zwu600/()",fontsize=10,color="white",style="solid",shape="box"];2899 -> 6947[label="",style="solid", color="burlywood", weight=9]; 6947 -> 3009[label="",style="solid", color="burlywood", weight=3]; 2900[label="primEqDouble zwu400 zwu600",fontsize=16,color="burlywood",shape="box"];6948[label="zwu400/Double zwu4000 zwu4001",fontsize=10,color="white",style="solid",shape="box"];2900 -> 6948[label="",style="solid", color="burlywood", weight=9]; 6948 -> 3010[label="",style="solid", color="burlywood", weight=3]; 2901[label="Integer zwu4000 == zwu600",fontsize=16,color="burlywood",shape="box"];6949[label="zwu600/Integer zwu6000",fontsize=10,color="white",style="solid",shape="box"];2901 -> 6949[label="",style="solid", color="burlywood", weight=9]; 6949 -> 3011[label="",style="solid", color="burlywood", weight=3]; 2902[label="primEqChar zwu400 zwu600",fontsize=16,color="burlywood",shape="box"];6950[label="zwu400/Char zwu4000",fontsize=10,color="white",style="solid",shape="box"];2902 -> 6950[label="",style="solid", color="burlywood", weight=9]; 6950 -> 3012[label="",style="solid", color="burlywood", weight=3]; 2903[label="(zwu4000,zwu4001) == zwu600",fontsize=16,color="burlywood",shape="box"];6951[label="zwu600/(zwu6000,zwu6001)",fontsize=10,color="white",style="solid",shape="box"];2903 -> 6951[label="",style="solid", color="burlywood", weight=9]; 6951 -> 3013[label="",style="solid", color="burlywood", weight=3]; 2904[label="zwu4000 : zwu4001 == zwu600",fontsize=16,color="burlywood",shape="box"];6952[label="zwu600/zwu6000 : zwu6001",fontsize=10,color="white",style="solid",shape="box"];2904 -> 6952[label="",style="solid", color="burlywood", weight=9]; 6952 -> 3014[label="",style="solid", color="burlywood", weight=3]; 6953[label="zwu600/[]",fontsize=10,color="white",style="solid",shape="box"];2904 -> 6953[label="",style="solid", color="burlywood", weight=9]; 6953 -> 3015[label="",style="solid", color="burlywood", weight=3]; 2905[label="[] == zwu600",fontsize=16,color="burlywood",shape="box"];6954[label="zwu600/zwu6000 : zwu6001",fontsize=10,color="white",style="solid",shape="box"];2905 -> 6954[label="",style="solid", color="burlywood", weight=9]; 6954 -> 3016[label="",style="solid", color="burlywood", weight=3]; 6955[label="zwu600/[]",fontsize=10,color="white",style="solid",shape="box"];2905 -> 6955[label="",style="solid", color="burlywood", weight=9]; 6955 -> 3017[label="",style="solid", color="burlywood", weight=3]; 406 -> 135[label="",style="dashed", color="red", weight=0]; 406[label="compare (Just zwu24) (Just zwu19) == GT",fontsize=16,color="magenta"];406 -> 497[label="",style="dashed", color="magenta", weight=3]; 406 -> 498[label="",style="dashed", color="magenta", weight=3]; 407[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 False",fontsize=16,color="black",shape="box"];407 -> 499[label="",style="solid", color="black", weight=3]; 408[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 True",fontsize=16,color="black",shape="box"];408 -> 500[label="",style="solid", color="black", weight=3]; 436[label="zwu25",fontsize=16,color="green",shape="box"];437[label="zwu22",fontsize=16,color="green",shape="box"];438[label="Just zwu24",fontsize=16,color="green",shape="box"];412[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ (Succ Zero)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];412 -> 501[label="",style="solid", color="black", weight=3]; 503[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="black",shape="box"];503 -> 506[label="",style="solid", color="black", weight=3]; 502[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu52",fontsize=16,color="burlywood",shape="triangle"];6956[label="zwu52/False",fontsize=10,color="white",style="solid",shape="box"];502 -> 6956[label="",style="solid", color="burlywood", weight=9]; 6956 -> 507[label="",style="solid", color="burlywood", weight=3]; 6957[label="zwu52/True",fontsize=10,color="white",style="solid",shape="box"];502 -> 6957[label="",style="solid", color="burlywood", weight=9]; 6957 -> 508[label="",style="solid", color="burlywood", weight=3]; 427 -> 23[label="",style="dashed", color="red", weight=0]; 427[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) zwu63",fontsize=16,color="magenta"];427 -> 509[label="",style="dashed", color="magenta", weight=3]; 427 -> 510[label="",style="dashed", color="magenta", weight=3]; 439[label="primCmpInt (Pos Zero) zwu62",fontsize=16,color="burlywood",shape="triangle"];6958[label="zwu62/Pos zwu620",fontsize=10,color="white",style="solid",shape="box"];439 -> 6958[label="",style="solid", color="burlywood", weight=9]; 6958 -> 511[label="",style="solid", color="burlywood", weight=3]; 6959[label="zwu62/Neg zwu620",fontsize=10,color="white",style="solid",shape="box"];439 -> 6959[label="",style="solid", color="burlywood", weight=9]; 6959 -> 512[label="",style="solid", color="burlywood", weight=3]; 514[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="black",shape="box"];514 -> 516[label="",style="solid", color="black", weight=3]; 513[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu53",fontsize=16,color="burlywood",shape="triangle"];6960[label="zwu53/False",fontsize=10,color="white",style="solid",shape="box"];513 -> 6960[label="",style="solid", color="burlywood", weight=9]; 6960 -> 517[label="",style="solid", color="burlywood", weight=3]; 6961[label="zwu53/True",fontsize=10,color="white",style="solid",shape="box"];513 -> 6961[label="",style="solid", color="burlywood", weight=9]; 6961 -> 518[label="",style="solid", color="burlywood", weight=3]; 428 -> 23[label="",style="dashed", color="red", weight=0]; 428[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74) zwu63",fontsize=16,color="magenta"];428 -> 519[label="",style="dashed", color="magenta", weight=3]; 428 -> 520[label="",style="dashed", color="magenta", weight=3]; 441[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ (Succ Zero)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];441 -> 521[label="",style="solid", color="black", weight=3]; 523[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="black",shape="box"];523 -> 525[label="",style="solid", color="black", weight=3]; 522[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu54",fontsize=16,color="burlywood",shape="triangle"];6962[label="zwu54/False",fontsize=10,color="white",style="solid",shape="box"];522 -> 6962[label="",style="solid", color="burlywood", weight=9]; 6962 -> 526[label="",style="solid", color="burlywood", weight=3]; 6963[label="zwu54/True",fontsize=10,color="white",style="solid",shape="box"];522 -> 6963[label="",style="solid", color="burlywood", weight=9]; 6963 -> 527[label="",style="solid", color="burlywood", weight=3]; 429 -> 23[label="",style="dashed", color="red", weight=0]; 429[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) zwu63",fontsize=16,color="magenta"];429 -> 528[label="",style="dashed", color="magenta", weight=3]; 429 -> 529[label="",style="dashed", color="magenta", weight=3]; 443[label="primCmpInt (Neg Zero) zwu62",fontsize=16,color="burlywood",shape="triangle"];6964[label="zwu62/Pos zwu620",fontsize=10,color="white",style="solid",shape="box"];443 -> 6964[label="",style="solid", color="burlywood", weight=9]; 6964 -> 530[label="",style="solid", color="burlywood", weight=3]; 6965[label="zwu62/Neg zwu620",fontsize=10,color="white",style="solid",shape="box"];443 -> 6965[label="",style="solid", color="burlywood", weight=9]; 6965 -> 531[label="",style="solid", color="burlywood", weight=3]; 533[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 < FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="black",shape="box"];533 -> 535[label="",style="solid", color="black", weight=3]; 532[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 zwu55",fontsize=16,color="burlywood",shape="triangle"];6966[label="zwu55/False",fontsize=10,color="white",style="solid",shape="box"];532 -> 6966[label="",style="solid", color="burlywood", weight=9]; 6966 -> 536[label="",style="solid", color="burlywood", weight=3]; 6967[label="zwu55/True",fontsize=10,color="white",style="solid",shape="box"];532 -> 6967[label="",style="solid", color="burlywood", weight=9]; 6967 -> 537[label="",style="solid", color="burlywood", weight=3]; 430 -> 23[label="",style="dashed", color="red", weight=0]; 430[label="FiniteMap.mkVBalBranch zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74) zwu63",fontsize=16,color="magenta"];430 -> 538[label="",style="dashed", color="magenta", weight=3]; 430 -> 539[label="",style="dashed", color="magenta", weight=3]; 445[label="primCmpInt (Pos (primPlusNat (primPlusNat (primMulNat (Succ (Succ (Succ Zero))) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];445 -> 540[label="",style="solid", color="black", weight=3]; 446 -> 652[label="",style="dashed", color="red", weight=0]; 446[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];446 -> 653[label="",style="dashed", color="magenta", weight=3]; 447 -> 414[label="",style="dashed", color="red", weight=0]; 447[label="FiniteMap.mkBalBranch zwu80 zwu81 (FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) zwu83) zwu84",fontsize=16,color="magenta"];447 -> 542[label="",style="dashed", color="magenta", weight=3]; 447 -> 543[label="",style="dashed", color="magenta", weight=3]; 447 -> 544[label="",style="dashed", color="magenta", weight=3]; 447 -> 545[label="",style="dashed", color="magenta", weight=3]; 448 -> 439[label="",style="dashed", color="red", weight=0]; 448[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];448 -> 546[label="",style="dashed", color="magenta", weight=3]; 449 -> 661[label="",style="dashed", color="red", weight=0]; 449[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];449 -> 662[label="",style="dashed", color="magenta", weight=3]; 450 -> 414[label="",style="dashed", color="red", weight=0]; 450[label="FiniteMap.mkBalBranch zwu80 zwu81 (FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) zwu83) zwu84",fontsize=16,color="magenta"];450 -> 548[label="",style="dashed", color="magenta", weight=3]; 450 -> 549[label="",style="dashed", color="magenta", weight=3]; 450 -> 550[label="",style="dashed", color="magenta", weight=3]; 450 -> 551[label="",style="dashed", color="magenta", weight=3]; 451[label="primCmpInt (Neg (primPlusNat (primPlusNat (primMulNat (Succ (Succ (Succ Zero))) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];451 -> 552[label="",style="solid", color="black", weight=3]; 452 -> 670[label="",style="dashed", color="red", weight=0]; 452[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];452 -> 671[label="",style="dashed", color="magenta", weight=3]; 453 -> 414[label="",style="dashed", color="red", weight=0]; 453[label="FiniteMap.mkBalBranch zwu80 zwu81 (FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) zwu83) zwu84",fontsize=16,color="magenta"];453 -> 554[label="",style="dashed", color="magenta", weight=3]; 453 -> 555[label="",style="dashed", color="magenta", weight=3]; 453 -> 556[label="",style="dashed", color="magenta", weight=3]; 453 -> 557[label="",style="dashed", color="magenta", weight=3]; 454 -> 443[label="",style="dashed", color="red", weight=0]; 454[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];454 -> 558[label="",style="dashed", color="magenta", weight=3]; 455 -> 678[label="",style="dashed", color="red", weight=0]; 455[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];455 -> 679[label="",style="dashed", color="magenta", weight=3]; 456 -> 414[label="",style="dashed", color="red", weight=0]; 456[label="FiniteMap.mkBalBranch zwu80 zwu81 (FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) zwu83) zwu84",fontsize=16,color="magenta"];456 -> 560[label="",style="dashed", color="magenta", weight=3]; 456 -> 561[label="",style="dashed", color="magenta", weight=3]; 456 -> 562[label="",style="dashed", color="magenta", weight=3]; 456 -> 563[label="",style="dashed", color="magenta", weight=3]; 457[label="GT",fontsize=16,color="green",shape="box"];458[label="compare Nothing Nothing",fontsize=16,color="black",shape="box"];458 -> 564[label="",style="solid", color="black", weight=3]; 459[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 otherwise",fontsize=16,color="black",shape="box"];459 -> 565[label="",style="solid", color="black", weight=3]; 460 -> 414[label="",style="dashed", color="red", weight=0]; 460[label="FiniteMap.mkBalBranch Nothing zwu61 zwu63 (FiniteMap.addToFM_C FiniteMap.addToFM0 zwu64 Nothing zwu41)",fontsize=16,color="magenta"];460 -> 566[label="",style="dashed", color="magenta", weight=3]; 460 -> 567[label="",style="dashed", color="magenta", weight=3]; 460 -> 568[label="",style="dashed", color="magenta", weight=3]; 2990[label="compare1 Nothing zwu440 (Nothing <= zwu440)",fontsize=16,color="burlywood",shape="box"];6968[label="zwu440/Nothing",fontsize=10,color="white",style="solid",shape="box"];2990 -> 6968[label="",style="solid", color="burlywood", weight=9]; 6968 -> 3130[label="",style="solid", color="burlywood", weight=3]; 6969[label="zwu440/Just zwu4400",fontsize=10,color="white",style="solid",shape="box"];2990 -> 6969[label="",style="solid", color="burlywood", weight=9]; 6969 -> 3131[label="",style="solid", color="burlywood", weight=3]; 2991[label="compare1 (Just zwu4300) zwu440 (Just zwu4300 <= zwu440)",fontsize=16,color="burlywood",shape="box"];6970[label="zwu440/Nothing",fontsize=10,color="white",style="solid",shape="box"];2991 -> 6970[label="",style="solid", color="burlywood", weight=9]; 6970 -> 3132[label="",style="solid", color="burlywood", weight=3]; 6971[label="zwu440/Just zwu4400",fontsize=10,color="white",style="solid",shape="box"];2991 -> 6971[label="",style="solid", color="burlywood", weight=9]; 6971 -> 3133[label="",style="solid", color="burlywood", weight=3]; 461[label="GT",fontsize=16,color="green",shape="box"];462[label="compare Nothing (Just zwu600)",fontsize=16,color="black",shape="box"];462 -> 569[label="",style="solid", color="black", weight=3]; 463[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 otherwise",fontsize=16,color="black",shape="box"];463 -> 570[label="",style="solid", color="black", weight=3]; 464 -> 414[label="",style="dashed", color="red", weight=0]; 464[label="FiniteMap.mkBalBranch (Just zwu600) zwu61 zwu63 (FiniteMap.addToFM_C FiniteMap.addToFM0 zwu64 Nothing zwu41)",fontsize=16,color="magenta"];464 -> 571[label="",style="dashed", color="magenta", weight=3]; 464 -> 572[label="",style="dashed", color="magenta", weight=3]; 464 -> 573[label="",style="dashed", color="magenta", weight=3]; 505 -> 694[label="",style="dashed", color="red", weight=0]; 505[label="FiniteMap.mkBalBranch6MkBalBranch5 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 (FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51 + FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51 < Pos (Succ (Succ Zero)))",fontsize=16,color="magenta"];505 -> 695[label="",style="dashed", color="magenta", weight=3]; 466[label="GT",fontsize=16,color="green",shape="box"];467[label="compare (Just zwu400) Nothing",fontsize=16,color="black",shape="box"];467 -> 576[label="",style="solid", color="black", weight=3]; 468[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 otherwise",fontsize=16,color="black",shape="box"];468 -> 577[label="",style="solid", color="black", weight=3]; 469 -> 414[label="",style="dashed", color="red", weight=0]; 469[label="FiniteMap.mkBalBranch Nothing zwu61 zwu63 (FiniteMap.addToFM_C FiniteMap.addToFM0 zwu64 (Just zwu400) zwu41)",fontsize=16,color="magenta"];469 -> 578[label="",style="dashed", color="magenta", weight=3]; 469 -> 579[label="",style="dashed", color="magenta", weight=3]; 469 -> 580[label="",style="dashed", color="magenta", weight=3]; 2992[label="Nothing == Nothing",fontsize=16,color="black",shape="box"];2992 -> 3134[label="",style="solid", color="black", weight=3]; 2993[label="Nothing == Just zwu6000",fontsize=16,color="black",shape="box"];2993 -> 3135[label="",style="solid", color="black", weight=3]; 2994[label="Just zwu4000 == Nothing",fontsize=16,color="black",shape="box"];2994 -> 3136[label="",style="solid", color="black", weight=3]; 2995[label="Just zwu4000 == Just zwu6000",fontsize=16,color="black",shape="box"];2995 -> 3137[label="",style="solid", color="black", weight=3]; 2996[label="zwu4000 :% zwu4001 == zwu6000 :% zwu6001",fontsize=16,color="black",shape="box"];2996 -> 3138[label="",style="solid", color="black", weight=3]; 2997[label="(zwu4000,zwu4001,zwu4002) == (zwu6000,zwu6001,zwu6002)",fontsize=16,color="black",shape="box"];2997 -> 3139[label="",style="solid", color="black", weight=3]; 2998[label="Left zwu4000 == Left zwu6000",fontsize=16,color="black",shape="box"];2998 -> 3140[label="",style="solid", color="black", weight=3]; 2999[label="Left zwu4000 == Right zwu6000",fontsize=16,color="black",shape="box"];2999 -> 3141[label="",style="solid", color="black", weight=3]; 3000[label="Right zwu4000 == Left zwu6000",fontsize=16,color="black",shape="box"];3000 -> 3142[label="",style="solid", color="black", weight=3]; 3001[label="Right zwu4000 == Right zwu6000",fontsize=16,color="black",shape="box"];3001 -> 3143[label="",style="solid", color="black", weight=3]; 3002[label="primEqInt (Pos zwu4000) zwu600",fontsize=16,color="burlywood",shape="box"];6972[label="zwu4000/Succ zwu40000",fontsize=10,color="white",style="solid",shape="box"];3002 -> 6972[label="",style="solid", color="burlywood", weight=9]; 6972 -> 3144[label="",style="solid", color="burlywood", weight=3]; 6973[label="zwu4000/Zero",fontsize=10,color="white",style="solid",shape="box"];3002 -> 6973[label="",style="solid", color="burlywood", weight=9]; 6973 -> 3145[label="",style="solid", color="burlywood", weight=3]; 3003[label="primEqInt (Neg zwu4000) zwu600",fontsize=16,color="burlywood",shape="box"];6974[label="zwu4000/Succ zwu40000",fontsize=10,color="white",style="solid",shape="box"];3003 -> 6974[label="",style="solid", color="burlywood", weight=9]; 6974 -> 3146[label="",style="solid", color="burlywood", weight=3]; 6975[label="zwu4000/Zero",fontsize=10,color="white",style="solid",shape="box"];3003 -> 6975[label="",style="solid", color="burlywood", weight=9]; 6975 -> 3147[label="",style="solid", color="burlywood", weight=3]; 3004[label="primEqFloat (Float zwu4000 zwu4001) zwu600",fontsize=16,color="burlywood",shape="box"];6976[label="zwu600/Float zwu6000 zwu6001",fontsize=10,color="white",style="solid",shape="box"];3004 -> 6976[label="",style="solid", color="burlywood", weight=9]; 6976 -> 3148[label="",style="solid", color="burlywood", weight=3]; 3005[label="False == False",fontsize=16,color="black",shape="box"];3005 -> 3149[label="",style="solid", color="black", weight=3]; 3006[label="False == True",fontsize=16,color="black",shape="box"];3006 -> 3150[label="",style="solid", color="black", weight=3]; 3007[label="True == False",fontsize=16,color="black",shape="box"];3007 -> 3151[label="",style="solid", color="black", weight=3]; 3008[label="True == True",fontsize=16,color="black",shape="box"];3008 -> 3152[label="",style="solid", color="black", weight=3]; 3009[label="() == ()",fontsize=16,color="black",shape="box"];3009 -> 3153[label="",style="solid", color="black", weight=3]; 3010[label="primEqDouble (Double zwu4000 zwu4001) zwu600",fontsize=16,color="burlywood",shape="box"];6977[label="zwu600/Double zwu6000 zwu6001",fontsize=10,color="white",style="solid",shape="box"];3010 -> 6977[label="",style="solid", color="burlywood", weight=9]; 6977 -> 3154[label="",style="solid", color="burlywood", weight=3]; 3011[label="Integer zwu4000 == Integer zwu6000",fontsize=16,color="black",shape="box"];3011 -> 3155[label="",style="solid", color="black", weight=3]; 3012[label="primEqChar (Char zwu4000) zwu600",fontsize=16,color="burlywood",shape="box"];6978[label="zwu600/Char zwu6000",fontsize=10,color="white",style="solid",shape="box"];3012 -> 6978[label="",style="solid", color="burlywood", weight=9]; 6978 -> 3156[label="",style="solid", color="burlywood", weight=3]; 3013[label="(zwu4000,zwu4001) == (zwu6000,zwu6001)",fontsize=16,color="black",shape="box"];3013 -> 3157[label="",style="solid", color="black", weight=3]; 3014[label="zwu4000 : zwu4001 == zwu6000 : zwu6001",fontsize=16,color="black",shape="box"];3014 -> 3158[label="",style="solid", color="black", weight=3]; 3015[label="zwu4000 : zwu4001 == []",fontsize=16,color="black",shape="box"];3015 -> 3159[label="",style="solid", color="black", weight=3]; 3016[label="[] == zwu6000 : zwu6001",fontsize=16,color="black",shape="box"];3016 -> 3160[label="",style="solid", color="black", weight=3]; 3017[label="[] == []",fontsize=16,color="black",shape="box"];3017 -> 3161[label="",style="solid", color="black", weight=3]; 497[label="GT",fontsize=16,color="green",shape="box"];498[label="compare (Just zwu24) (Just zwu19)",fontsize=16,color="black",shape="box"];498 -> 619[label="",style="solid", color="black", weight=3]; 499[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 otherwise",fontsize=16,color="black",shape="box"];499 -> 620[label="",style="solid", color="black", weight=3]; 500 -> 414[label="",style="dashed", color="red", weight=0]; 500[label="FiniteMap.mkBalBranch (Just zwu19) zwu20 zwu22 (FiniteMap.addToFM_C FiniteMap.addToFM0 zwu23 (Just zwu24) zwu25)",fontsize=16,color="magenta"];500 -> 621[label="",style="dashed", color="magenta", weight=3]; 500 -> 622[label="",style="dashed", color="magenta", weight=3]; 500 -> 623[label="",style="dashed", color="magenta", weight=3]; 500 -> 624[label="",style="dashed", color="magenta", weight=3]; 501[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ Zero) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];501 -> 625[label="",style="solid", color="black", weight=3]; 506 -> 135[label="",style="dashed", color="red", weight=0]; 506[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) == LT",fontsize=16,color="magenta"];506 -> 626[label="",style="dashed", color="magenta", weight=3]; 506 -> 627[label="",style="dashed", color="magenta", weight=3]; 507[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];507 -> 628[label="",style="solid", color="black", weight=3]; 508[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];508 -> 629[label="",style="solid", color="black", weight=3]; 509[label="zwu63",fontsize=16,color="green",shape="box"];510[label="FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];511[label="primCmpInt (Pos Zero) (Pos zwu620)",fontsize=16,color="burlywood",shape="box"];6979[label="zwu620/Succ zwu6200",fontsize=10,color="white",style="solid",shape="box"];511 -> 6979[label="",style="solid", color="burlywood", weight=9]; 6979 -> 630[label="",style="solid", color="burlywood", weight=3]; 6980[label="zwu620/Zero",fontsize=10,color="white",style="solid",shape="box"];511 -> 6980[label="",style="solid", color="burlywood", weight=9]; 6980 -> 631[label="",style="solid", color="burlywood", weight=3]; 512[label="primCmpInt (Pos Zero) (Neg zwu620)",fontsize=16,color="burlywood",shape="box"];6981[label="zwu620/Succ zwu6200",fontsize=10,color="white",style="solid",shape="box"];512 -> 6981[label="",style="solid", color="burlywood", weight=9]; 6981 -> 632[label="",style="solid", color="burlywood", weight=3]; 6982[label="zwu620/Zero",fontsize=10,color="white",style="solid",shape="box"];512 -> 6982[label="",style="solid", color="burlywood", weight=9]; 6982 -> 633[label="",style="solid", color="burlywood", weight=3]; 516 -> 135[label="",style="dashed", color="red", weight=0]; 516[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74) == LT",fontsize=16,color="magenta"];516 -> 634[label="",style="dashed", color="magenta", weight=3]; 516 -> 635[label="",style="dashed", color="magenta", weight=3]; 517[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];517 -> 636[label="",style="solid", color="black", weight=3]; 518[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];518 -> 637[label="",style="solid", color="black", weight=3]; 519[label="zwu63",fontsize=16,color="green",shape="box"];520[label="FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];521[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ Zero) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];521 -> 638[label="",style="solid", color="black", weight=3]; 525 -> 135[label="",style="dashed", color="red", weight=0]; 525[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) == LT",fontsize=16,color="magenta"];525 -> 639[label="",style="dashed", color="magenta", weight=3]; 525 -> 640[label="",style="dashed", color="magenta", weight=3]; 526[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];526 -> 641[label="",style="solid", color="black", weight=3]; 527[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];527 -> 642[label="",style="solid", color="black", weight=3]; 528[label="zwu63",fontsize=16,color="green",shape="box"];529[label="FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];530[label="primCmpInt (Neg Zero) (Pos zwu620)",fontsize=16,color="burlywood",shape="box"];6983[label="zwu620/Succ zwu6200",fontsize=10,color="white",style="solid",shape="box"];530 -> 6983[label="",style="solid", color="burlywood", weight=9]; 6983 -> 643[label="",style="solid", color="burlywood", weight=3]; 6984[label="zwu620/Zero",fontsize=10,color="white",style="solid",shape="box"];530 -> 6984[label="",style="solid", color="burlywood", weight=9]; 6984 -> 644[label="",style="solid", color="burlywood", weight=3]; 531[label="primCmpInt (Neg Zero) (Neg zwu620)",fontsize=16,color="burlywood",shape="box"];6985[label="zwu620/Succ zwu6200",fontsize=10,color="white",style="solid",shape="box"];531 -> 6985[label="",style="solid", color="burlywood", weight=9]; 6985 -> 645[label="",style="solid", color="burlywood", weight=3]; 6986[label="zwu620/Zero",fontsize=10,color="white",style="solid",shape="box"];531 -> 6986[label="",style="solid", color="burlywood", weight=9]; 6986 -> 646[label="",style="solid", color="burlywood", weight=3]; 535 -> 135[label="",style="dashed", color="red", weight=0]; 535[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74) == LT",fontsize=16,color="magenta"];535 -> 647[label="",style="dashed", color="magenta", weight=3]; 535 -> 648[label="",style="dashed", color="magenta", weight=3]; 536[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 False",fontsize=16,color="black",shape="box"];536 -> 649[label="",style="solid", color="black", weight=3]; 537[label="FiniteMap.mkVBalBranch3MkVBalBranch1 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];537 -> 650[label="",style="solid", color="black", weight=3]; 538[label="zwu63",fontsize=16,color="green",shape="box"];539[label="FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];540[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ (Succ Zero)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];540 -> 651[label="",style="solid", color="black", weight=3]; 653[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="box"];653 -> 655[label="",style="solid", color="black", weight=3]; 652[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu63",fontsize=16,color="burlywood",shape="triangle"];6987[label="zwu63/False",fontsize=10,color="white",style="solid",shape="box"];652 -> 6987[label="",style="solid", color="burlywood", weight=9]; 6987 -> 656[label="",style="solid", color="burlywood", weight=3]; 6988[label="zwu63/True",fontsize=10,color="white",style="solid",shape="box"];652 -> 6988[label="",style="solid", color="burlywood", weight=9]; 6988 -> 657[label="",style="solid", color="burlywood", weight=3]; 542 -> 31[label="",style="dashed", color="red", weight=0]; 542[label="FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) zwu83",fontsize=16,color="magenta"];542 -> 658[label="",style="dashed", color="magenta", weight=3]; 542 -> 659[label="",style="dashed", color="magenta", weight=3]; 543[label="zwu81",fontsize=16,color="green",shape="box"];544[label="zwu84",fontsize=16,color="green",shape="box"];545[label="zwu80",fontsize=16,color="green",shape="box"];546[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="triangle"];546 -> 660[label="",style="solid", color="black", weight=3]; 662[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="box"];662 -> 664[label="",style="solid", color="black", weight=3]; 661[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu64",fontsize=16,color="burlywood",shape="triangle"];6989[label="zwu64/False",fontsize=10,color="white",style="solid",shape="box"];661 -> 6989[label="",style="solid", color="burlywood", weight=9]; 6989 -> 665[label="",style="solid", color="burlywood", weight=3]; 6990[label="zwu64/True",fontsize=10,color="white",style="solid",shape="box"];661 -> 6990[label="",style="solid", color="burlywood", weight=9]; 6990 -> 666[label="",style="solid", color="burlywood", weight=3]; 548 -> 31[label="",style="dashed", color="red", weight=0]; 548[label="FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) zwu83",fontsize=16,color="magenta"];548 -> 667[label="",style="dashed", color="magenta", weight=3]; 548 -> 668[label="",style="dashed", color="magenta", weight=3]; 549[label="zwu81",fontsize=16,color="green",shape="box"];550[label="zwu84",fontsize=16,color="green",shape="box"];551[label="zwu80",fontsize=16,color="green",shape="box"];552[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ (Succ Zero)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];552 -> 669[label="",style="solid", color="black", weight=3]; 671[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="box"];671 -> 673[label="",style="solid", color="black", weight=3]; 670[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu65",fontsize=16,color="burlywood",shape="triangle"];6991[label="zwu65/False",fontsize=10,color="white",style="solid",shape="box"];670 -> 6991[label="",style="solid", color="burlywood", weight=9]; 6991 -> 674[label="",style="solid", color="burlywood", weight=3]; 6992[label="zwu65/True",fontsize=10,color="white",style="solid",shape="box"];670 -> 6992[label="",style="solid", color="burlywood", weight=9]; 6992 -> 675[label="",style="solid", color="burlywood", weight=3]; 554 -> 31[label="",style="dashed", color="red", weight=0]; 554[label="FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) zwu83",fontsize=16,color="magenta"];554 -> 676[label="",style="dashed", color="magenta", weight=3]; 554 -> 677[label="",style="dashed", color="magenta", weight=3]; 555[label="zwu81",fontsize=16,color="green",shape="box"];556[label="zwu84",fontsize=16,color="green",shape="box"];557[label="zwu80",fontsize=16,color="green",shape="box"];558 -> 546[label="",style="dashed", color="red", weight=0]; 558[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];679[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 < FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="box"];679 -> 681[label="",style="solid", color="black", weight=3]; 678[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu66",fontsize=16,color="burlywood",shape="triangle"];6993[label="zwu66/False",fontsize=10,color="white",style="solid",shape="box"];678 -> 6993[label="",style="solid", color="burlywood", weight=9]; 6993 -> 682[label="",style="solid", color="burlywood", weight=3]; 6994[label="zwu66/True",fontsize=10,color="white",style="solid",shape="box"];678 -> 6994[label="",style="solid", color="burlywood", weight=9]; 6994 -> 683[label="",style="solid", color="burlywood", weight=3]; 560 -> 31[label="",style="dashed", color="red", weight=0]; 560[label="FiniteMap.glueVBal (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) zwu83",fontsize=16,color="magenta"];560 -> 684[label="",style="dashed", color="magenta", weight=3]; 560 -> 685[label="",style="dashed", color="magenta", weight=3]; 561[label="zwu81",fontsize=16,color="green",shape="box"];562[label="zwu84",fontsize=16,color="green",shape="box"];563[label="zwu80",fontsize=16,color="green",shape="box"];564[label="compare3 Nothing Nothing",fontsize=16,color="black",shape="box"];564 -> 686[label="",style="solid", color="black", weight=3]; 565[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 Nothing zwu41 True",fontsize=16,color="black",shape="box"];565 -> 687[label="",style="solid", color="black", weight=3]; 566[label="zwu63",fontsize=16,color="green",shape="box"];567 -> 47[label="",style="dashed", color="red", weight=0]; 567[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu64 Nothing zwu41",fontsize=16,color="magenta"];567 -> 688[label="",style="dashed", color="magenta", weight=3]; 567 -> 689[label="",style="dashed", color="magenta", weight=3]; 568[label="Nothing",fontsize=16,color="green",shape="box"];3130[label="compare1 Nothing Nothing (Nothing <= Nothing)",fontsize=16,color="black",shape="box"];3130 -> 3243[label="",style="solid", color="black", weight=3]; 3131[label="compare1 Nothing (Just zwu4400) (Nothing <= Just zwu4400)",fontsize=16,color="black",shape="box"];3131 -> 3244[label="",style="solid", color="black", weight=3]; 3132[label="compare1 (Just zwu4300) Nothing (Just zwu4300 <= Nothing)",fontsize=16,color="black",shape="box"];3132 -> 3245[label="",style="solid", color="black", weight=3]; 3133[label="compare1 (Just zwu4300) (Just zwu4400) (Just zwu4300 <= Just zwu4400)",fontsize=16,color="black",shape="box"];3133 -> 3246[label="",style="solid", color="black", weight=3]; 569[label="compare3 Nothing (Just zwu600)",fontsize=16,color="black",shape="box"];569 -> 690[label="",style="solid", color="black", weight=3]; 570[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 (Just zwu600) zwu61 zwu62 zwu63 zwu64 Nothing zwu41 True",fontsize=16,color="black",shape="box"];570 -> 691[label="",style="solid", color="black", weight=3]; 571[label="zwu63",fontsize=16,color="green",shape="box"];572 -> 47[label="",style="dashed", color="red", weight=0]; 572[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu64 Nothing zwu41",fontsize=16,color="magenta"];572 -> 692[label="",style="dashed", color="magenta", weight=3]; 572 -> 693[label="",style="dashed", color="magenta", weight=3]; 573[label="Just zwu600",fontsize=16,color="green",shape="box"];695[label="FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51 + FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51 < Pos (Succ (Succ Zero))",fontsize=16,color="black",shape="box"];695 -> 697[label="",style="solid", color="black", weight=3]; 694[label="FiniteMap.mkBalBranch6MkBalBranch5 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 zwu67",fontsize=16,color="burlywood",shape="triangle"];6995[label="zwu67/False",fontsize=10,color="white",style="solid",shape="box"];694 -> 6995[label="",style="solid", color="burlywood", weight=9]; 6995 -> 698[label="",style="solid", color="burlywood", weight=3]; 6996[label="zwu67/True",fontsize=10,color="white",style="solid",shape="box"];694 -> 6996[label="",style="solid", color="burlywood", weight=9]; 6996 -> 699[label="",style="solid", color="burlywood", weight=3]; 576[label="compare3 (Just zwu400) Nothing",fontsize=16,color="black",shape="box"];576 -> 700[label="",style="solid", color="black", weight=3]; 577[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 Nothing zwu61 zwu62 zwu63 zwu64 (Just zwu400) zwu41 True",fontsize=16,color="black",shape="box"];577 -> 701[label="",style="solid", color="black", weight=3]; 578[label="zwu63",fontsize=16,color="green",shape="box"];579 -> 47[label="",style="dashed", color="red", weight=0]; 579[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu64 (Just zwu400) zwu41",fontsize=16,color="magenta"];579 -> 702[label="",style="dashed", color="magenta", weight=3]; 579 -> 703[label="",style="dashed", color="magenta", weight=3]; 580[label="Nothing",fontsize=16,color="green",shape="box"];3134[label="True",fontsize=16,color="green",shape="box"];3135[label="False",fontsize=16,color="green",shape="box"];3136[label="False",fontsize=16,color="green",shape="box"];3137[label="zwu4000 == zwu6000",fontsize=16,color="blue",shape="box"];6997[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 6997[label="",style="solid", color="blue", weight=9]; 6997 -> 3247[label="",style="solid", color="blue", weight=3]; 6998[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 6998[label="",style="solid", color="blue", weight=9]; 6998 -> 3248[label="",style="solid", color="blue", weight=3]; 6999[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 6999[label="",style="solid", color="blue", weight=9]; 6999 -> 3249[label="",style="solid", color="blue", weight=3]; 7000[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7000[label="",style="solid", color="blue", weight=9]; 7000 -> 3250[label="",style="solid", color="blue", weight=3]; 7001[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7001[label="",style="solid", color="blue", weight=9]; 7001 -> 3251[label="",style="solid", color="blue", weight=3]; 7002[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7002[label="",style="solid", color="blue", weight=9]; 7002 -> 3252[label="",style="solid", color="blue", weight=3]; 7003[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7003[label="",style="solid", color="blue", weight=9]; 7003 -> 3253[label="",style="solid", color="blue", weight=3]; 7004[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7004[label="",style="solid", color="blue", weight=9]; 7004 -> 3254[label="",style="solid", color="blue", weight=3]; 7005[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7005[label="",style="solid", color="blue", weight=9]; 7005 -> 3255[label="",style="solid", color="blue", weight=3]; 7006[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7006[label="",style="solid", color="blue", weight=9]; 7006 -> 3256[label="",style="solid", color="blue", weight=3]; 7007[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7007[label="",style="solid", color="blue", weight=9]; 7007 -> 3257[label="",style="solid", color="blue", weight=3]; 7008[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7008[label="",style="solid", color="blue", weight=9]; 7008 -> 3258[label="",style="solid", color="blue", weight=3]; 7009[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7009[label="",style="solid", color="blue", weight=9]; 7009 -> 3259[label="",style="solid", color="blue", weight=3]; 7010[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3137 -> 7010[label="",style="solid", color="blue", weight=9]; 7010 -> 3260[label="",style="solid", color="blue", weight=3]; 3138 -> 3360[label="",style="dashed", color="red", weight=0]; 3138[label="zwu4000 == zwu6000 && zwu4001 == zwu6001",fontsize=16,color="magenta"];3138 -> 3361[label="",style="dashed", color="magenta", weight=3]; 3138 -> 3362[label="",style="dashed", color="magenta", weight=3]; 3139 -> 3360[label="",style="dashed", color="red", weight=0]; 3139[label="zwu4000 == zwu6000 && zwu4001 == zwu6001 && zwu4002 == zwu6002",fontsize=16,color="magenta"];3139 -> 3363[label="",style="dashed", color="magenta", weight=3]; 3139 -> 3364[label="",style="dashed", color="magenta", weight=3]; 3140[label="zwu4000 == zwu6000",fontsize=16,color="blue",shape="box"];7011[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7011[label="",style="solid", color="blue", weight=9]; 7011 -> 3282[label="",style="solid", color="blue", weight=3]; 7012[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7012[label="",style="solid", color="blue", weight=9]; 7012 -> 3283[label="",style="solid", color="blue", weight=3]; 7013[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7013[label="",style="solid", color="blue", weight=9]; 7013 -> 3284[label="",style="solid", color="blue", weight=3]; 7014[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7014[label="",style="solid", color="blue", weight=9]; 7014 -> 3285[label="",style="solid", color="blue", weight=3]; 7015[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7015[label="",style="solid", color="blue", weight=9]; 7015 -> 3286[label="",style="solid", color="blue", weight=3]; 7016[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7016[label="",style="solid", color="blue", weight=9]; 7016 -> 3287[label="",style="solid", color="blue", weight=3]; 7017[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7017[label="",style="solid", color="blue", weight=9]; 7017 -> 3288[label="",style="solid", color="blue", weight=3]; 7018[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7018[label="",style="solid", color="blue", weight=9]; 7018 -> 3289[label="",style="solid", color="blue", weight=3]; 7019[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7019[label="",style="solid", color="blue", weight=9]; 7019 -> 3290[label="",style="solid", color="blue", weight=3]; 7020[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7020[label="",style="solid", color="blue", weight=9]; 7020 -> 3291[label="",style="solid", color="blue", weight=3]; 7021[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7021[label="",style="solid", color="blue", weight=9]; 7021 -> 3292[label="",style="solid", color="blue", weight=3]; 7022[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7022[label="",style="solid", color="blue", weight=9]; 7022 -> 3293[label="",style="solid", color="blue", weight=3]; 7023[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7023[label="",style="solid", color="blue", weight=9]; 7023 -> 3294[label="",style="solid", color="blue", weight=3]; 7024[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3140 -> 7024[label="",style="solid", color="blue", weight=9]; 7024 -> 3295[label="",style="solid", color="blue", weight=3]; 3141[label="False",fontsize=16,color="green",shape="box"];3142[label="False",fontsize=16,color="green",shape="box"];3143[label="zwu4000 == zwu6000",fontsize=16,color="blue",shape="box"];7025[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7025[label="",style="solid", color="blue", weight=9]; 7025 -> 3296[label="",style="solid", color="blue", weight=3]; 7026[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7026[label="",style="solid", color="blue", weight=9]; 7026 -> 3297[label="",style="solid", color="blue", weight=3]; 7027[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7027[label="",style="solid", color="blue", weight=9]; 7027 -> 3298[label="",style="solid", color="blue", weight=3]; 7028[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7028[label="",style="solid", color="blue", weight=9]; 7028 -> 3299[label="",style="solid", color="blue", weight=3]; 7029[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7029[label="",style="solid", color="blue", weight=9]; 7029 -> 3300[label="",style="solid", color="blue", weight=3]; 7030[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7030[label="",style="solid", color="blue", weight=9]; 7030 -> 3301[label="",style="solid", color="blue", weight=3]; 7031[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7031[label="",style="solid", color="blue", weight=9]; 7031 -> 3302[label="",style="solid", color="blue", weight=3]; 7032[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7032[label="",style="solid", color="blue", weight=9]; 7032 -> 3303[label="",style="solid", color="blue", weight=3]; 7033[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7033[label="",style="solid", color="blue", weight=9]; 7033 -> 3304[label="",style="solid", color="blue", weight=3]; 7034[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7034[label="",style="solid", color="blue", weight=9]; 7034 -> 3305[label="",style="solid", color="blue", weight=3]; 7035[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7035[label="",style="solid", color="blue", weight=9]; 7035 -> 3306[label="",style="solid", color="blue", weight=3]; 7036[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7036[label="",style="solid", color="blue", weight=9]; 7036 -> 3307[label="",style="solid", color="blue", weight=3]; 7037[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7037[label="",style="solid", color="blue", weight=9]; 7037 -> 3308[label="",style="solid", color="blue", weight=3]; 7038[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3143 -> 7038[label="",style="solid", color="blue", weight=9]; 7038 -> 3309[label="",style="solid", color="blue", weight=3]; 3144[label="primEqInt (Pos (Succ zwu40000)) zwu600",fontsize=16,color="burlywood",shape="box"];7039[label="zwu600/Pos zwu6000",fontsize=10,color="white",style="solid",shape="box"];3144 -> 7039[label="",style="solid", color="burlywood", weight=9]; 7039 -> 3310[label="",style="solid", color="burlywood", weight=3]; 7040[label="zwu600/Neg zwu6000",fontsize=10,color="white",style="solid",shape="box"];3144 -> 7040[label="",style="solid", color="burlywood", weight=9]; 7040 -> 3311[label="",style="solid", color="burlywood", weight=3]; 3145[label="primEqInt (Pos Zero) zwu600",fontsize=16,color="burlywood",shape="box"];7041[label="zwu600/Pos zwu6000",fontsize=10,color="white",style="solid",shape="box"];3145 -> 7041[label="",style="solid", color="burlywood", weight=9]; 7041 -> 3312[label="",style="solid", color="burlywood", weight=3]; 7042[label="zwu600/Neg zwu6000",fontsize=10,color="white",style="solid",shape="box"];3145 -> 7042[label="",style="solid", color="burlywood", weight=9]; 7042 -> 3313[label="",style="solid", color="burlywood", weight=3]; 3146[label="primEqInt (Neg (Succ zwu40000)) zwu600",fontsize=16,color="burlywood",shape="box"];7043[label="zwu600/Pos zwu6000",fontsize=10,color="white",style="solid",shape="box"];3146 -> 7043[label="",style="solid", color="burlywood", weight=9]; 7043 -> 3314[label="",style="solid", color="burlywood", weight=3]; 7044[label="zwu600/Neg zwu6000",fontsize=10,color="white",style="solid",shape="box"];3146 -> 7044[label="",style="solid", color="burlywood", weight=9]; 7044 -> 3315[label="",style="solid", color="burlywood", weight=3]; 3147[label="primEqInt (Neg Zero) zwu600",fontsize=16,color="burlywood",shape="box"];7045[label="zwu600/Pos zwu6000",fontsize=10,color="white",style="solid",shape="box"];3147 -> 7045[label="",style="solid", color="burlywood", weight=9]; 7045 -> 3316[label="",style="solid", color="burlywood", weight=3]; 7046[label="zwu600/Neg zwu6000",fontsize=10,color="white",style="solid",shape="box"];3147 -> 7046[label="",style="solid", color="burlywood", weight=9]; 7046 -> 3317[label="",style="solid", color="burlywood", weight=3]; 3148[label="primEqFloat (Float zwu4000 zwu4001) (Float zwu6000 zwu6001)",fontsize=16,color="black",shape="box"];3148 -> 3318[label="",style="solid", color="black", weight=3]; 3149[label="True",fontsize=16,color="green",shape="box"];3150[label="False",fontsize=16,color="green",shape="box"];3151[label="False",fontsize=16,color="green",shape="box"];3152[label="True",fontsize=16,color="green",shape="box"];3153[label="True",fontsize=16,color="green",shape="box"];3154[label="primEqDouble (Double zwu4000 zwu4001) (Double zwu6000 zwu6001)",fontsize=16,color="black",shape="box"];3154 -> 3319[label="",style="solid", color="black", weight=3]; 3155 -> 2895[label="",style="dashed", color="red", weight=0]; 3155[label="primEqInt zwu4000 zwu6000",fontsize=16,color="magenta"];3155 -> 3320[label="",style="dashed", color="magenta", weight=3]; 3155 -> 3321[label="",style="dashed", color="magenta", weight=3]; 3156[label="primEqChar (Char zwu4000) (Char zwu6000)",fontsize=16,color="black",shape="box"];3156 -> 3322[label="",style="solid", color="black", weight=3]; 3157 -> 3360[label="",style="dashed", color="red", weight=0]; 3157[label="zwu4000 == zwu6000 && zwu4001 == zwu6001",fontsize=16,color="magenta"];3157 -> 3365[label="",style="dashed", color="magenta", weight=3]; 3157 -> 3366[label="",style="dashed", color="magenta", weight=3]; 3158 -> 3360[label="",style="dashed", color="red", weight=0]; 3158[label="zwu4000 == zwu6000 && zwu4001 == zwu6001",fontsize=16,color="magenta"];3158 -> 3367[label="",style="dashed", color="magenta", weight=3]; 3158 -> 3368[label="",style="dashed", color="magenta", weight=3]; 3159[label="False",fontsize=16,color="green",shape="box"];3160[label="False",fontsize=16,color="green",shape="box"];3161[label="True",fontsize=16,color="green",shape="box"];619[label="compare3 (Just zwu24) (Just zwu19)",fontsize=16,color="black",shape="box"];619 -> 796[label="",style="solid", color="black", weight=3]; 620[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 (Just zwu19) zwu20 zwu21 zwu22 zwu23 (Just zwu24) zwu25 True",fontsize=16,color="black",shape="box"];620 -> 797[label="",style="solid", color="black", weight=3]; 621[label="zwu22",fontsize=16,color="green",shape="box"];622[label="zwu20",fontsize=16,color="green",shape="box"];623 -> 47[label="",style="dashed", color="red", weight=0]; 623[label="FiniteMap.addToFM_C FiniteMap.addToFM0 zwu23 (Just zwu24) zwu25",fontsize=16,color="magenta"];623 -> 798[label="",style="dashed", color="magenta", weight=3]; 623 -> 799[label="",style="dashed", color="magenta", weight=3]; 623 -> 800[label="",style="dashed", color="magenta", weight=3]; 624[label="Just zwu19",fontsize=16,color="green",shape="box"];625[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat Zero (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];625 -> 801[label="",style="solid", color="black", weight=3]; 626[label="LT",fontsize=16,color="green",shape="box"];627[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];627 -> 802[label="",style="solid", color="black", weight=3]; 628[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 otherwise",fontsize=16,color="black",shape="box"];628 -> 803[label="",style="solid", color="black", weight=3]; 629 -> 414[label="",style="dashed", color="red", weight=0]; 629[label="FiniteMap.mkBalBranch zwu70 zwu71 zwu73 (FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64))",fontsize=16,color="magenta"];629 -> 804[label="",style="dashed", color="magenta", weight=3]; 629 -> 805[label="",style="dashed", color="magenta", weight=3]; 629 -> 806[label="",style="dashed", color="magenta", weight=3]; 629 -> 807[label="",style="dashed", color="magenta", weight=3]; 630[label="primCmpInt (Pos Zero) (Pos (Succ zwu6200))",fontsize=16,color="black",shape="box"];630 -> 808[label="",style="solid", color="black", weight=3]; 631[label="primCmpInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];631 -> 809[label="",style="solid", color="black", weight=3]; 632[label="primCmpInt (Pos Zero) (Neg (Succ zwu6200))",fontsize=16,color="black",shape="box"];632 -> 810[label="",style="solid", color="black", weight=3]; 633[label="primCmpInt (Pos Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];633 -> 811[label="",style="solid", color="black", weight=3]; 634[label="LT",fontsize=16,color="green",shape="box"];635[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];635 -> 812[label="",style="solid", color="black", weight=3]; 636[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 otherwise",fontsize=16,color="black",shape="box"];636 -> 813[label="",style="solid", color="black", weight=3]; 637 -> 414[label="",style="dashed", color="red", weight=0]; 637[label="FiniteMap.mkBalBranch zwu70 zwu71 zwu73 (FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64))",fontsize=16,color="magenta"];637 -> 814[label="",style="dashed", color="magenta", weight=3]; 637 -> 815[label="",style="dashed", color="magenta", weight=3]; 637 -> 816[label="",style="dashed", color="magenta", weight=3]; 637 -> 817[label="",style="dashed", color="magenta", weight=3]; 638[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat Zero (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];638 -> 818[label="",style="solid", color="black", weight=3]; 639[label="LT",fontsize=16,color="green",shape="box"];640[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];640 -> 819[label="",style="solid", color="black", weight=3]; 641[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 otherwise",fontsize=16,color="black",shape="box"];641 -> 820[label="",style="solid", color="black", weight=3]; 642 -> 414[label="",style="dashed", color="red", weight=0]; 642[label="FiniteMap.mkBalBranch zwu70 zwu71 zwu73 (FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64))",fontsize=16,color="magenta"];642 -> 821[label="",style="dashed", color="magenta", weight=3]; 642 -> 822[label="",style="dashed", color="magenta", weight=3]; 642 -> 823[label="",style="dashed", color="magenta", weight=3]; 642 -> 824[label="",style="dashed", color="magenta", weight=3]; 643[label="primCmpInt (Neg Zero) (Pos (Succ zwu6200))",fontsize=16,color="black",shape="box"];643 -> 825[label="",style="solid", color="black", weight=3]; 644[label="primCmpInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];644 -> 826[label="",style="solid", color="black", weight=3]; 645[label="primCmpInt (Neg Zero) (Neg (Succ zwu6200))",fontsize=16,color="black",shape="box"];645 -> 827[label="",style="solid", color="black", weight=3]; 646[label="primCmpInt (Neg Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];646 -> 828[label="",style="solid", color="black", weight=3]; 647[label="LT",fontsize=16,color="green",shape="box"];648[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];648 -> 829[label="",style="solid", color="black", weight=3]; 649[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 otherwise",fontsize=16,color="black",shape="box"];649 -> 830[label="",style="solid", color="black", weight=3]; 650 -> 414[label="",style="dashed", color="red", weight=0]; 650[label="FiniteMap.mkBalBranch zwu70 zwu71 zwu73 (FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64))",fontsize=16,color="magenta"];650 -> 831[label="",style="dashed", color="magenta", weight=3]; 650 -> 832[label="",style="dashed", color="magenta", weight=3]; 650 -> 833[label="",style="dashed", color="magenta", weight=3]; 650 -> 834[label="",style="dashed", color="magenta", weight=3]; 651[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ Zero) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];651 -> 835[label="",style="solid", color="black", weight=3]; 655 -> 135[label="",style="dashed", color="red", weight=0]; 655[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];655 -> 836[label="",style="dashed", color="magenta", weight=3]; 655 -> 837[label="",style="dashed", color="magenta", weight=3]; 656[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];656 -> 838[label="",style="solid", color="black", weight=3]; 657[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];657 -> 839[label="",style="solid", color="black", weight=3]; 658[label="zwu83",fontsize=16,color="green",shape="box"];659[label="FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];660[label="zwu82",fontsize=16,color="green",shape="box"];664 -> 135[label="",style="dashed", color="red", weight=0]; 664[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];664 -> 840[label="",style="dashed", color="magenta", weight=3]; 664 -> 841[label="",style="dashed", color="magenta", weight=3]; 665[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];665 -> 842[label="",style="solid", color="black", weight=3]; 666[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];666 -> 843[label="",style="solid", color="black", weight=3]; 667[label="zwu83",fontsize=16,color="green",shape="box"];668[label="FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];669[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat (Succ Zero) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];669 -> 844[label="",style="solid", color="black", weight=3]; 673 -> 135[label="",style="dashed", color="red", weight=0]; 673[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];673 -> 845[label="",style="dashed", color="magenta", weight=3]; 673 -> 846[label="",style="dashed", color="magenta", weight=3]; 674[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];674 -> 847[label="",style="solid", color="black", weight=3]; 675[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];675 -> 848[label="",style="solid", color="black", weight=3]; 676[label="zwu83",fontsize=16,color="green",shape="box"];677[label="FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];681 -> 135[label="",style="dashed", color="red", weight=0]; 681[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) == LT",fontsize=16,color="magenta"];681 -> 849[label="",style="dashed", color="magenta", weight=3]; 681 -> 850[label="",style="dashed", color="magenta", weight=3]; 682[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 False",fontsize=16,color="black",shape="box"];682 -> 851[label="",style="solid", color="black", weight=3]; 683[label="FiniteMap.glueVBal3GlueVBal1 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];683 -> 852[label="",style="solid", color="black", weight=3]; 684[label="zwu83",fontsize=16,color="green",shape="box"];685[label="FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];686 -> 2775[label="",style="dashed", color="red", weight=0]; 686[label="compare2 Nothing Nothing (Nothing == Nothing)",fontsize=16,color="magenta"];686 -> 2794[label="",style="dashed", color="magenta", weight=3]; 686 -> 2795[label="",style="dashed", color="magenta", weight=3]; 686 -> 2796[label="",style="dashed", color="magenta", weight=3]; 687[label="FiniteMap.Branch Nothing (FiniteMap.addToFM0 zwu61 zwu41) zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];687 -> 855[label="",style="dashed", color="green", weight=3]; 688[label="zwu64",fontsize=16,color="green",shape="box"];689[label="Nothing",fontsize=16,color="green",shape="box"];3243[label="compare1 Nothing Nothing True",fontsize=16,color="black",shape="box"];3243 -> 3323[label="",style="solid", color="black", weight=3]; 3244[label="compare1 Nothing (Just zwu4400) True",fontsize=16,color="black",shape="box"];3244 -> 3324[label="",style="solid", color="black", weight=3]; 3245[label="compare1 (Just zwu4300) Nothing False",fontsize=16,color="black",shape="box"];3245 -> 3325[label="",style="solid", color="black", weight=3]; 3246 -> 3326[label="",style="dashed", color="red", weight=0]; 3246[label="compare1 (Just zwu4300) (Just zwu4400) (zwu4300 <= zwu4400)",fontsize=16,color="magenta"];3246 -> 3327[label="",style="dashed", color="magenta", weight=3]; 3246 -> 3328[label="",style="dashed", color="magenta", weight=3]; 3246 -> 3329[label="",style="dashed", color="magenta", weight=3]; 690 -> 2775[label="",style="dashed", color="red", weight=0]; 690[label="compare2 Nothing (Just zwu600) (Nothing == Just zwu600)",fontsize=16,color="magenta"];690 -> 2797[label="",style="dashed", color="magenta", weight=3]; 690 -> 2798[label="",style="dashed", color="magenta", weight=3]; 690 -> 2799[label="",style="dashed", color="magenta", weight=3]; 691[label="FiniteMap.Branch Nothing (FiniteMap.addToFM0 zwu61 zwu41) zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];691 -> 861[label="",style="dashed", color="green", weight=3]; 692[label="zwu64",fontsize=16,color="green",shape="box"];693[label="Nothing",fontsize=16,color="green",shape="box"];697 -> 135[label="",style="dashed", color="red", weight=0]; 697[label="compare (FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51 + FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51) (Pos (Succ (Succ Zero))) == LT",fontsize=16,color="magenta"];697 -> 862[label="",style="dashed", color="magenta", weight=3]; 697 -> 863[label="",style="dashed", color="magenta", weight=3]; 698[label="FiniteMap.mkBalBranch6MkBalBranch5 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 False",fontsize=16,color="black",shape="box"];698 -> 864[label="",style="solid", color="black", weight=3]; 699[label="FiniteMap.mkBalBranch6MkBalBranch5 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 True",fontsize=16,color="black",shape="box"];699 -> 865[label="",style="solid", color="black", weight=3]; 700 -> 2775[label="",style="dashed", color="red", weight=0]; 700[label="compare2 (Just zwu400) Nothing (Just zwu400 == Nothing)",fontsize=16,color="magenta"];700 -> 2800[label="",style="dashed", color="magenta", weight=3]; 700 -> 2801[label="",style="dashed", color="magenta", weight=3]; 700 -> 2802[label="",style="dashed", color="magenta", weight=3]; 701[label="FiniteMap.Branch (Just zwu400) (FiniteMap.addToFM0 zwu61 zwu41) zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];701 -> 873[label="",style="dashed", color="green", weight=3]; 702[label="zwu64",fontsize=16,color="green",shape="box"];703[label="Just zwu400",fontsize=16,color="green",shape="box"];3247 -> 2812[label="",style="dashed", color="red", weight=0]; 3247[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3247 -> 3330[label="",style="dashed", color="magenta", weight=3]; 3247 -> 3331[label="",style="dashed", color="magenta", weight=3]; 3248 -> 2813[label="",style="dashed", color="red", weight=0]; 3248[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3248 -> 3332[label="",style="dashed", color="magenta", weight=3]; 3248 -> 3333[label="",style="dashed", color="magenta", weight=3]; 3249 -> 2814[label="",style="dashed", color="red", weight=0]; 3249[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3249 -> 3334[label="",style="dashed", color="magenta", weight=3]; 3249 -> 3335[label="",style="dashed", color="magenta", weight=3]; 3250 -> 2815[label="",style="dashed", color="red", weight=0]; 3250[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3250 -> 3336[label="",style="dashed", color="magenta", weight=3]; 3250 -> 3337[label="",style="dashed", color="magenta", weight=3]; 3251 -> 2816[label="",style="dashed", color="red", weight=0]; 3251[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3251 -> 3338[label="",style="dashed", color="magenta", weight=3]; 3251 -> 3339[label="",style="dashed", color="magenta", weight=3]; 3252 -> 2817[label="",style="dashed", color="red", weight=0]; 3252[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3252 -> 3340[label="",style="dashed", color="magenta", weight=3]; 3252 -> 3341[label="",style="dashed", color="magenta", weight=3]; 3253 -> 2818[label="",style="dashed", color="red", weight=0]; 3253[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3253 -> 3342[label="",style="dashed", color="magenta", weight=3]; 3253 -> 3343[label="",style="dashed", color="magenta", weight=3]; 3254 -> 2819[label="",style="dashed", color="red", weight=0]; 3254[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3254 -> 3344[label="",style="dashed", color="magenta", weight=3]; 3254 -> 3345[label="",style="dashed", color="magenta", weight=3]; 3255 -> 2820[label="",style="dashed", color="red", weight=0]; 3255[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3255 -> 3346[label="",style="dashed", color="magenta", weight=3]; 3255 -> 3347[label="",style="dashed", color="magenta", weight=3]; 3256 -> 2821[label="",style="dashed", color="red", weight=0]; 3256[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3256 -> 3348[label="",style="dashed", color="magenta", weight=3]; 3256 -> 3349[label="",style="dashed", color="magenta", weight=3]; 3257 -> 135[label="",style="dashed", color="red", weight=0]; 3257[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3257 -> 3350[label="",style="dashed", color="magenta", weight=3]; 3257 -> 3351[label="",style="dashed", color="magenta", weight=3]; 3258 -> 2823[label="",style="dashed", color="red", weight=0]; 3258[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3258 -> 3352[label="",style="dashed", color="magenta", weight=3]; 3258 -> 3353[label="",style="dashed", color="magenta", weight=3]; 3259 -> 2824[label="",style="dashed", color="red", weight=0]; 3259[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3259 -> 3354[label="",style="dashed", color="magenta", weight=3]; 3259 -> 3355[label="",style="dashed", color="magenta", weight=3]; 3260 -> 2825[label="",style="dashed", color="red", weight=0]; 3260[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3260 -> 3356[label="",style="dashed", color="magenta", weight=3]; 3260 -> 3357[label="",style="dashed", color="magenta", weight=3]; 3361[label="zwu4000 == zwu6000",fontsize=16,color="blue",shape="box"];7047[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3361 -> 7047[label="",style="solid", color="blue", weight=9]; 7047 -> 3373[label="",style="solid", color="blue", weight=3]; 7048[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3361 -> 7048[label="",style="solid", color="blue", weight=9]; 7048 -> 3374[label="",style="solid", color="blue", weight=3]; 3362[label="zwu4001 == zwu6001",fontsize=16,color="blue",shape="box"];7049[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3362 -> 7049[label="",style="solid", color="blue", weight=9]; 7049 -> 3375[label="",style="solid", color="blue", weight=3]; 7050[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3362 -> 7050[label="",style="solid", color="blue", weight=9]; 7050 -> 3376[label="",style="solid", color="blue", weight=3]; 3360[label="zwu223 && zwu224",fontsize=16,color="burlywood",shape="triangle"];7051[label="zwu223/False",fontsize=10,color="white",style="solid",shape="box"];3360 -> 7051[label="",style="solid", color="burlywood", weight=9]; 7051 -> 3377[label="",style="solid", color="burlywood", weight=3]; 7052[label="zwu223/True",fontsize=10,color="white",style="solid",shape="box"];3360 -> 7052[label="",style="solid", color="burlywood", weight=9]; 7052 -> 3378[label="",style="solid", color="burlywood", weight=3]; 3363[label="zwu4000 == zwu6000",fontsize=16,color="blue",shape="box"];7053[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7053[label="",style="solid", color="blue", weight=9]; 7053 -> 3379[label="",style="solid", color="blue", weight=3]; 7054[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7054[label="",style="solid", color="blue", weight=9]; 7054 -> 3380[label="",style="solid", color="blue", weight=3]; 7055[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7055[label="",style="solid", color="blue", weight=9]; 7055 -> 3381[label="",style="solid", color="blue", weight=3]; 7056[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7056[label="",style="solid", color="blue", weight=9]; 7056 -> 3382[label="",style="solid", color="blue", weight=3]; 7057[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7057[label="",style="solid", color="blue", weight=9]; 7057 -> 3383[label="",style="solid", color="blue", weight=3]; 7058[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7058[label="",style="solid", color="blue", weight=9]; 7058 -> 3384[label="",style="solid", color="blue", weight=3]; 7059[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7059[label="",style="solid", color="blue", weight=9]; 7059 -> 3385[label="",style="solid", color="blue", weight=3]; 7060[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7060[label="",style="solid", color="blue", weight=9]; 7060 -> 3386[label="",style="solid", color="blue", weight=3]; 7061[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7061[label="",style="solid", color="blue", weight=9]; 7061 -> 3387[label="",style="solid", color="blue", weight=3]; 7062[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7062[label="",style="solid", color="blue", weight=9]; 7062 -> 3388[label="",style="solid", color="blue", weight=3]; 7063[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7063[label="",style="solid", color="blue", weight=9]; 7063 -> 3389[label="",style="solid", color="blue", weight=3]; 7064[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7064[label="",style="solid", color="blue", weight=9]; 7064 -> 3390[label="",style="solid", color="blue", weight=3]; 7065[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7065[label="",style="solid", color="blue", weight=9]; 7065 -> 3391[label="",style="solid", color="blue", weight=3]; 7066[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3363 -> 7066[label="",style="solid", color="blue", weight=9]; 7066 -> 3392[label="",style="solid", color="blue", weight=3]; 3364 -> 3360[label="",style="dashed", color="red", weight=0]; 3364[label="zwu4001 == zwu6001 && zwu4002 == zwu6002",fontsize=16,color="magenta"];3364 -> 3393[label="",style="dashed", color="magenta", weight=3]; 3364 -> 3394[label="",style="dashed", color="magenta", weight=3]; 3282 -> 2812[label="",style="dashed", color="red", weight=0]; 3282[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3282 -> 3395[label="",style="dashed", color="magenta", weight=3]; 3282 -> 3396[label="",style="dashed", color="magenta", weight=3]; 3283 -> 2813[label="",style="dashed", color="red", weight=0]; 3283[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3283 -> 3397[label="",style="dashed", color="magenta", weight=3]; 3283 -> 3398[label="",style="dashed", color="magenta", weight=3]; 3284 -> 2814[label="",style="dashed", color="red", weight=0]; 3284[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3284 -> 3399[label="",style="dashed", color="magenta", weight=3]; 3284 -> 3400[label="",style="dashed", color="magenta", weight=3]; 3285 -> 2815[label="",style="dashed", color="red", weight=0]; 3285[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3285 -> 3401[label="",style="dashed", color="magenta", weight=3]; 3285 -> 3402[label="",style="dashed", color="magenta", weight=3]; 3286 -> 2816[label="",style="dashed", color="red", weight=0]; 3286[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3286 -> 3403[label="",style="dashed", color="magenta", weight=3]; 3286 -> 3404[label="",style="dashed", color="magenta", weight=3]; 3287 -> 2817[label="",style="dashed", color="red", weight=0]; 3287[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3287 -> 3405[label="",style="dashed", color="magenta", weight=3]; 3287 -> 3406[label="",style="dashed", color="magenta", weight=3]; 3288 -> 2818[label="",style="dashed", color="red", weight=0]; 3288[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3288 -> 3407[label="",style="dashed", color="magenta", weight=3]; 3288 -> 3408[label="",style="dashed", color="magenta", weight=3]; 3289 -> 2819[label="",style="dashed", color="red", weight=0]; 3289[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3289 -> 3409[label="",style="dashed", color="magenta", weight=3]; 3289 -> 3410[label="",style="dashed", color="magenta", weight=3]; 3290 -> 2820[label="",style="dashed", color="red", weight=0]; 3290[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3290 -> 3411[label="",style="dashed", color="magenta", weight=3]; 3290 -> 3412[label="",style="dashed", color="magenta", weight=3]; 3291 -> 2821[label="",style="dashed", color="red", weight=0]; 3291[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3291 -> 3413[label="",style="dashed", color="magenta", weight=3]; 3291 -> 3414[label="",style="dashed", color="magenta", weight=3]; 3292 -> 135[label="",style="dashed", color="red", weight=0]; 3292[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3292 -> 3415[label="",style="dashed", color="magenta", weight=3]; 3292 -> 3416[label="",style="dashed", color="magenta", weight=3]; 3293 -> 2823[label="",style="dashed", color="red", weight=0]; 3293[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3293 -> 3417[label="",style="dashed", color="magenta", weight=3]; 3293 -> 3418[label="",style="dashed", color="magenta", weight=3]; 3294 -> 2824[label="",style="dashed", color="red", weight=0]; 3294[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3294 -> 3419[label="",style="dashed", color="magenta", weight=3]; 3294 -> 3420[label="",style="dashed", color="magenta", weight=3]; 3295 -> 2825[label="",style="dashed", color="red", weight=0]; 3295[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3295 -> 3421[label="",style="dashed", color="magenta", weight=3]; 3295 -> 3422[label="",style="dashed", color="magenta", weight=3]; 3296 -> 2812[label="",style="dashed", color="red", weight=0]; 3296[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3296 -> 3423[label="",style="dashed", color="magenta", weight=3]; 3296 -> 3424[label="",style="dashed", color="magenta", weight=3]; 3297 -> 2813[label="",style="dashed", color="red", weight=0]; 3297[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3297 -> 3425[label="",style="dashed", color="magenta", weight=3]; 3297 -> 3426[label="",style="dashed", color="magenta", weight=3]; 3298 -> 2814[label="",style="dashed", color="red", weight=0]; 3298[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3298 -> 3427[label="",style="dashed", color="magenta", weight=3]; 3298 -> 3428[label="",style="dashed", color="magenta", weight=3]; 3299 -> 2815[label="",style="dashed", color="red", weight=0]; 3299[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3299 -> 3429[label="",style="dashed", color="magenta", weight=3]; 3299 -> 3430[label="",style="dashed", color="magenta", weight=3]; 3300 -> 2816[label="",style="dashed", color="red", weight=0]; 3300[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3300 -> 3431[label="",style="dashed", color="magenta", weight=3]; 3300 -> 3432[label="",style="dashed", color="magenta", weight=3]; 3301 -> 2817[label="",style="dashed", color="red", weight=0]; 3301[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3301 -> 3433[label="",style="dashed", color="magenta", weight=3]; 3301 -> 3434[label="",style="dashed", color="magenta", weight=3]; 3302 -> 2818[label="",style="dashed", color="red", weight=0]; 3302[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3302 -> 3435[label="",style="dashed", color="magenta", weight=3]; 3302 -> 3436[label="",style="dashed", color="magenta", weight=3]; 3303 -> 2819[label="",style="dashed", color="red", weight=0]; 3303[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3303 -> 3437[label="",style="dashed", color="magenta", weight=3]; 3303 -> 3438[label="",style="dashed", color="magenta", weight=3]; 3304 -> 2820[label="",style="dashed", color="red", weight=0]; 3304[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3304 -> 3439[label="",style="dashed", color="magenta", weight=3]; 3304 -> 3440[label="",style="dashed", color="magenta", weight=3]; 3305 -> 2821[label="",style="dashed", color="red", weight=0]; 3305[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3305 -> 3441[label="",style="dashed", color="magenta", weight=3]; 3305 -> 3442[label="",style="dashed", color="magenta", weight=3]; 3306 -> 135[label="",style="dashed", color="red", weight=0]; 3306[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3306 -> 3443[label="",style="dashed", color="magenta", weight=3]; 3306 -> 3444[label="",style="dashed", color="magenta", weight=3]; 3307 -> 2823[label="",style="dashed", color="red", weight=0]; 3307[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3307 -> 3445[label="",style="dashed", color="magenta", weight=3]; 3307 -> 3446[label="",style="dashed", color="magenta", weight=3]; 3308 -> 2824[label="",style="dashed", color="red", weight=0]; 3308[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3308 -> 3447[label="",style="dashed", color="magenta", weight=3]; 3308 -> 3448[label="",style="dashed", color="magenta", weight=3]; 3309 -> 2825[label="",style="dashed", color="red", weight=0]; 3309[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3309 -> 3449[label="",style="dashed", color="magenta", weight=3]; 3309 -> 3450[label="",style="dashed", color="magenta", weight=3]; 3310[label="primEqInt (Pos (Succ zwu40000)) (Pos zwu6000)",fontsize=16,color="burlywood",shape="box"];7067[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3310 -> 7067[label="",style="solid", color="burlywood", weight=9]; 7067 -> 3451[label="",style="solid", color="burlywood", weight=3]; 7068[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3310 -> 7068[label="",style="solid", color="burlywood", weight=9]; 7068 -> 3452[label="",style="solid", color="burlywood", weight=3]; 3311[label="primEqInt (Pos (Succ zwu40000)) (Neg zwu6000)",fontsize=16,color="black",shape="box"];3311 -> 3453[label="",style="solid", color="black", weight=3]; 3312[label="primEqInt (Pos Zero) (Pos zwu6000)",fontsize=16,color="burlywood",shape="box"];7069[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3312 -> 7069[label="",style="solid", color="burlywood", weight=9]; 7069 -> 3454[label="",style="solid", color="burlywood", weight=3]; 7070[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3312 -> 7070[label="",style="solid", color="burlywood", weight=9]; 7070 -> 3455[label="",style="solid", color="burlywood", weight=3]; 3313[label="primEqInt (Pos Zero) (Neg zwu6000)",fontsize=16,color="burlywood",shape="box"];7071[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3313 -> 7071[label="",style="solid", color="burlywood", weight=9]; 7071 -> 3456[label="",style="solid", color="burlywood", weight=3]; 7072[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3313 -> 7072[label="",style="solid", color="burlywood", weight=9]; 7072 -> 3457[label="",style="solid", color="burlywood", weight=3]; 3314[label="primEqInt (Neg (Succ zwu40000)) (Pos zwu6000)",fontsize=16,color="black",shape="box"];3314 -> 3458[label="",style="solid", color="black", weight=3]; 3315[label="primEqInt (Neg (Succ zwu40000)) (Neg zwu6000)",fontsize=16,color="burlywood",shape="box"];7073[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3315 -> 7073[label="",style="solid", color="burlywood", weight=9]; 7073 -> 3459[label="",style="solid", color="burlywood", weight=3]; 7074[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3315 -> 7074[label="",style="solid", color="burlywood", weight=9]; 7074 -> 3460[label="",style="solid", color="burlywood", weight=3]; 3316[label="primEqInt (Neg Zero) (Pos zwu6000)",fontsize=16,color="burlywood",shape="box"];7075[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3316 -> 7075[label="",style="solid", color="burlywood", weight=9]; 7075 -> 3461[label="",style="solid", color="burlywood", weight=3]; 7076[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3316 -> 7076[label="",style="solid", color="burlywood", weight=9]; 7076 -> 3462[label="",style="solid", color="burlywood", weight=3]; 3317[label="primEqInt (Neg Zero) (Neg zwu6000)",fontsize=16,color="burlywood",shape="box"];7077[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3317 -> 7077[label="",style="solid", color="burlywood", weight=9]; 7077 -> 3463[label="",style="solid", color="burlywood", weight=3]; 7078[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3317 -> 7078[label="",style="solid", color="burlywood", weight=9]; 7078 -> 3464[label="",style="solid", color="burlywood", weight=3]; 3318 -> 2816[label="",style="dashed", color="red", weight=0]; 3318[label="zwu4000 * zwu6001 == zwu4001 * zwu6000",fontsize=16,color="magenta"];3318 -> 3465[label="",style="dashed", color="magenta", weight=3]; 3318 -> 3466[label="",style="dashed", color="magenta", weight=3]; 3319 -> 2816[label="",style="dashed", color="red", weight=0]; 3319[label="zwu4000 * zwu6001 == zwu4001 * zwu6000",fontsize=16,color="magenta"];3319 -> 3467[label="",style="dashed", color="magenta", weight=3]; 3319 -> 3468[label="",style="dashed", color="magenta", weight=3]; 3320[label="zwu6000",fontsize=16,color="green",shape="box"];3321[label="zwu4000",fontsize=16,color="green",shape="box"];3322[label="primEqNat zwu4000 zwu6000",fontsize=16,color="burlywood",shape="triangle"];7079[label="zwu4000/Succ zwu40000",fontsize=10,color="white",style="solid",shape="box"];3322 -> 7079[label="",style="solid", color="burlywood", weight=9]; 7079 -> 3469[label="",style="solid", color="burlywood", weight=3]; 7080[label="zwu4000/Zero",fontsize=10,color="white",style="solid",shape="box"];3322 -> 7080[label="",style="solid", color="burlywood", weight=9]; 7080 -> 3470[label="",style="solid", color="burlywood", weight=3]; 3365[label="zwu4000 == zwu6000",fontsize=16,color="blue",shape="box"];7081[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7081[label="",style="solid", color="blue", weight=9]; 7081 -> 3471[label="",style="solid", color="blue", weight=3]; 7082[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7082[label="",style="solid", color="blue", weight=9]; 7082 -> 3472[label="",style="solid", color="blue", weight=3]; 7083[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7083[label="",style="solid", color="blue", weight=9]; 7083 -> 3473[label="",style="solid", color="blue", weight=3]; 7084[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7084[label="",style="solid", color="blue", weight=9]; 7084 -> 3474[label="",style="solid", color="blue", weight=3]; 7085[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7085[label="",style="solid", color="blue", weight=9]; 7085 -> 3475[label="",style="solid", color="blue", weight=3]; 7086[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7086[label="",style="solid", color="blue", weight=9]; 7086 -> 3476[label="",style="solid", color="blue", weight=3]; 7087[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7087[label="",style="solid", color="blue", weight=9]; 7087 -> 3477[label="",style="solid", color="blue", weight=3]; 7088[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7088[label="",style="solid", color="blue", weight=9]; 7088 -> 3478[label="",style="solid", color="blue", weight=3]; 7089[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7089[label="",style="solid", color="blue", weight=9]; 7089 -> 3479[label="",style="solid", color="blue", weight=3]; 7090[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7090[label="",style="solid", color="blue", weight=9]; 7090 -> 3480[label="",style="solid", color="blue", weight=3]; 7091[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7091[label="",style="solid", color="blue", weight=9]; 7091 -> 3481[label="",style="solid", color="blue", weight=3]; 7092[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7092[label="",style="solid", color="blue", weight=9]; 7092 -> 3482[label="",style="solid", color="blue", weight=3]; 7093[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7093[label="",style="solid", color="blue", weight=9]; 7093 -> 3483[label="",style="solid", color="blue", weight=3]; 7094[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3365 -> 7094[label="",style="solid", color="blue", weight=9]; 7094 -> 3484[label="",style="solid", color="blue", weight=3]; 3366[label="zwu4001 == zwu6001",fontsize=16,color="blue",shape="box"];7095[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7095[label="",style="solid", color="blue", weight=9]; 7095 -> 3485[label="",style="solid", color="blue", weight=3]; 7096[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7096[label="",style="solid", color="blue", weight=9]; 7096 -> 3486[label="",style="solid", color="blue", weight=3]; 7097[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7097[label="",style="solid", color="blue", weight=9]; 7097 -> 3487[label="",style="solid", color="blue", weight=3]; 7098[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7098[label="",style="solid", color="blue", weight=9]; 7098 -> 3488[label="",style="solid", color="blue", weight=3]; 7099[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7099[label="",style="solid", color="blue", weight=9]; 7099 -> 3489[label="",style="solid", color="blue", weight=3]; 7100[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7100[label="",style="solid", color="blue", weight=9]; 7100 -> 3490[label="",style="solid", color="blue", weight=3]; 7101[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7101[label="",style="solid", color="blue", weight=9]; 7101 -> 3491[label="",style="solid", color="blue", weight=3]; 7102[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7102[label="",style="solid", color="blue", weight=9]; 7102 -> 3492[label="",style="solid", color="blue", weight=3]; 7103[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7103[label="",style="solid", color="blue", weight=9]; 7103 -> 3493[label="",style="solid", color="blue", weight=3]; 7104[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7104[label="",style="solid", color="blue", weight=9]; 7104 -> 3494[label="",style="solid", color="blue", weight=3]; 7105[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7105[label="",style="solid", color="blue", weight=9]; 7105 -> 3495[label="",style="solid", color="blue", weight=3]; 7106[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7106[label="",style="solid", color="blue", weight=9]; 7106 -> 3496[label="",style="solid", color="blue", weight=3]; 7107[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7107[label="",style="solid", color="blue", weight=9]; 7107 -> 3497[label="",style="solid", color="blue", weight=3]; 7108[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3366 -> 7108[label="",style="solid", color="blue", weight=9]; 7108 -> 3498[label="",style="solid", color="blue", weight=3]; 3367[label="zwu4000 == zwu6000",fontsize=16,color="blue",shape="box"];7109[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7109[label="",style="solid", color="blue", weight=9]; 7109 -> 3499[label="",style="solid", color="blue", weight=3]; 7110[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7110[label="",style="solid", color="blue", weight=9]; 7110 -> 3500[label="",style="solid", color="blue", weight=3]; 7111[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7111[label="",style="solid", color="blue", weight=9]; 7111 -> 3501[label="",style="solid", color="blue", weight=3]; 7112[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7112[label="",style="solid", color="blue", weight=9]; 7112 -> 3502[label="",style="solid", color="blue", weight=3]; 7113[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7113[label="",style="solid", color="blue", weight=9]; 7113 -> 3503[label="",style="solid", color="blue", weight=3]; 7114[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7114[label="",style="solid", color="blue", weight=9]; 7114 -> 3504[label="",style="solid", color="blue", weight=3]; 7115[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7115[label="",style="solid", color="blue", weight=9]; 7115 -> 3505[label="",style="solid", color="blue", weight=3]; 7116[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7116[label="",style="solid", color="blue", weight=9]; 7116 -> 3506[label="",style="solid", color="blue", weight=3]; 7117[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7117[label="",style="solid", color="blue", weight=9]; 7117 -> 3507[label="",style="solid", color="blue", weight=3]; 7118[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7118[label="",style="solid", color="blue", weight=9]; 7118 -> 3508[label="",style="solid", color="blue", weight=3]; 7119[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7119[label="",style="solid", color="blue", weight=9]; 7119 -> 3509[label="",style="solid", color="blue", weight=3]; 7120[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7120[label="",style="solid", color="blue", weight=9]; 7120 -> 3510[label="",style="solid", color="blue", weight=3]; 7121[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7121[label="",style="solid", color="blue", weight=9]; 7121 -> 3511[label="",style="solid", color="blue", weight=3]; 7122[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3367 -> 7122[label="",style="solid", color="blue", weight=9]; 7122 -> 3512[label="",style="solid", color="blue", weight=3]; 3368 -> 2825[label="",style="dashed", color="red", weight=0]; 3368[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3368 -> 3513[label="",style="dashed", color="magenta", weight=3]; 3368 -> 3514[label="",style="dashed", color="magenta", weight=3]; 796 -> 2775[label="",style="dashed", color="red", weight=0]; 796[label="compare2 (Just zwu24) (Just zwu19) (Just zwu24 == Just zwu19)",fontsize=16,color="magenta"];796 -> 2803[label="",style="dashed", color="magenta", weight=3]; 796 -> 2804[label="",style="dashed", color="magenta", weight=3]; 796 -> 2805[label="",style="dashed", color="magenta", weight=3]; 797[label="FiniteMap.Branch (Just zwu24) (FiniteMap.addToFM0 zwu20 zwu25) zwu21 zwu22 zwu23",fontsize=16,color="green",shape="box"];797 -> 1085[label="",style="dashed", color="green", weight=3]; 798[label="zwu25",fontsize=16,color="green",shape="box"];799[label="zwu23",fontsize=16,color="green",shape="box"];800[label="Just zwu24",fontsize=16,color="green",shape="box"];801[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat Zero (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];801 -> 1086[label="",style="solid", color="black", weight=3]; 802 -> 1570[label="",style="dashed", color="red", weight=0]; 802[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];802 -> 1571[label="",style="dashed", color="magenta", weight=3]; 803[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];803 -> 1088[label="",style="solid", color="black", weight=3]; 804[label="zwu73",fontsize=16,color="green",shape="box"];805[label="zwu71",fontsize=16,color="green",shape="box"];806 -> 23[label="",style="dashed", color="red", weight=0]; 806[label="FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];806 -> 1089[label="",style="dashed", color="magenta", weight=3]; 806 -> 1090[label="",style="dashed", color="magenta", weight=3]; 807[label="zwu70",fontsize=16,color="green",shape="box"];808[label="primCmpNat Zero (Succ zwu6200)",fontsize=16,color="black",shape="box"];808 -> 1091[label="",style="solid", color="black", weight=3]; 809[label="EQ",fontsize=16,color="green",shape="box"];810[label="GT",fontsize=16,color="green",shape="box"];811[label="EQ",fontsize=16,color="green",shape="box"];812 -> 1579[label="",style="dashed", color="red", weight=0]; 812[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="magenta"];812 -> 1580[label="",style="dashed", color="magenta", weight=3]; 813[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Pos Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];813 -> 1093[label="",style="solid", color="black", weight=3]; 814[label="zwu73",fontsize=16,color="green",shape="box"];815[label="zwu71",fontsize=16,color="green",shape="box"];816 -> 23[label="",style="dashed", color="red", weight=0]; 816[label="FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];816 -> 1094[label="",style="dashed", color="magenta", weight=3]; 816 -> 1095[label="",style="dashed", color="magenta", weight=3]; 817[label="zwu70",fontsize=16,color="green",shape="box"];818[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat Zero (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];818 -> 1096[label="",style="solid", color="black", weight=3]; 819 -> 1595[label="",style="dashed", color="red", weight=0]; 819[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];819 -> 1596[label="",style="dashed", color="magenta", weight=3]; 820[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];820 -> 1098[label="",style="solid", color="black", weight=3]; 821[label="zwu73",fontsize=16,color="green",shape="box"];822[label="zwu71",fontsize=16,color="green",shape="box"];823 -> 23[label="",style="dashed", color="red", weight=0]; 823[label="FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];823 -> 1099[label="",style="dashed", color="magenta", weight=3]; 823 -> 1100[label="",style="dashed", color="magenta", weight=3]; 824[label="zwu70",fontsize=16,color="green",shape="box"];825[label="LT",fontsize=16,color="green",shape="box"];826[label="EQ",fontsize=16,color="green",shape="box"];827[label="primCmpNat (Succ zwu6200) Zero",fontsize=16,color="black",shape="box"];827 -> 1101[label="",style="solid", color="black", weight=3]; 828[label="EQ",fontsize=16,color="green",shape="box"];829 -> 1609[label="",style="dashed", color="red", weight=0]; 829[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="magenta"];829 -> 1610[label="",style="dashed", color="magenta", weight=3]; 830[label="FiniteMap.mkVBalBranch3MkVBalBranch0 zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu40 zwu41 zwu70 zwu71 (Neg Zero) zwu73 zwu74 zwu60 zwu61 zwu62 zwu63 zwu64 True",fontsize=16,color="black",shape="box"];830 -> 1103[label="",style="solid", color="black", weight=3]; 831[label="zwu73",fontsize=16,color="green",shape="box"];832[label="zwu71",fontsize=16,color="green",shape="box"];833 -> 23[label="",style="dashed", color="red", weight=0]; 833[label="FiniteMap.mkVBalBranch zwu40 zwu41 zwu74 (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];833 -> 1104[label="",style="dashed", color="magenta", weight=3]; 833 -> 1105[label="",style="dashed", color="magenta", weight=3]; 834[label="zwu70",fontsize=16,color="green",shape="box"];835[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat Zero (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];835 -> 1106[label="",style="solid", color="black", weight=3]; 836[label="LT",fontsize=16,color="green",shape="box"];837[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];837 -> 1107[label="",style="solid", color="black", weight=3]; 838[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 otherwise",fontsize=16,color="black",shape="box"];838 -> 1108[label="",style="solid", color="black", weight=3]; 839 -> 414[label="",style="dashed", color="red", weight=0]; 839[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];839 -> 1109[label="",style="dashed", color="magenta", weight=3]; 839 -> 1110[label="",style="dashed", color="magenta", weight=3]; 839 -> 1111[label="",style="dashed", color="magenta", weight=3]; 839 -> 1112[label="",style="dashed", color="magenta", weight=3]; 840[label="LT",fontsize=16,color="green",shape="box"];841[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];841 -> 1113[label="",style="solid", color="black", weight=3]; 842[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 otherwise",fontsize=16,color="black",shape="box"];842 -> 1114[label="",style="solid", color="black", weight=3]; 843 -> 414[label="",style="dashed", color="red", weight=0]; 843[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];843 -> 1115[label="",style="dashed", color="magenta", weight=3]; 843 -> 1116[label="",style="dashed", color="magenta", weight=3]; 843 -> 1117[label="",style="dashed", color="magenta", weight=3]; 843 -> 1118[label="",style="dashed", color="magenta", weight=3]; 844[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primMulNat Zero (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];844 -> 1119[label="",style="solid", color="black", weight=3]; 845[label="LT",fontsize=16,color="green",shape="box"];846[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];846 -> 1120[label="",style="solid", color="black", weight=3]; 847[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 otherwise",fontsize=16,color="black",shape="box"];847 -> 1121[label="",style="solid", color="black", weight=3]; 848 -> 414[label="",style="dashed", color="red", weight=0]; 848[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];848 -> 1122[label="",style="dashed", color="magenta", weight=3]; 848 -> 1123[label="",style="dashed", color="magenta", weight=3]; 848 -> 1124[label="",style="dashed", color="magenta", weight=3]; 848 -> 1125[label="",style="dashed", color="magenta", weight=3]; 849[label="LT",fontsize=16,color="green",shape="box"];850[label="compare (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];850 -> 1126[label="",style="solid", color="black", weight=3]; 851[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 otherwise",fontsize=16,color="black",shape="box"];851 -> 1127[label="",style="solid", color="black", weight=3]; 852 -> 414[label="",style="dashed", color="red", weight=0]; 852[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];852 -> 1128[label="",style="dashed", color="magenta", weight=3]; 852 -> 1129[label="",style="dashed", color="magenta", weight=3]; 852 -> 1130[label="",style="dashed", color="magenta", weight=3]; 852 -> 1131[label="",style="dashed", color="magenta", weight=3]; 2794[label="Nothing",fontsize=16,color="green",shape="box"];2795[label="Nothing",fontsize=16,color="green",shape="box"];2796[label="Nothing == Nothing",fontsize=16,color="black",shape="box"];2796 -> 2826[label="",style="solid", color="black", weight=3]; 855[label="FiniteMap.addToFM0 zwu61 zwu41",fontsize=16,color="black",shape="triangle"];855 -> 1136[label="",style="solid", color="black", weight=3]; 3323[label="LT",fontsize=16,color="green",shape="box"];3324[label="LT",fontsize=16,color="green",shape="box"];3325[label="compare0 (Just zwu4300) Nothing otherwise",fontsize=16,color="black",shape="box"];3325 -> 3515[label="",style="solid", color="black", weight=3]; 3327[label="zwu4400",fontsize=16,color="green",shape="box"];3328[label="zwu4300 <= zwu4400",fontsize=16,color="blue",shape="box"];7123[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7123[label="",style="solid", color="blue", weight=9]; 7123 -> 3516[label="",style="solid", color="blue", weight=3]; 7124[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7124[label="",style="solid", color="blue", weight=9]; 7124 -> 3517[label="",style="solid", color="blue", weight=3]; 7125[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7125[label="",style="solid", color="blue", weight=9]; 7125 -> 3518[label="",style="solid", color="blue", weight=3]; 7126[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7126[label="",style="solid", color="blue", weight=9]; 7126 -> 3519[label="",style="solid", color="blue", weight=3]; 7127[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7127[label="",style="solid", color="blue", weight=9]; 7127 -> 3520[label="",style="solid", color="blue", weight=3]; 7128[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7128[label="",style="solid", color="blue", weight=9]; 7128 -> 3521[label="",style="solid", color="blue", weight=3]; 7129[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7129[label="",style="solid", color="blue", weight=9]; 7129 -> 3522[label="",style="solid", color="blue", weight=3]; 7130[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7130[label="",style="solid", color="blue", weight=9]; 7130 -> 3523[label="",style="solid", color="blue", weight=3]; 7131[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7131[label="",style="solid", color="blue", weight=9]; 7131 -> 3524[label="",style="solid", color="blue", weight=3]; 7132[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7132[label="",style="solid", color="blue", weight=9]; 7132 -> 3525[label="",style="solid", color="blue", weight=3]; 7133[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7133[label="",style="solid", color="blue", weight=9]; 7133 -> 3526[label="",style="solid", color="blue", weight=3]; 7134[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7134[label="",style="solid", color="blue", weight=9]; 7134 -> 3527[label="",style="solid", color="blue", weight=3]; 7135[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7135[label="",style="solid", color="blue", weight=9]; 7135 -> 3528[label="",style="solid", color="blue", weight=3]; 7136[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3328 -> 7136[label="",style="solid", color="blue", weight=9]; 7136 -> 3529[label="",style="solid", color="blue", weight=3]; 3329[label="zwu4300",fontsize=16,color="green",shape="box"];3326[label="compare1 (Just zwu217) (Just zwu218) zwu219",fontsize=16,color="burlywood",shape="triangle"];7137[label="zwu219/False",fontsize=10,color="white",style="solid",shape="box"];3326 -> 7137[label="",style="solid", color="burlywood", weight=9]; 7137 -> 3530[label="",style="solid", color="burlywood", weight=3]; 7138[label="zwu219/True",fontsize=10,color="white",style="solid",shape="box"];3326 -> 7138[label="",style="solid", color="burlywood", weight=9]; 7138 -> 3531[label="",style="solid", color="burlywood", weight=3]; 2797[label="Nothing",fontsize=16,color="green",shape="box"];2798[label="Just zwu600",fontsize=16,color="green",shape="box"];2799[label="Nothing == Just zwu600",fontsize=16,color="black",shape="box"];2799 -> 2827[label="",style="solid", color="black", weight=3]; 861 -> 855[label="",style="dashed", color="red", weight=0]; 861[label="FiniteMap.addToFM0 zwu61 zwu41",fontsize=16,color="magenta"];862[label="LT",fontsize=16,color="green",shape="box"];863[label="compare (FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51 + FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];863 -> 1139[label="",style="solid", color="black", weight=3]; 864 -> 1453[label="",style="dashed", color="red", weight=0]; 864[label="FiniteMap.mkBalBranch6MkBalBranch4 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51)",fontsize=16,color="magenta"];864 -> 1454[label="",style="dashed", color="magenta", weight=3]; 865 -> 4807[label="",style="dashed", color="red", weight=0]; 865[label="FiniteMap.mkBranch (Pos (Succ Zero)) zwu60 zwu61 zwu51 zwu64",fontsize=16,color="magenta"];865 -> 4808[label="",style="dashed", color="magenta", weight=3]; 865 -> 4809[label="",style="dashed", color="magenta", weight=3]; 865 -> 4810[label="",style="dashed", color="magenta", weight=3]; 865 -> 4811[label="",style="dashed", color="magenta", weight=3]; 865 -> 4812[label="",style="dashed", color="magenta", weight=3]; 2800[label="Just zwu400",fontsize=16,color="green",shape="box"];2801[label="Nothing",fontsize=16,color="green",shape="box"];2802[label="Just zwu400 == Nothing",fontsize=16,color="black",shape="box"];2802 -> 2828[label="",style="solid", color="black", weight=3]; 873 -> 855[label="",style="dashed", color="red", weight=0]; 873[label="FiniteMap.addToFM0 zwu61 zwu41",fontsize=16,color="magenta"];3330[label="zwu6000",fontsize=16,color="green",shape="box"];3331[label="zwu4000",fontsize=16,color="green",shape="box"];3332[label="zwu6000",fontsize=16,color="green",shape="box"];3333[label="zwu4000",fontsize=16,color="green",shape="box"];3334[label="zwu6000",fontsize=16,color="green",shape="box"];3335[label="zwu4000",fontsize=16,color="green",shape="box"];3336[label="zwu6000",fontsize=16,color="green",shape="box"];3337[label="zwu4000",fontsize=16,color="green",shape="box"];3338[label="zwu6000",fontsize=16,color="green",shape="box"];3339[label="zwu4000",fontsize=16,color="green",shape="box"];3340[label="zwu6000",fontsize=16,color="green",shape="box"];3341[label="zwu4000",fontsize=16,color="green",shape="box"];3342[label="zwu6000",fontsize=16,color="green",shape="box"];3343[label="zwu4000",fontsize=16,color="green",shape="box"];3344[label="zwu6000",fontsize=16,color="green",shape="box"];3345[label="zwu4000",fontsize=16,color="green",shape="box"];3346[label="zwu6000",fontsize=16,color="green",shape="box"];3347[label="zwu4000",fontsize=16,color="green",shape="box"];3348[label="zwu6000",fontsize=16,color="green",shape="box"];3349[label="zwu4000",fontsize=16,color="green",shape="box"];3350[label="zwu6000",fontsize=16,color="green",shape="box"];3351[label="zwu4000",fontsize=16,color="green",shape="box"];3352[label="zwu6000",fontsize=16,color="green",shape="box"];3353[label="zwu4000",fontsize=16,color="green",shape="box"];3354[label="zwu6000",fontsize=16,color="green",shape="box"];3355[label="zwu4000",fontsize=16,color="green",shape="box"];3356[label="zwu6000",fontsize=16,color="green",shape="box"];3357[label="zwu4000",fontsize=16,color="green",shape="box"];3373 -> 2816[label="",style="dashed", color="red", weight=0]; 3373[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3373 -> 3592[label="",style="dashed", color="magenta", weight=3]; 3373 -> 3593[label="",style="dashed", color="magenta", weight=3]; 3374 -> 2821[label="",style="dashed", color="red", weight=0]; 3374[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3374 -> 3594[label="",style="dashed", color="magenta", weight=3]; 3374 -> 3595[label="",style="dashed", color="magenta", weight=3]; 3375 -> 2816[label="",style="dashed", color="red", weight=0]; 3375[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3375 -> 3596[label="",style="dashed", color="magenta", weight=3]; 3375 -> 3597[label="",style="dashed", color="magenta", weight=3]; 3376 -> 2821[label="",style="dashed", color="red", weight=0]; 3376[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3376 -> 3598[label="",style="dashed", color="magenta", weight=3]; 3376 -> 3599[label="",style="dashed", color="magenta", weight=3]; 3377[label="False && zwu224",fontsize=16,color="black",shape="box"];3377 -> 3600[label="",style="solid", color="black", weight=3]; 3378[label="True && zwu224",fontsize=16,color="black",shape="box"];3378 -> 3601[label="",style="solid", color="black", weight=3]; 3379 -> 2812[label="",style="dashed", color="red", weight=0]; 3379[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3379 -> 3602[label="",style="dashed", color="magenta", weight=3]; 3379 -> 3603[label="",style="dashed", color="magenta", weight=3]; 3380 -> 2813[label="",style="dashed", color="red", weight=0]; 3380[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3380 -> 3604[label="",style="dashed", color="magenta", weight=3]; 3380 -> 3605[label="",style="dashed", color="magenta", weight=3]; 3381 -> 2814[label="",style="dashed", color="red", weight=0]; 3381[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3381 -> 3606[label="",style="dashed", color="magenta", weight=3]; 3381 -> 3607[label="",style="dashed", color="magenta", weight=3]; 3382 -> 2815[label="",style="dashed", color="red", weight=0]; 3382[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3382 -> 3608[label="",style="dashed", color="magenta", weight=3]; 3382 -> 3609[label="",style="dashed", color="magenta", weight=3]; 3383 -> 2816[label="",style="dashed", color="red", weight=0]; 3383[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3383 -> 3610[label="",style="dashed", color="magenta", weight=3]; 3383 -> 3611[label="",style="dashed", color="magenta", weight=3]; 3384 -> 2817[label="",style="dashed", color="red", weight=0]; 3384[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3384 -> 3612[label="",style="dashed", color="magenta", weight=3]; 3384 -> 3613[label="",style="dashed", color="magenta", weight=3]; 3385 -> 2818[label="",style="dashed", color="red", weight=0]; 3385[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3385 -> 3614[label="",style="dashed", color="magenta", weight=3]; 3385 -> 3615[label="",style="dashed", color="magenta", weight=3]; 3386 -> 2819[label="",style="dashed", color="red", weight=0]; 3386[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3386 -> 3616[label="",style="dashed", color="magenta", weight=3]; 3386 -> 3617[label="",style="dashed", color="magenta", weight=3]; 3387 -> 2820[label="",style="dashed", color="red", weight=0]; 3387[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3387 -> 3618[label="",style="dashed", color="magenta", weight=3]; 3387 -> 3619[label="",style="dashed", color="magenta", weight=3]; 3388 -> 2821[label="",style="dashed", color="red", weight=0]; 3388[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3388 -> 3620[label="",style="dashed", color="magenta", weight=3]; 3388 -> 3621[label="",style="dashed", color="magenta", weight=3]; 3389 -> 135[label="",style="dashed", color="red", weight=0]; 3389[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3389 -> 3622[label="",style="dashed", color="magenta", weight=3]; 3389 -> 3623[label="",style="dashed", color="magenta", weight=3]; 3390 -> 2823[label="",style="dashed", color="red", weight=0]; 3390[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3390 -> 3624[label="",style="dashed", color="magenta", weight=3]; 3390 -> 3625[label="",style="dashed", color="magenta", weight=3]; 3391 -> 2824[label="",style="dashed", color="red", weight=0]; 3391[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3391 -> 3626[label="",style="dashed", color="magenta", weight=3]; 3391 -> 3627[label="",style="dashed", color="magenta", weight=3]; 3392 -> 2825[label="",style="dashed", color="red", weight=0]; 3392[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3392 -> 3628[label="",style="dashed", color="magenta", weight=3]; 3392 -> 3629[label="",style="dashed", color="magenta", weight=3]; 3393[label="zwu4001 == zwu6001",fontsize=16,color="blue",shape="box"];7139[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7139[label="",style="solid", color="blue", weight=9]; 7139 -> 3630[label="",style="solid", color="blue", weight=3]; 7140[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7140[label="",style="solid", color="blue", weight=9]; 7140 -> 3631[label="",style="solid", color="blue", weight=3]; 7141[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7141[label="",style="solid", color="blue", weight=9]; 7141 -> 3632[label="",style="solid", color="blue", weight=3]; 7142[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7142[label="",style="solid", color="blue", weight=9]; 7142 -> 3633[label="",style="solid", color="blue", weight=3]; 7143[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7143[label="",style="solid", color="blue", weight=9]; 7143 -> 3634[label="",style="solid", color="blue", weight=3]; 7144[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7144[label="",style="solid", color="blue", weight=9]; 7144 -> 3635[label="",style="solid", color="blue", weight=3]; 7145[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7145[label="",style="solid", color="blue", weight=9]; 7145 -> 3636[label="",style="solid", color="blue", weight=3]; 7146[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7146[label="",style="solid", color="blue", weight=9]; 7146 -> 3637[label="",style="solid", color="blue", weight=3]; 7147[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7147[label="",style="solid", color="blue", weight=9]; 7147 -> 3638[label="",style="solid", color="blue", weight=3]; 7148[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7148[label="",style="solid", color="blue", weight=9]; 7148 -> 3639[label="",style="solid", color="blue", weight=3]; 7149[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7149[label="",style="solid", color="blue", weight=9]; 7149 -> 3640[label="",style="solid", color="blue", weight=3]; 7150[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7150[label="",style="solid", color="blue", weight=9]; 7150 -> 3641[label="",style="solid", color="blue", weight=3]; 7151[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7151[label="",style="solid", color="blue", weight=9]; 7151 -> 3642[label="",style="solid", color="blue", weight=3]; 7152[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3393 -> 7152[label="",style="solid", color="blue", weight=9]; 7152 -> 3643[label="",style="solid", color="blue", weight=3]; 3394[label="zwu4002 == zwu6002",fontsize=16,color="blue",shape="box"];7153[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7153[label="",style="solid", color="blue", weight=9]; 7153 -> 3644[label="",style="solid", color="blue", weight=3]; 7154[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7154[label="",style="solid", color="blue", weight=9]; 7154 -> 3645[label="",style="solid", color="blue", weight=3]; 7155[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7155[label="",style="solid", color="blue", weight=9]; 7155 -> 3646[label="",style="solid", color="blue", weight=3]; 7156[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7156[label="",style="solid", color="blue", weight=9]; 7156 -> 3647[label="",style="solid", color="blue", weight=3]; 7157[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7157[label="",style="solid", color="blue", weight=9]; 7157 -> 3648[label="",style="solid", color="blue", weight=3]; 7158[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7158[label="",style="solid", color="blue", weight=9]; 7158 -> 3649[label="",style="solid", color="blue", weight=3]; 7159[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7159[label="",style="solid", color="blue", weight=9]; 7159 -> 3650[label="",style="solid", color="blue", weight=3]; 7160[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7160[label="",style="solid", color="blue", weight=9]; 7160 -> 3651[label="",style="solid", color="blue", weight=3]; 7161[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7161[label="",style="solid", color="blue", weight=9]; 7161 -> 3652[label="",style="solid", color="blue", weight=3]; 7162[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7162[label="",style="solid", color="blue", weight=9]; 7162 -> 3653[label="",style="solid", color="blue", weight=3]; 7163[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7163[label="",style="solid", color="blue", weight=9]; 7163 -> 3654[label="",style="solid", color="blue", weight=3]; 7164[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7164[label="",style="solid", color="blue", weight=9]; 7164 -> 3655[label="",style="solid", color="blue", weight=3]; 7165[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7165[label="",style="solid", color="blue", weight=9]; 7165 -> 3656[label="",style="solid", color="blue", weight=3]; 7166[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3394 -> 7166[label="",style="solid", color="blue", weight=9]; 7166 -> 3657[label="",style="solid", color="blue", weight=3]; 3395[label="zwu6000",fontsize=16,color="green",shape="box"];3396[label="zwu4000",fontsize=16,color="green",shape="box"];3397[label="zwu6000",fontsize=16,color="green",shape="box"];3398[label="zwu4000",fontsize=16,color="green",shape="box"];3399[label="zwu6000",fontsize=16,color="green",shape="box"];3400[label="zwu4000",fontsize=16,color="green",shape="box"];3401[label="zwu6000",fontsize=16,color="green",shape="box"];3402[label="zwu4000",fontsize=16,color="green",shape="box"];3403[label="zwu6000",fontsize=16,color="green",shape="box"];3404[label="zwu4000",fontsize=16,color="green",shape="box"];3405[label="zwu6000",fontsize=16,color="green",shape="box"];3406[label="zwu4000",fontsize=16,color="green",shape="box"];3407[label="zwu6000",fontsize=16,color="green",shape="box"];3408[label="zwu4000",fontsize=16,color="green",shape="box"];3409[label="zwu6000",fontsize=16,color="green",shape="box"];3410[label="zwu4000",fontsize=16,color="green",shape="box"];3411[label="zwu6000",fontsize=16,color="green",shape="box"];3412[label="zwu4000",fontsize=16,color="green",shape="box"];3413[label="zwu6000",fontsize=16,color="green",shape="box"];3414[label="zwu4000",fontsize=16,color="green",shape="box"];3415[label="zwu6000",fontsize=16,color="green",shape="box"];3416[label="zwu4000",fontsize=16,color="green",shape="box"];3417[label="zwu6000",fontsize=16,color="green",shape="box"];3418[label="zwu4000",fontsize=16,color="green",shape="box"];3419[label="zwu6000",fontsize=16,color="green",shape="box"];3420[label="zwu4000",fontsize=16,color="green",shape="box"];3421[label="zwu6000",fontsize=16,color="green",shape="box"];3422[label="zwu4000",fontsize=16,color="green",shape="box"];3423[label="zwu6000",fontsize=16,color="green",shape="box"];3424[label="zwu4000",fontsize=16,color="green",shape="box"];3425[label="zwu6000",fontsize=16,color="green",shape="box"];3426[label="zwu4000",fontsize=16,color="green",shape="box"];3427[label="zwu6000",fontsize=16,color="green",shape="box"];3428[label="zwu4000",fontsize=16,color="green",shape="box"];3429[label="zwu6000",fontsize=16,color="green",shape="box"];3430[label="zwu4000",fontsize=16,color="green",shape="box"];3431[label="zwu6000",fontsize=16,color="green",shape="box"];3432[label="zwu4000",fontsize=16,color="green",shape="box"];3433[label="zwu6000",fontsize=16,color="green",shape="box"];3434[label="zwu4000",fontsize=16,color="green",shape="box"];3435[label="zwu6000",fontsize=16,color="green",shape="box"];3436[label="zwu4000",fontsize=16,color="green",shape="box"];3437[label="zwu6000",fontsize=16,color="green",shape="box"];3438[label="zwu4000",fontsize=16,color="green",shape="box"];3439[label="zwu6000",fontsize=16,color="green",shape="box"];3440[label="zwu4000",fontsize=16,color="green",shape="box"];3441[label="zwu6000",fontsize=16,color="green",shape="box"];3442[label="zwu4000",fontsize=16,color="green",shape="box"];3443[label="zwu6000",fontsize=16,color="green",shape="box"];3444[label="zwu4000",fontsize=16,color="green",shape="box"];3445[label="zwu6000",fontsize=16,color="green",shape="box"];3446[label="zwu4000",fontsize=16,color="green",shape="box"];3447[label="zwu6000",fontsize=16,color="green",shape="box"];3448[label="zwu4000",fontsize=16,color="green",shape="box"];3449[label="zwu6000",fontsize=16,color="green",shape="box"];3450[label="zwu4000",fontsize=16,color="green",shape="box"];3451[label="primEqInt (Pos (Succ zwu40000)) (Pos (Succ zwu60000))",fontsize=16,color="black",shape="box"];3451 -> 3658[label="",style="solid", color="black", weight=3]; 3452[label="primEqInt (Pos (Succ zwu40000)) (Pos Zero)",fontsize=16,color="black",shape="box"];3452 -> 3659[label="",style="solid", color="black", weight=3]; 3453[label="False",fontsize=16,color="green",shape="box"];3454[label="primEqInt (Pos Zero) (Pos (Succ zwu60000))",fontsize=16,color="black",shape="box"];3454 -> 3660[label="",style="solid", color="black", weight=3]; 3455[label="primEqInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];3455 -> 3661[label="",style="solid", color="black", weight=3]; 3456[label="primEqInt (Pos Zero) (Neg (Succ zwu60000))",fontsize=16,color="black",shape="box"];3456 -> 3662[label="",style="solid", color="black", weight=3]; 3457[label="primEqInt (Pos Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];3457 -> 3663[label="",style="solid", color="black", weight=3]; 3458[label="False",fontsize=16,color="green",shape="box"];3459[label="primEqInt (Neg (Succ zwu40000)) (Neg (Succ zwu60000))",fontsize=16,color="black",shape="box"];3459 -> 3664[label="",style="solid", color="black", weight=3]; 3460[label="primEqInt (Neg (Succ zwu40000)) (Neg Zero)",fontsize=16,color="black",shape="box"];3460 -> 3665[label="",style="solid", color="black", weight=3]; 3461[label="primEqInt (Neg Zero) (Pos (Succ zwu60000))",fontsize=16,color="black",shape="box"];3461 -> 3666[label="",style="solid", color="black", weight=3]; 3462[label="primEqInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];3462 -> 3667[label="",style="solid", color="black", weight=3]; 3463[label="primEqInt (Neg Zero) (Neg (Succ zwu60000))",fontsize=16,color="black",shape="box"];3463 -> 3668[label="",style="solid", color="black", weight=3]; 3464[label="primEqInt (Neg Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];3464 -> 3669[label="",style="solid", color="black", weight=3]; 3465 -> 1012[label="",style="dashed", color="red", weight=0]; 3465[label="zwu4001 * zwu6000",fontsize=16,color="magenta"];3466 -> 1012[label="",style="dashed", color="red", weight=0]; 3466[label="zwu4000 * zwu6001",fontsize=16,color="magenta"];3466 -> 3670[label="",style="dashed", color="magenta", weight=3]; 3466 -> 3671[label="",style="dashed", color="magenta", weight=3]; 3467 -> 1012[label="",style="dashed", color="red", weight=0]; 3467[label="zwu4001 * zwu6000",fontsize=16,color="magenta"];3467 -> 3672[label="",style="dashed", color="magenta", weight=3]; 3467 -> 3673[label="",style="dashed", color="magenta", weight=3]; 3468 -> 1012[label="",style="dashed", color="red", weight=0]; 3468[label="zwu4000 * zwu6001",fontsize=16,color="magenta"];3468 -> 3674[label="",style="dashed", color="magenta", weight=3]; 3468 -> 3675[label="",style="dashed", color="magenta", weight=3]; 3469[label="primEqNat (Succ zwu40000) zwu6000",fontsize=16,color="burlywood",shape="box"];7167[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3469 -> 7167[label="",style="solid", color="burlywood", weight=9]; 7167 -> 3676[label="",style="solid", color="burlywood", weight=3]; 7168[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3469 -> 7168[label="",style="solid", color="burlywood", weight=9]; 7168 -> 3677[label="",style="solid", color="burlywood", weight=3]; 3470[label="primEqNat Zero zwu6000",fontsize=16,color="burlywood",shape="box"];7169[label="zwu6000/Succ zwu60000",fontsize=10,color="white",style="solid",shape="box"];3470 -> 7169[label="",style="solid", color="burlywood", weight=9]; 7169 -> 3678[label="",style="solid", color="burlywood", weight=3]; 7170[label="zwu6000/Zero",fontsize=10,color="white",style="solid",shape="box"];3470 -> 7170[label="",style="solid", color="burlywood", weight=9]; 7170 -> 3679[label="",style="solid", color="burlywood", weight=3]; 3471 -> 2812[label="",style="dashed", color="red", weight=0]; 3471[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3471 -> 3680[label="",style="dashed", color="magenta", weight=3]; 3471 -> 3681[label="",style="dashed", color="magenta", weight=3]; 3472 -> 2813[label="",style="dashed", color="red", weight=0]; 3472[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3472 -> 3682[label="",style="dashed", color="magenta", weight=3]; 3472 -> 3683[label="",style="dashed", color="magenta", weight=3]; 3473 -> 2814[label="",style="dashed", color="red", weight=0]; 3473[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3473 -> 3684[label="",style="dashed", color="magenta", weight=3]; 3473 -> 3685[label="",style="dashed", color="magenta", weight=3]; 3474 -> 2815[label="",style="dashed", color="red", weight=0]; 3474[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3474 -> 3686[label="",style="dashed", color="magenta", weight=3]; 3474 -> 3687[label="",style="dashed", color="magenta", weight=3]; 3475 -> 2816[label="",style="dashed", color="red", weight=0]; 3475[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3475 -> 3688[label="",style="dashed", color="magenta", weight=3]; 3475 -> 3689[label="",style="dashed", color="magenta", weight=3]; 3476 -> 2817[label="",style="dashed", color="red", weight=0]; 3476[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3476 -> 3690[label="",style="dashed", color="magenta", weight=3]; 3476 -> 3691[label="",style="dashed", color="magenta", weight=3]; 3477 -> 2818[label="",style="dashed", color="red", weight=0]; 3477[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3477 -> 3692[label="",style="dashed", color="magenta", weight=3]; 3477 -> 3693[label="",style="dashed", color="magenta", weight=3]; 3478 -> 2819[label="",style="dashed", color="red", weight=0]; 3478[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3478 -> 3694[label="",style="dashed", color="magenta", weight=3]; 3478 -> 3695[label="",style="dashed", color="magenta", weight=3]; 3479 -> 2820[label="",style="dashed", color="red", weight=0]; 3479[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3479 -> 3696[label="",style="dashed", color="magenta", weight=3]; 3479 -> 3697[label="",style="dashed", color="magenta", weight=3]; 3480 -> 2821[label="",style="dashed", color="red", weight=0]; 3480[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3480 -> 3698[label="",style="dashed", color="magenta", weight=3]; 3480 -> 3699[label="",style="dashed", color="magenta", weight=3]; 3481 -> 135[label="",style="dashed", color="red", weight=0]; 3481[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3481 -> 3700[label="",style="dashed", color="magenta", weight=3]; 3481 -> 3701[label="",style="dashed", color="magenta", weight=3]; 3482 -> 2823[label="",style="dashed", color="red", weight=0]; 3482[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3482 -> 3702[label="",style="dashed", color="magenta", weight=3]; 3482 -> 3703[label="",style="dashed", color="magenta", weight=3]; 3483 -> 2824[label="",style="dashed", color="red", weight=0]; 3483[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3483 -> 3704[label="",style="dashed", color="magenta", weight=3]; 3483 -> 3705[label="",style="dashed", color="magenta", weight=3]; 3484 -> 2825[label="",style="dashed", color="red", weight=0]; 3484[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3484 -> 3706[label="",style="dashed", color="magenta", weight=3]; 3484 -> 3707[label="",style="dashed", color="magenta", weight=3]; 3485 -> 2812[label="",style="dashed", color="red", weight=0]; 3485[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3485 -> 3708[label="",style="dashed", color="magenta", weight=3]; 3485 -> 3709[label="",style="dashed", color="magenta", weight=3]; 3486 -> 2813[label="",style="dashed", color="red", weight=0]; 3486[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3486 -> 3710[label="",style="dashed", color="magenta", weight=3]; 3486 -> 3711[label="",style="dashed", color="magenta", weight=3]; 3487 -> 2814[label="",style="dashed", color="red", weight=0]; 3487[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3487 -> 3712[label="",style="dashed", color="magenta", weight=3]; 3487 -> 3713[label="",style="dashed", color="magenta", weight=3]; 3488 -> 2815[label="",style="dashed", color="red", weight=0]; 3488[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3488 -> 3714[label="",style="dashed", color="magenta", weight=3]; 3488 -> 3715[label="",style="dashed", color="magenta", weight=3]; 3489 -> 2816[label="",style="dashed", color="red", weight=0]; 3489[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3489 -> 3716[label="",style="dashed", color="magenta", weight=3]; 3489 -> 3717[label="",style="dashed", color="magenta", weight=3]; 3490 -> 2817[label="",style="dashed", color="red", weight=0]; 3490[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3490 -> 3718[label="",style="dashed", color="magenta", weight=3]; 3490 -> 3719[label="",style="dashed", color="magenta", weight=3]; 3491 -> 2818[label="",style="dashed", color="red", weight=0]; 3491[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3491 -> 3720[label="",style="dashed", color="magenta", weight=3]; 3491 -> 3721[label="",style="dashed", color="magenta", weight=3]; 3492 -> 2819[label="",style="dashed", color="red", weight=0]; 3492[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3492 -> 3722[label="",style="dashed", color="magenta", weight=3]; 3492 -> 3723[label="",style="dashed", color="magenta", weight=3]; 3493 -> 2820[label="",style="dashed", color="red", weight=0]; 3493[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3493 -> 3724[label="",style="dashed", color="magenta", weight=3]; 3493 -> 3725[label="",style="dashed", color="magenta", weight=3]; 3494 -> 2821[label="",style="dashed", color="red", weight=0]; 3494[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3494 -> 3726[label="",style="dashed", color="magenta", weight=3]; 3494 -> 3727[label="",style="dashed", color="magenta", weight=3]; 3495 -> 135[label="",style="dashed", color="red", weight=0]; 3495[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3495 -> 3728[label="",style="dashed", color="magenta", weight=3]; 3495 -> 3729[label="",style="dashed", color="magenta", weight=3]; 3496 -> 2823[label="",style="dashed", color="red", weight=0]; 3496[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3496 -> 3730[label="",style="dashed", color="magenta", weight=3]; 3496 -> 3731[label="",style="dashed", color="magenta", weight=3]; 3497 -> 2824[label="",style="dashed", color="red", weight=0]; 3497[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3497 -> 3732[label="",style="dashed", color="magenta", weight=3]; 3497 -> 3733[label="",style="dashed", color="magenta", weight=3]; 3498 -> 2825[label="",style="dashed", color="red", weight=0]; 3498[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3498 -> 3734[label="",style="dashed", color="magenta", weight=3]; 3498 -> 3735[label="",style="dashed", color="magenta", weight=3]; 3499 -> 2812[label="",style="dashed", color="red", weight=0]; 3499[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3499 -> 3736[label="",style="dashed", color="magenta", weight=3]; 3499 -> 3737[label="",style="dashed", color="magenta", weight=3]; 3500 -> 2813[label="",style="dashed", color="red", weight=0]; 3500[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3500 -> 3738[label="",style="dashed", color="magenta", weight=3]; 3500 -> 3739[label="",style="dashed", color="magenta", weight=3]; 3501 -> 2814[label="",style="dashed", color="red", weight=0]; 3501[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3501 -> 3740[label="",style="dashed", color="magenta", weight=3]; 3501 -> 3741[label="",style="dashed", color="magenta", weight=3]; 3502 -> 2815[label="",style="dashed", color="red", weight=0]; 3502[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3502 -> 3742[label="",style="dashed", color="magenta", weight=3]; 3502 -> 3743[label="",style="dashed", color="magenta", weight=3]; 3503 -> 2816[label="",style="dashed", color="red", weight=0]; 3503[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3503 -> 3744[label="",style="dashed", color="magenta", weight=3]; 3503 -> 3745[label="",style="dashed", color="magenta", weight=3]; 3504 -> 2817[label="",style="dashed", color="red", weight=0]; 3504[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3504 -> 3746[label="",style="dashed", color="magenta", weight=3]; 3504 -> 3747[label="",style="dashed", color="magenta", weight=3]; 3505 -> 2818[label="",style="dashed", color="red", weight=0]; 3505[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3505 -> 3748[label="",style="dashed", color="magenta", weight=3]; 3505 -> 3749[label="",style="dashed", color="magenta", weight=3]; 3506 -> 2819[label="",style="dashed", color="red", weight=0]; 3506[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3506 -> 3750[label="",style="dashed", color="magenta", weight=3]; 3506 -> 3751[label="",style="dashed", color="magenta", weight=3]; 3507 -> 2820[label="",style="dashed", color="red", weight=0]; 3507[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3507 -> 3752[label="",style="dashed", color="magenta", weight=3]; 3507 -> 3753[label="",style="dashed", color="magenta", weight=3]; 3508 -> 2821[label="",style="dashed", color="red", weight=0]; 3508[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3508 -> 3754[label="",style="dashed", color="magenta", weight=3]; 3508 -> 3755[label="",style="dashed", color="magenta", weight=3]; 3509 -> 135[label="",style="dashed", color="red", weight=0]; 3509[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3509 -> 3756[label="",style="dashed", color="magenta", weight=3]; 3509 -> 3757[label="",style="dashed", color="magenta", weight=3]; 3510 -> 2823[label="",style="dashed", color="red", weight=0]; 3510[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3510 -> 3758[label="",style="dashed", color="magenta", weight=3]; 3510 -> 3759[label="",style="dashed", color="magenta", weight=3]; 3511 -> 2824[label="",style="dashed", color="red", weight=0]; 3511[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3511 -> 3760[label="",style="dashed", color="magenta", weight=3]; 3511 -> 3761[label="",style="dashed", color="magenta", weight=3]; 3512 -> 2825[label="",style="dashed", color="red", weight=0]; 3512[label="zwu4000 == zwu6000",fontsize=16,color="magenta"];3512 -> 3762[label="",style="dashed", color="magenta", weight=3]; 3512 -> 3763[label="",style="dashed", color="magenta", weight=3]; 3513[label="zwu6001",fontsize=16,color="green",shape="box"];3514[label="zwu4001",fontsize=16,color="green",shape="box"];2803[label="Just zwu24",fontsize=16,color="green",shape="box"];2804[label="Just zwu19",fontsize=16,color="green",shape="box"];2805[label="Just zwu24 == Just zwu19",fontsize=16,color="black",shape="box"];2805 -> 2829[label="",style="solid", color="black", weight=3]; 1085 -> 855[label="",style="dashed", color="red", weight=0]; 1085[label="FiniteMap.addToFM0 zwu20 zwu25",fontsize=16,color="magenta"];1085 -> 1358[label="",style="dashed", color="magenta", weight=3]; 1085 -> 1359[label="",style="dashed", color="magenta", weight=3]; 1086[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (Succ zwu7200) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1086 -> 1360[label="",style="solid", color="black", weight=3]; 1571 -> 1012[label="",style="dashed", color="red", weight=0]; 1571[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="magenta"];1571 -> 1574[label="",style="dashed", color="magenta", weight=3]; 1571 -> 1575[label="",style="dashed", color="magenta", weight=3]; 1570[label="primCmpInt zwu147 (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="burlywood",shape="triangle"];7171[label="zwu147/Pos zwu1470",fontsize=10,color="white",style="solid",shape="box"];1570 -> 7171[label="",style="solid", color="burlywood", weight=9]; 7171 -> 1576[label="",style="solid", color="burlywood", weight=3]; 7172[label="zwu147/Neg zwu1470",fontsize=10,color="white",style="solid",shape="box"];1570 -> 7172[label="",style="solid", color="burlywood", weight=9]; 7172 -> 1577[label="",style="solid", color="burlywood", weight=3]; 1088 -> 4807[label="",style="dashed", color="red", weight=0]; 1088[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))))) zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74) (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1088 -> 4813[label="",style="dashed", color="magenta", weight=3]; 1088 -> 4814[label="",style="dashed", color="magenta", weight=3]; 1088 -> 4815[label="",style="dashed", color="magenta", weight=3]; 1088 -> 4816[label="",style="dashed", color="magenta", weight=3]; 1088 -> 4817[label="",style="dashed", color="magenta", weight=3]; 1089[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];1090[label="zwu74",fontsize=16,color="green",shape="box"];1091[label="LT",fontsize=16,color="green",shape="box"];1580 -> 1012[label="",style="dashed", color="red", weight=0]; 1580[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="magenta"];1580 -> 1583[label="",style="dashed", color="magenta", weight=3]; 1580 -> 1584[label="",style="dashed", color="magenta", weight=3]; 1579[label="primCmpInt zwu148 (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="burlywood",shape="triangle"];7173[label="zwu148/Pos zwu1480",fontsize=10,color="white",style="solid",shape="box"];1579 -> 7173[label="",style="solid", color="burlywood", weight=9]; 7173 -> 1585[label="",style="solid", color="burlywood", weight=3]; 7174[label="zwu148/Neg zwu1480",fontsize=10,color="white",style="solid",shape="box"];1579 -> 7174[label="",style="solid", color="burlywood", weight=9]; 7174 -> 1586[label="",style="solid", color="burlywood", weight=3]; 1093 -> 4807[label="",style="dashed", color="red", weight=0]; 1093[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))))) zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74) (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1093 -> 4818[label="",style="dashed", color="magenta", weight=3]; 1093 -> 4819[label="",style="dashed", color="magenta", weight=3]; 1093 -> 4820[label="",style="dashed", color="magenta", weight=3]; 1093 -> 4821[label="",style="dashed", color="magenta", weight=3]; 1093 -> 4822[label="",style="dashed", color="magenta", weight=3]; 1094[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];1095[label="zwu74",fontsize=16,color="green",shape="box"];1096[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (Succ zwu7200) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1096 -> 1397[label="",style="solid", color="black", weight=3]; 1596 -> 1012[label="",style="dashed", color="red", weight=0]; 1596[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="magenta"];1596 -> 1599[label="",style="dashed", color="magenta", weight=3]; 1596 -> 1600[label="",style="dashed", color="magenta", weight=3]; 1595[label="primCmpInt zwu149 (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="burlywood",shape="triangle"];7175[label="zwu149/Pos zwu1490",fontsize=10,color="white",style="solid",shape="box"];1595 -> 7175[label="",style="solid", color="burlywood", weight=9]; 7175 -> 1601[label="",style="solid", color="burlywood", weight=3]; 7176[label="zwu149/Neg zwu1490",fontsize=10,color="white",style="solid",shape="box"];1595 -> 7176[label="",style="solid", color="burlywood", weight=9]; 7176 -> 1602[label="",style="solid", color="burlywood", weight=3]; 1098 -> 4807[label="",style="dashed", color="red", weight=0]; 1098[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))))) zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74) (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1098 -> 4823[label="",style="dashed", color="magenta", weight=3]; 1098 -> 4824[label="",style="dashed", color="magenta", weight=3]; 1098 -> 4825[label="",style="dashed", color="magenta", weight=3]; 1098 -> 4826[label="",style="dashed", color="magenta", weight=3]; 1098 -> 4827[label="",style="dashed", color="magenta", weight=3]; 1099[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];1100[label="zwu74",fontsize=16,color="green",shape="box"];1101[label="GT",fontsize=16,color="green",shape="box"];1610 -> 1012[label="",style="dashed", color="red", weight=0]; 1610[label="FiniteMap.sIZE_RATIO * FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="magenta"];1610 -> 1613[label="",style="dashed", color="magenta", weight=3]; 1610 -> 1614[label="",style="dashed", color="magenta", weight=3]; 1609[label="primCmpInt zwu150 (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="burlywood",shape="triangle"];7177[label="zwu150/Pos zwu1500",fontsize=10,color="white",style="solid",shape="box"];1609 -> 7177[label="",style="solid", color="burlywood", weight=9]; 7177 -> 1615[label="",style="solid", color="burlywood", weight=3]; 7178[label="zwu150/Neg zwu1500",fontsize=10,color="white",style="solid",shape="box"];1609 -> 7178[label="",style="solid", color="burlywood", weight=9]; 7178 -> 1616[label="",style="solid", color="burlywood", weight=3]; 1103 -> 4807[label="",style="dashed", color="red", weight=0]; 1103[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))))) zwu40 zwu41 (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74) (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1103 -> 4828[label="",style="dashed", color="magenta", weight=3]; 1103 -> 4829[label="",style="dashed", color="magenta", weight=3]; 1103 -> 4830[label="",style="dashed", color="magenta", weight=3]; 1103 -> 4831[label="",style="dashed", color="magenta", weight=3]; 1103 -> 4832[label="",style="dashed", color="magenta", weight=3]; 1104[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];1105[label="zwu74",fontsize=16,color="green",shape="box"];1106[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat Zero (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1106 -> 1428[label="",style="solid", color="black", weight=3]; 1107 -> 1429[label="",style="dashed", color="red", weight=0]; 1107[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1107 -> 1430[label="",style="dashed", color="magenta", weight=3]; 1108[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];1108 -> 1431[label="",style="solid", color="black", weight=3]; 1109[label="zwu93",fontsize=16,color="green",shape="box"];1110[label="zwu91",fontsize=16,color="green",shape="box"];1111 -> 31[label="",style="dashed", color="red", weight=0]; 1111[label="FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1111 -> 1432[label="",style="dashed", color="magenta", weight=3]; 1111 -> 1433[label="",style="dashed", color="magenta", weight=3]; 1112[label="zwu90",fontsize=16,color="green",shape="box"];1113 -> 1434[label="",style="dashed", color="red", weight=0]; 1113[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1113 -> 1435[label="",style="dashed", color="magenta", weight=3]; 1114[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];1114 -> 1436[label="",style="solid", color="black", weight=3]; 1115[label="zwu93",fontsize=16,color="green",shape="box"];1116[label="zwu91",fontsize=16,color="green",shape="box"];1117 -> 31[label="",style="dashed", color="red", weight=0]; 1117[label="FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1117 -> 1437[label="",style="dashed", color="magenta", weight=3]; 1117 -> 1438[label="",style="dashed", color="magenta", weight=3]; 1118[label="zwu90",fontsize=16,color="green",shape="box"];1119[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (primPlusNat Zero (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1119 -> 1439[label="",style="solid", color="black", weight=3]; 1120 -> 1440[label="",style="dashed", color="red", weight=0]; 1120[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1120 -> 1441[label="",style="dashed", color="magenta", weight=3]; 1121[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];1121 -> 1442[label="",style="solid", color="black", weight=3]; 1122[label="zwu93",fontsize=16,color="green",shape="box"];1123[label="zwu91",fontsize=16,color="green",shape="box"];1124 -> 31[label="",style="dashed", color="red", weight=0]; 1124[label="FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1124 -> 1443[label="",style="dashed", color="magenta", weight=3]; 1124 -> 1444[label="",style="dashed", color="magenta", weight=3]; 1125[label="zwu90",fontsize=16,color="green",shape="box"];1126 -> 1445[label="",style="dashed", color="red", weight=0]; 1126[label="primCmpInt (FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1126 -> 1446[label="",style="dashed", color="magenta", weight=3]; 1127[label="FiniteMap.glueVBal3GlueVBal0 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84 True",fontsize=16,color="black",shape="box"];1127 -> 1447[label="",style="solid", color="black", weight=3]; 1128[label="zwu93",fontsize=16,color="green",shape="box"];1129[label="zwu91",fontsize=16,color="green",shape="box"];1130 -> 31[label="",style="dashed", color="red", weight=0]; 1130[label="FiniteMap.glueVBal zwu94 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1130 -> 1448[label="",style="dashed", color="magenta", weight=3]; 1130 -> 1449[label="",style="dashed", color="magenta", weight=3]; 1131[label="zwu90",fontsize=16,color="green",shape="box"];2826[label="True",fontsize=16,color="green",shape="box"];1136[label="zwu41",fontsize=16,color="green",shape="box"];3515[label="compare0 (Just zwu4300) Nothing True",fontsize=16,color="black",shape="box"];3515 -> 3764[label="",style="solid", color="black", weight=3]; 3516[label="zwu4300 <= zwu4400",fontsize=16,color="burlywood",shape="triangle"];7179[label="zwu4300/LT",fontsize=10,color="white",style="solid",shape="box"];3516 -> 7179[label="",style="solid", color="burlywood", weight=9]; 7179 -> 3765[label="",style="solid", color="burlywood", weight=3]; 7180[label="zwu4300/EQ",fontsize=10,color="white",style="solid",shape="box"];3516 -> 7180[label="",style="solid", color="burlywood", weight=9]; 7180 -> 3766[label="",style="solid", color="burlywood", weight=3]; 7181[label="zwu4300/GT",fontsize=10,color="white",style="solid",shape="box"];3516 -> 7181[label="",style="solid", color="burlywood", weight=9]; 7181 -> 3767[label="",style="solid", color="burlywood", weight=3]; 3517[label="zwu4300 <= zwu4400",fontsize=16,color="burlywood",shape="triangle"];7182[label="zwu4300/False",fontsize=10,color="white",style="solid",shape="box"];3517 -> 7182[label="",style="solid", color="burlywood", weight=9]; 7182 -> 3768[label="",style="solid", color="burlywood", weight=3]; 7183[label="zwu4300/True",fontsize=10,color="white",style="solid",shape="box"];3517 -> 7183[label="",style="solid", color="burlywood", weight=9]; 7183 -> 3769[label="",style="solid", color="burlywood", weight=3]; 3518[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3518 -> 3770[label="",style="solid", color="black", weight=3]; 3519[label="zwu4300 <= zwu4400",fontsize=16,color="burlywood",shape="triangle"];7184[label="zwu4300/(zwu43000,zwu43001,zwu43002)",fontsize=10,color="white",style="solid",shape="box"];3519 -> 7184[label="",style="solid", color="burlywood", weight=9]; 7184 -> 3771[label="",style="solid", color="burlywood", weight=3]; 3520[label="zwu4300 <= zwu4400",fontsize=16,color="burlywood",shape="triangle"];7185[label="zwu4300/(zwu43000,zwu43001)",fontsize=10,color="white",style="solid",shape="box"];3520 -> 7185[label="",style="solid", color="burlywood", weight=9]; 7185 -> 3772[label="",style="solid", color="burlywood", weight=3]; 3521[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3521 -> 3773[label="",style="solid", color="black", weight=3]; 3522[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3522 -> 3774[label="",style="solid", color="black", weight=3]; 3523[label="zwu4300 <= zwu4400",fontsize=16,color="burlywood",shape="triangle"];7186[label="zwu4300/Nothing",fontsize=10,color="white",style="solid",shape="box"];3523 -> 7186[label="",style="solid", color="burlywood", weight=9]; 7186 -> 3775[label="",style="solid", color="burlywood", weight=3]; 7187[label="zwu4300/Just zwu43000",fontsize=10,color="white",style="solid",shape="box"];3523 -> 7187[label="",style="solid", color="burlywood", weight=9]; 7187 -> 3776[label="",style="solid", color="burlywood", weight=3]; 3524[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3524 -> 3777[label="",style="solid", color="black", weight=3]; 3525[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3525 -> 3778[label="",style="solid", color="black", weight=3]; 3526[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3526 -> 3779[label="",style="solid", color="black", weight=3]; 3527[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3527 -> 3780[label="",style="solid", color="black", weight=3]; 3528[label="zwu4300 <= zwu4400",fontsize=16,color="black",shape="triangle"];3528 -> 3781[label="",style="solid", color="black", weight=3]; 3529[label="zwu4300 <= zwu4400",fontsize=16,color="burlywood",shape="triangle"];7188[label="zwu4300/Left zwu43000",fontsize=10,color="white",style="solid",shape="box"];3529 -> 7188[label="",style="solid", color="burlywood", weight=9]; 7188 -> 3782[label="",style="solid", color="burlywood", weight=3]; 7189[label="zwu4300/Right zwu43000",fontsize=10,color="white",style="solid",shape="box"];3529 -> 7189[label="",style="solid", color="burlywood", weight=9]; 7189 -> 3783[label="",style="solid", color="burlywood", weight=3]; 3530[label="compare1 (Just zwu217) (Just zwu218) False",fontsize=16,color="black",shape="box"];3530 -> 3784[label="",style="solid", color="black", weight=3]; 3531[label="compare1 (Just zwu217) (Just zwu218) True",fontsize=16,color="black",shape="box"];3531 -> 3785[label="",style="solid", color="black", weight=3]; 2827[label="False",fontsize=16,color="green",shape="box"];1139[label="primCmpInt (FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51 + FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];1139 -> 1452[label="",style="solid", color="black", weight=3]; 1454 -> 2209[label="",style="dashed", color="red", weight=0]; 1454[label="FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51",fontsize=16,color="magenta"];1454 -> 2210[label="",style="dashed", color="magenta", weight=3]; 1454 -> 2211[label="",style="dashed", color="magenta", weight=3]; 1453[label="FiniteMap.mkBalBranch6MkBalBranch4 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 zwu143",fontsize=16,color="burlywood",shape="triangle"];7190[label="zwu143/False",fontsize=10,color="white",style="solid",shape="box"];1453 -> 7190[label="",style="solid", color="burlywood", weight=9]; 7190 -> 1458[label="",style="solid", color="burlywood", weight=3]; 7191[label="zwu143/True",fontsize=10,color="white",style="solid",shape="box"];1453 -> 7191[label="",style="solid", color="burlywood", weight=9]; 7191 -> 1459[label="",style="solid", color="burlywood", weight=3]; 4808[label="Zero",fontsize=16,color="green",shape="box"];4809[label="zwu61",fontsize=16,color="green",shape="box"];4810[label="zwu60",fontsize=16,color="green",shape="box"];4811[label="zwu64",fontsize=16,color="green",shape="box"];4812[label="zwu51",fontsize=16,color="green",shape="box"];4807[label="FiniteMap.mkBranch (Pos (Succ zwu272)) zwu273 zwu274 zwu275 zwu276",fontsize=16,color="black",shape="triangle"];4807 -> 4903[label="",style="solid", color="black", weight=3]; 2828[label="False",fontsize=16,color="green",shape="box"];3592[label="zwu6000",fontsize=16,color="green",shape="box"];3593[label="zwu4000",fontsize=16,color="green",shape="box"];3594[label="zwu6000",fontsize=16,color="green",shape="box"];3595[label="zwu4000",fontsize=16,color="green",shape="box"];3596[label="zwu6001",fontsize=16,color="green",shape="box"];3597[label="zwu4001",fontsize=16,color="green",shape="box"];3598[label="zwu6001",fontsize=16,color="green",shape="box"];3599[label="zwu4001",fontsize=16,color="green",shape="box"];3600[label="False",fontsize=16,color="green",shape="box"];3601[label="zwu224",fontsize=16,color="green",shape="box"];3602[label="zwu6000",fontsize=16,color="green",shape="box"];3603[label="zwu4000",fontsize=16,color="green",shape="box"];3604[label="zwu6000",fontsize=16,color="green",shape="box"];3605[label="zwu4000",fontsize=16,color="green",shape="box"];3606[label="zwu6000",fontsize=16,color="green",shape="box"];3607[label="zwu4000",fontsize=16,color="green",shape="box"];3608[label="zwu6000",fontsize=16,color="green",shape="box"];3609[label="zwu4000",fontsize=16,color="green",shape="box"];3610[label="zwu6000",fontsize=16,color="green",shape="box"];3611[label="zwu4000",fontsize=16,color="green",shape="box"];3612[label="zwu6000",fontsize=16,color="green",shape="box"];3613[label="zwu4000",fontsize=16,color="green",shape="box"];3614[label="zwu6000",fontsize=16,color="green",shape="box"];3615[label="zwu4000",fontsize=16,color="green",shape="box"];3616[label="zwu6000",fontsize=16,color="green",shape="box"];3617[label="zwu4000",fontsize=16,color="green",shape="box"];3618[label="zwu6000",fontsize=16,color="green",shape="box"];3619[label="zwu4000",fontsize=16,color="green",shape="box"];3620[label="zwu6000",fontsize=16,color="green",shape="box"];3621[label="zwu4000",fontsize=16,color="green",shape="box"];3622[label="zwu6000",fontsize=16,color="green",shape="box"];3623[label="zwu4000",fontsize=16,color="green",shape="box"];3624[label="zwu6000",fontsize=16,color="green",shape="box"];3625[label="zwu4000",fontsize=16,color="green",shape="box"];3626[label="zwu6000",fontsize=16,color="green",shape="box"];3627[label="zwu4000",fontsize=16,color="green",shape="box"];3628[label="zwu6000",fontsize=16,color="green",shape="box"];3629[label="zwu4000",fontsize=16,color="green",shape="box"];3630 -> 2812[label="",style="dashed", color="red", weight=0]; 3630[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3630 -> 3798[label="",style="dashed", color="magenta", weight=3]; 3630 -> 3799[label="",style="dashed", color="magenta", weight=3]; 3631 -> 2813[label="",style="dashed", color="red", weight=0]; 3631[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3631 -> 3800[label="",style="dashed", color="magenta", weight=3]; 3631 -> 3801[label="",style="dashed", color="magenta", weight=3]; 3632 -> 2814[label="",style="dashed", color="red", weight=0]; 3632[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3632 -> 3802[label="",style="dashed", color="magenta", weight=3]; 3632 -> 3803[label="",style="dashed", color="magenta", weight=3]; 3633 -> 2815[label="",style="dashed", color="red", weight=0]; 3633[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3633 -> 3804[label="",style="dashed", color="magenta", weight=3]; 3633 -> 3805[label="",style="dashed", color="magenta", weight=3]; 3634 -> 2816[label="",style="dashed", color="red", weight=0]; 3634[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3634 -> 3806[label="",style="dashed", color="magenta", weight=3]; 3634 -> 3807[label="",style="dashed", color="magenta", weight=3]; 3635 -> 2817[label="",style="dashed", color="red", weight=0]; 3635[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3635 -> 3808[label="",style="dashed", color="magenta", weight=3]; 3635 -> 3809[label="",style="dashed", color="magenta", weight=3]; 3636 -> 2818[label="",style="dashed", color="red", weight=0]; 3636[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3636 -> 3810[label="",style="dashed", color="magenta", weight=3]; 3636 -> 3811[label="",style="dashed", color="magenta", weight=3]; 3637 -> 2819[label="",style="dashed", color="red", weight=0]; 3637[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3637 -> 3812[label="",style="dashed", color="magenta", weight=3]; 3637 -> 3813[label="",style="dashed", color="magenta", weight=3]; 3638 -> 2820[label="",style="dashed", color="red", weight=0]; 3638[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3638 -> 3814[label="",style="dashed", color="magenta", weight=3]; 3638 -> 3815[label="",style="dashed", color="magenta", weight=3]; 3639 -> 2821[label="",style="dashed", color="red", weight=0]; 3639[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3639 -> 3816[label="",style="dashed", color="magenta", weight=3]; 3639 -> 3817[label="",style="dashed", color="magenta", weight=3]; 3640 -> 135[label="",style="dashed", color="red", weight=0]; 3640[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3640 -> 3818[label="",style="dashed", color="magenta", weight=3]; 3640 -> 3819[label="",style="dashed", color="magenta", weight=3]; 3641 -> 2823[label="",style="dashed", color="red", weight=0]; 3641[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3641 -> 3820[label="",style="dashed", color="magenta", weight=3]; 3641 -> 3821[label="",style="dashed", color="magenta", weight=3]; 3642 -> 2824[label="",style="dashed", color="red", weight=0]; 3642[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3642 -> 3822[label="",style="dashed", color="magenta", weight=3]; 3642 -> 3823[label="",style="dashed", color="magenta", weight=3]; 3643 -> 2825[label="",style="dashed", color="red", weight=0]; 3643[label="zwu4001 == zwu6001",fontsize=16,color="magenta"];3643 -> 3824[label="",style="dashed", color="magenta", weight=3]; 3643 -> 3825[label="",style="dashed", color="magenta", weight=3]; 3644 -> 2812[label="",style="dashed", color="red", weight=0]; 3644[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3644 -> 3826[label="",style="dashed", color="magenta", weight=3]; 3644 -> 3827[label="",style="dashed", color="magenta", weight=3]; 3645 -> 2813[label="",style="dashed", color="red", weight=0]; 3645[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3645 -> 3828[label="",style="dashed", color="magenta", weight=3]; 3645 -> 3829[label="",style="dashed", color="magenta", weight=3]; 3646 -> 2814[label="",style="dashed", color="red", weight=0]; 3646[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3646 -> 3830[label="",style="dashed", color="magenta", weight=3]; 3646 -> 3831[label="",style="dashed", color="magenta", weight=3]; 3647 -> 2815[label="",style="dashed", color="red", weight=0]; 3647[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3647 -> 3832[label="",style="dashed", color="magenta", weight=3]; 3647 -> 3833[label="",style="dashed", color="magenta", weight=3]; 3648 -> 2816[label="",style="dashed", color="red", weight=0]; 3648[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3648 -> 3834[label="",style="dashed", color="magenta", weight=3]; 3648 -> 3835[label="",style="dashed", color="magenta", weight=3]; 3649 -> 2817[label="",style="dashed", color="red", weight=0]; 3649[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3649 -> 3836[label="",style="dashed", color="magenta", weight=3]; 3649 -> 3837[label="",style="dashed", color="magenta", weight=3]; 3650 -> 2818[label="",style="dashed", color="red", weight=0]; 3650[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3650 -> 3838[label="",style="dashed", color="magenta", weight=3]; 3650 -> 3839[label="",style="dashed", color="magenta", weight=3]; 3651 -> 2819[label="",style="dashed", color="red", weight=0]; 3651[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3651 -> 3840[label="",style="dashed", color="magenta", weight=3]; 3651 -> 3841[label="",style="dashed", color="magenta", weight=3]; 3652 -> 2820[label="",style="dashed", color="red", weight=0]; 3652[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3652 -> 3842[label="",style="dashed", color="magenta", weight=3]; 3652 -> 3843[label="",style="dashed", color="magenta", weight=3]; 3653 -> 2821[label="",style="dashed", color="red", weight=0]; 3653[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3653 -> 3844[label="",style="dashed", color="magenta", weight=3]; 3653 -> 3845[label="",style="dashed", color="magenta", weight=3]; 3654 -> 135[label="",style="dashed", color="red", weight=0]; 3654[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3654 -> 3846[label="",style="dashed", color="magenta", weight=3]; 3654 -> 3847[label="",style="dashed", color="magenta", weight=3]; 3655 -> 2823[label="",style="dashed", color="red", weight=0]; 3655[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3655 -> 3848[label="",style="dashed", color="magenta", weight=3]; 3655 -> 3849[label="",style="dashed", color="magenta", weight=3]; 3656 -> 2824[label="",style="dashed", color="red", weight=0]; 3656[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3656 -> 3850[label="",style="dashed", color="magenta", weight=3]; 3656 -> 3851[label="",style="dashed", color="magenta", weight=3]; 3657 -> 2825[label="",style="dashed", color="red", weight=0]; 3657[label="zwu4002 == zwu6002",fontsize=16,color="magenta"];3657 -> 3852[label="",style="dashed", color="magenta", weight=3]; 3657 -> 3853[label="",style="dashed", color="magenta", weight=3]; 3658 -> 3322[label="",style="dashed", color="red", weight=0]; 3658[label="primEqNat zwu40000 zwu60000",fontsize=16,color="magenta"];3658 -> 3854[label="",style="dashed", color="magenta", weight=3]; 3658 -> 3855[label="",style="dashed", color="magenta", weight=3]; 3659[label="False",fontsize=16,color="green",shape="box"];3660[label="False",fontsize=16,color="green",shape="box"];3661[label="True",fontsize=16,color="green",shape="box"];3662[label="False",fontsize=16,color="green",shape="box"];3663[label="True",fontsize=16,color="green",shape="box"];3664 -> 3322[label="",style="dashed", color="red", weight=0]; 3664[label="primEqNat zwu40000 zwu60000",fontsize=16,color="magenta"];3664 -> 3856[label="",style="dashed", color="magenta", weight=3]; 3664 -> 3857[label="",style="dashed", color="magenta", weight=3]; 3665[label="False",fontsize=16,color="green",shape="box"];3666[label="False",fontsize=16,color="green",shape="box"];3667[label="True",fontsize=16,color="green",shape="box"];3668[label="False",fontsize=16,color="green",shape="box"];3669[label="True",fontsize=16,color="green",shape="box"];1012[label="zwu4001 * zwu6000",fontsize=16,color="black",shape="triangle"];1012 -> 1229[label="",style="solid", color="black", weight=3]; 3670[label="zwu6001",fontsize=16,color="green",shape="box"];3671[label="zwu4000",fontsize=16,color="green",shape="box"];3672[label="zwu6000",fontsize=16,color="green",shape="box"];3673[label="zwu4001",fontsize=16,color="green",shape="box"];3674[label="zwu6001",fontsize=16,color="green",shape="box"];3675[label="zwu4000",fontsize=16,color="green",shape="box"];3676[label="primEqNat (Succ zwu40000) (Succ zwu60000)",fontsize=16,color="black",shape="box"];3676 -> 3858[label="",style="solid", color="black", weight=3]; 3677[label="primEqNat (Succ zwu40000) Zero",fontsize=16,color="black",shape="box"];3677 -> 3859[label="",style="solid", color="black", weight=3]; 3678[label="primEqNat Zero (Succ zwu60000)",fontsize=16,color="black",shape="box"];3678 -> 3860[label="",style="solid", color="black", weight=3]; 3679[label="primEqNat Zero Zero",fontsize=16,color="black",shape="box"];3679 -> 3861[label="",style="solid", color="black", weight=3]; 3680[label="zwu6000",fontsize=16,color="green",shape="box"];3681[label="zwu4000",fontsize=16,color="green",shape="box"];3682[label="zwu6000",fontsize=16,color="green",shape="box"];3683[label="zwu4000",fontsize=16,color="green",shape="box"];3684[label="zwu6000",fontsize=16,color="green",shape="box"];3685[label="zwu4000",fontsize=16,color="green",shape="box"];3686[label="zwu6000",fontsize=16,color="green",shape="box"];3687[label="zwu4000",fontsize=16,color="green",shape="box"];3688[label="zwu6000",fontsize=16,color="green",shape="box"];3689[label="zwu4000",fontsize=16,color="green",shape="box"];3690[label="zwu6000",fontsize=16,color="green",shape="box"];3691[label="zwu4000",fontsize=16,color="green",shape="box"];3692[label="zwu6000",fontsize=16,color="green",shape="box"];3693[label="zwu4000",fontsize=16,color="green",shape="box"];3694[label="zwu6000",fontsize=16,color="green",shape="box"];3695[label="zwu4000",fontsize=16,color="green",shape="box"];3696[label="zwu6000",fontsize=16,color="green",shape="box"];3697[label="zwu4000",fontsize=16,color="green",shape="box"];3698[label="zwu6000",fontsize=16,color="green",shape="box"];3699[label="zwu4000",fontsize=16,color="green",shape="box"];3700[label="zwu6000",fontsize=16,color="green",shape="box"];3701[label="zwu4000",fontsize=16,color="green",shape="box"];3702[label="zwu6000",fontsize=16,color="green",shape="box"];3703[label="zwu4000",fontsize=16,color="green",shape="box"];3704[label="zwu6000",fontsize=16,color="green",shape="box"];3705[label="zwu4000",fontsize=16,color="green",shape="box"];3706[label="zwu6000",fontsize=16,color="green",shape="box"];3707[label="zwu4000",fontsize=16,color="green",shape="box"];3708[label="zwu6001",fontsize=16,color="green",shape="box"];3709[label="zwu4001",fontsize=16,color="green",shape="box"];3710[label="zwu6001",fontsize=16,color="green",shape="box"];3711[label="zwu4001",fontsize=16,color="green",shape="box"];3712[label="zwu6001",fontsize=16,color="green",shape="box"];3713[label="zwu4001",fontsize=16,color="green",shape="box"];3714[label="zwu6001",fontsize=16,color="green",shape="box"];3715[label="zwu4001",fontsize=16,color="green",shape="box"];3716[label="zwu6001",fontsize=16,color="green",shape="box"];3717[label="zwu4001",fontsize=16,color="green",shape="box"];3718[label="zwu6001",fontsize=16,color="green",shape="box"];3719[label="zwu4001",fontsize=16,color="green",shape="box"];3720[label="zwu6001",fontsize=16,color="green",shape="box"];3721[label="zwu4001",fontsize=16,color="green",shape="box"];3722[label="zwu6001",fontsize=16,color="green",shape="box"];3723[label="zwu4001",fontsize=16,color="green",shape="box"];3724[label="zwu6001",fontsize=16,color="green",shape="box"];3725[label="zwu4001",fontsize=16,color="green",shape="box"];3726[label="zwu6001",fontsize=16,color="green",shape="box"];3727[label="zwu4001",fontsize=16,color="green",shape="box"];3728[label="zwu6001",fontsize=16,color="green",shape="box"];3729[label="zwu4001",fontsize=16,color="green",shape="box"];3730[label="zwu6001",fontsize=16,color="green",shape="box"];3731[label="zwu4001",fontsize=16,color="green",shape="box"];3732[label="zwu6001",fontsize=16,color="green",shape="box"];3733[label="zwu4001",fontsize=16,color="green",shape="box"];3734[label="zwu6001",fontsize=16,color="green",shape="box"];3735[label="zwu4001",fontsize=16,color="green",shape="box"];3736[label="zwu6000",fontsize=16,color="green",shape="box"];3737[label="zwu4000",fontsize=16,color="green",shape="box"];3738[label="zwu6000",fontsize=16,color="green",shape="box"];3739[label="zwu4000",fontsize=16,color="green",shape="box"];3740[label="zwu6000",fontsize=16,color="green",shape="box"];3741[label="zwu4000",fontsize=16,color="green",shape="box"];3742[label="zwu6000",fontsize=16,color="green",shape="box"];3743[label="zwu4000",fontsize=16,color="green",shape="box"];3744[label="zwu6000",fontsize=16,color="green",shape="box"];3745[label="zwu4000",fontsize=16,color="green",shape="box"];3746[label="zwu6000",fontsize=16,color="green",shape="box"];3747[label="zwu4000",fontsize=16,color="green",shape="box"];3748[label="zwu6000",fontsize=16,color="green",shape="box"];3749[label="zwu4000",fontsize=16,color="green",shape="box"];3750[label="zwu6000",fontsize=16,color="green",shape="box"];3751[label="zwu4000",fontsize=16,color="green",shape="box"];3752[label="zwu6000",fontsize=16,color="green",shape="box"];3753[label="zwu4000",fontsize=16,color="green",shape="box"];3754[label="zwu6000",fontsize=16,color="green",shape="box"];3755[label="zwu4000",fontsize=16,color="green",shape="box"];3756[label="zwu6000",fontsize=16,color="green",shape="box"];3757[label="zwu4000",fontsize=16,color="green",shape="box"];3758[label="zwu6000",fontsize=16,color="green",shape="box"];3759[label="zwu4000",fontsize=16,color="green",shape="box"];3760[label="zwu6000",fontsize=16,color="green",shape="box"];3761[label="zwu4000",fontsize=16,color="green",shape="box"];3762[label="zwu6000",fontsize=16,color="green",shape="box"];3763[label="zwu4000",fontsize=16,color="green",shape="box"];2829[label="zwu24 == zwu19",fontsize=16,color="blue",shape="box"];7192[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7192[label="",style="solid", color="blue", weight=9]; 7192 -> 2906[label="",style="solid", color="blue", weight=3]; 7193[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7193[label="",style="solid", color="blue", weight=9]; 7193 -> 2907[label="",style="solid", color="blue", weight=3]; 7194[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7194[label="",style="solid", color="blue", weight=9]; 7194 -> 2908[label="",style="solid", color="blue", weight=3]; 7195[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7195[label="",style="solid", color="blue", weight=9]; 7195 -> 2909[label="",style="solid", color="blue", weight=3]; 7196[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7196[label="",style="solid", color="blue", weight=9]; 7196 -> 2910[label="",style="solid", color="blue", weight=3]; 7197[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7197[label="",style="solid", color="blue", weight=9]; 7197 -> 2911[label="",style="solid", color="blue", weight=3]; 7198[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7198[label="",style="solid", color="blue", weight=9]; 7198 -> 2912[label="",style="solid", color="blue", weight=3]; 7199[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7199[label="",style="solid", color="blue", weight=9]; 7199 -> 2913[label="",style="solid", color="blue", weight=3]; 7200[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7200[label="",style="solid", color="blue", weight=9]; 7200 -> 2914[label="",style="solid", color="blue", weight=3]; 7201[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7201[label="",style="solid", color="blue", weight=9]; 7201 -> 2915[label="",style="solid", color="blue", weight=3]; 7202[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7202[label="",style="solid", color="blue", weight=9]; 7202 -> 2916[label="",style="solid", color="blue", weight=3]; 7203[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7203[label="",style="solid", color="blue", weight=9]; 7203 -> 2917[label="",style="solid", color="blue", weight=3]; 7204[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7204[label="",style="solid", color="blue", weight=9]; 7204 -> 2918[label="",style="solid", color="blue", weight=3]; 7205[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];2829 -> 7205[label="",style="solid", color="blue", weight=9]; 7205 -> 2919[label="",style="solid", color="blue", weight=3]; 1358[label="zwu25",fontsize=16,color="green",shape="box"];1359[label="zwu20",fontsize=16,color="green",shape="box"];1360[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (Succ (Succ (primPlusNat zwu7200 zwu7200))) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1360 -> 1569[label="",style="solid", color="black", weight=3]; 1574[label="FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="black",shape="triangle"];1574 -> 1587[label="",style="solid", color="black", weight=3]; 1575[label="FiniteMap.sIZE_RATIO",fontsize=16,color="black",shape="triangle"];1575 -> 1588[label="",style="solid", color="black", weight=3]; 1576[label="primCmpInt (Pos zwu1470) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7206[label="zwu1470/Succ zwu14700",fontsize=10,color="white",style="solid",shape="box"];1576 -> 7206[label="",style="solid", color="burlywood", weight=9]; 7206 -> 1589[label="",style="solid", color="burlywood", weight=3]; 7207[label="zwu1470/Zero",fontsize=10,color="white",style="solid",shape="box"];1576 -> 7207[label="",style="solid", color="burlywood", weight=9]; 7207 -> 1590[label="",style="solid", color="burlywood", weight=3]; 1577[label="primCmpInt (Neg zwu1470) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7208[label="zwu1470/Succ zwu14700",fontsize=10,color="white",style="solid",shape="box"];1577 -> 7208[label="",style="solid", color="burlywood", weight=9]; 7208 -> 1591[label="",style="solid", color="burlywood", weight=3]; 7209[label="zwu1470/Zero",fontsize=10,color="white",style="solid",shape="box"];1577 -> 7209[label="",style="solid", color="burlywood", weight=9]; 7209 -> 1592[label="",style="solid", color="burlywood", weight=3]; 4813[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))",fontsize=16,color="green",shape="box"];4814[label="zwu41",fontsize=16,color="green",shape="box"];4815[label="zwu40",fontsize=16,color="green",shape="box"];4816[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];4817[label="FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];1583[label="FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="black",shape="box"];1583 -> 1603[label="",style="solid", color="black", weight=3]; 1584 -> 1575[label="",style="dashed", color="red", weight=0]; 1584[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1585[label="primCmpInt (Pos zwu1480) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7210[label="zwu1480/Succ zwu14800",fontsize=10,color="white",style="solid",shape="box"];1585 -> 7210[label="",style="solid", color="burlywood", weight=9]; 7210 -> 1604[label="",style="solid", color="burlywood", weight=3]; 7211[label="zwu1480/Zero",fontsize=10,color="white",style="solid",shape="box"];1585 -> 7211[label="",style="solid", color="burlywood", weight=9]; 7211 -> 1605[label="",style="solid", color="burlywood", weight=3]; 1586[label="primCmpInt (Neg zwu1480) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7212[label="zwu1480/Succ zwu14800",fontsize=10,color="white",style="solid",shape="box"];1586 -> 7212[label="",style="solid", color="burlywood", weight=9]; 7212 -> 1606[label="",style="solid", color="burlywood", weight=3]; 7213[label="zwu1480/Zero",fontsize=10,color="white",style="solid",shape="box"];1586 -> 7213[label="",style="solid", color="burlywood", weight=9]; 7213 -> 1607[label="",style="solid", color="burlywood", weight=3]; 4818[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))",fontsize=16,color="green",shape="box"];4819[label="zwu41",fontsize=16,color="green",shape="box"];4820[label="zwu40",fontsize=16,color="green",shape="box"];4821[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];4822[label="FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];1397[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (Succ (Succ (primPlusNat zwu7200 zwu7200))) (Succ zwu7200)) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1397 -> 1594[label="",style="solid", color="black", weight=3]; 1599[label="FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="black",shape="triangle"];1599 -> 1617[label="",style="solid", color="black", weight=3]; 1600 -> 1575[label="",style="dashed", color="red", weight=0]; 1600[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1601[label="primCmpInt (Pos zwu1490) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7214[label="zwu1490/Succ zwu14900",fontsize=10,color="white",style="solid",shape="box"];1601 -> 7214[label="",style="solid", color="burlywood", weight=9]; 7214 -> 1618[label="",style="solid", color="burlywood", weight=3]; 7215[label="zwu1490/Zero",fontsize=10,color="white",style="solid",shape="box"];1601 -> 7215[label="",style="solid", color="burlywood", weight=9]; 7215 -> 1619[label="",style="solid", color="burlywood", weight=3]; 1602[label="primCmpInt (Neg zwu1490) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7216[label="zwu1490/Succ zwu14900",fontsize=10,color="white",style="solid",shape="box"];1602 -> 7216[label="",style="solid", color="burlywood", weight=9]; 7216 -> 1620[label="",style="solid", color="burlywood", weight=3]; 7217[label="zwu1490/Zero",fontsize=10,color="white",style="solid",shape="box"];1602 -> 7217[label="",style="solid", color="burlywood", weight=9]; 7217 -> 1621[label="",style="solid", color="burlywood", weight=3]; 4823[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))",fontsize=16,color="green",shape="box"];4824[label="zwu41",fontsize=16,color="green",shape="box"];4825[label="zwu40",fontsize=16,color="green",shape="box"];4826[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];4827[label="FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];1613[label="FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="black",shape="box"];1613 -> 1647[label="",style="solid", color="black", weight=3]; 1614 -> 1575[label="",style="dashed", color="red", weight=0]; 1614[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1615[label="primCmpInt (Pos zwu1500) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7218[label="zwu1500/Succ zwu15000",fontsize=10,color="white",style="solid",shape="box"];1615 -> 7218[label="",style="solid", color="burlywood", weight=9]; 7218 -> 1648[label="",style="solid", color="burlywood", weight=3]; 7219[label="zwu1500/Zero",fontsize=10,color="white",style="solid",shape="box"];1615 -> 7219[label="",style="solid", color="burlywood", weight=9]; 7219 -> 1649[label="",style="solid", color="burlywood", weight=3]; 1616[label="primCmpInt (Neg zwu1500) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="burlywood",shape="box"];7220[label="zwu1500/Succ zwu15000",fontsize=10,color="white",style="solid",shape="box"];1616 -> 7220[label="",style="solid", color="burlywood", weight=9]; 7220 -> 1650[label="",style="solid", color="burlywood", weight=3]; 7221[label="zwu1500/Zero",fontsize=10,color="white",style="solid",shape="box"];1616 -> 7221[label="",style="solid", color="burlywood", weight=9]; 7221 -> 1651[label="",style="solid", color="burlywood", weight=3]; 4828[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))",fontsize=16,color="green",shape="box"];4829[label="zwu41",fontsize=16,color="green",shape="box"];4830[label="zwu40",fontsize=16,color="green",shape="box"];4831[label="FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64",fontsize=16,color="green",shape="box"];4832[label="FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];1428[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (primPlusNat (Succ zwu9200) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1428 -> 1623[label="",style="solid", color="black", weight=3]; 1430 -> 1012[label="",style="dashed", color="red", weight=0]; 1430[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="magenta"];1430 -> 1624[label="",style="dashed", color="magenta", weight=3]; 1430 -> 1625[label="",style="dashed", color="magenta", weight=3]; 1429[label="primCmpInt zwu139 (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="triangle"];7222[label="zwu139/Pos zwu1390",fontsize=10,color="white",style="solid",shape="box"];1429 -> 7222[label="",style="solid", color="burlywood", weight=9]; 7222 -> 1626[label="",style="solid", color="burlywood", weight=3]; 7223[label="zwu139/Neg zwu1390",fontsize=10,color="white",style="solid",shape="box"];1429 -> 7223[label="",style="solid", color="burlywood", weight=9]; 7223 -> 1627[label="",style="solid", color="burlywood", weight=3]; 1431[label="FiniteMap.glueBal (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1431 -> 1628[label="",style="solid", color="black", weight=3]; 1432[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];1433[label="zwu94",fontsize=16,color="green",shape="box"];1435 -> 1012[label="",style="dashed", color="red", weight=0]; 1435[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="magenta"];1435 -> 1629[label="",style="dashed", color="magenta", weight=3]; 1435 -> 1630[label="",style="dashed", color="magenta", weight=3]; 1434[label="primCmpInt zwu140 (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="triangle"];7224[label="zwu140/Pos zwu1400",fontsize=10,color="white",style="solid",shape="box"];1434 -> 7224[label="",style="solid", color="burlywood", weight=9]; 7224 -> 1631[label="",style="solid", color="burlywood", weight=3]; 7225[label="zwu140/Neg zwu1400",fontsize=10,color="white",style="solid",shape="box"];1434 -> 7225[label="",style="solid", color="burlywood", weight=9]; 7225 -> 1632[label="",style="solid", color="burlywood", weight=3]; 1436[label="FiniteMap.glueBal (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1436 -> 1633[label="",style="solid", color="black", weight=3]; 1437[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];1438[label="zwu94",fontsize=16,color="green",shape="box"];1439[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (primPlusNat (Succ zwu9200) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1439 -> 1634[label="",style="solid", color="black", weight=3]; 1441 -> 1012[label="",style="dashed", color="red", weight=0]; 1441[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="magenta"];1441 -> 1635[label="",style="dashed", color="magenta", weight=3]; 1441 -> 1636[label="",style="dashed", color="magenta", weight=3]; 1440[label="primCmpInt zwu141 (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="triangle"];7226[label="zwu141/Pos zwu1410",fontsize=10,color="white",style="solid",shape="box"];1440 -> 7226[label="",style="solid", color="burlywood", weight=9]; 7226 -> 1637[label="",style="solid", color="burlywood", weight=3]; 7227[label="zwu141/Neg zwu1410",fontsize=10,color="white",style="solid",shape="box"];1440 -> 7227[label="",style="solid", color="burlywood", weight=9]; 7227 -> 1638[label="",style="solid", color="burlywood", weight=3]; 1442[label="FiniteMap.glueBal (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1442 -> 1639[label="",style="solid", color="black", weight=3]; 1443[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];1444[label="zwu94",fontsize=16,color="green",shape="box"];1446 -> 1012[label="",style="dashed", color="red", weight=0]; 1446[label="FiniteMap.sIZE_RATIO * FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="magenta"];1446 -> 1640[label="",style="dashed", color="magenta", weight=3]; 1446 -> 1641[label="",style="dashed", color="magenta", weight=3]; 1445[label="primCmpInt zwu142 (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="triangle"];7228[label="zwu142/Pos zwu1420",fontsize=10,color="white",style="solid",shape="box"];1445 -> 7228[label="",style="solid", color="burlywood", weight=9]; 7228 -> 1642[label="",style="solid", color="burlywood", weight=3]; 7229[label="zwu142/Neg zwu1420",fontsize=10,color="white",style="solid",shape="box"];1445 -> 7229[label="",style="solid", color="burlywood", weight=9]; 7229 -> 1643[label="",style="solid", color="burlywood", weight=3]; 1447[label="FiniteMap.glueBal (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1447 -> 1644[label="",style="solid", color="black", weight=3]; 1448[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];1449[label="zwu94",fontsize=16,color="green",shape="box"];3764[label="GT",fontsize=16,color="green",shape="box"];3765[label="LT <= zwu4400",fontsize=16,color="burlywood",shape="box"];7230[label="zwu4400/LT",fontsize=10,color="white",style="solid",shape="box"];3765 -> 7230[label="",style="solid", color="burlywood", weight=9]; 7230 -> 3862[label="",style="solid", color="burlywood", weight=3]; 7231[label="zwu4400/EQ",fontsize=10,color="white",style="solid",shape="box"];3765 -> 7231[label="",style="solid", color="burlywood", weight=9]; 7231 -> 3863[label="",style="solid", color="burlywood", weight=3]; 7232[label="zwu4400/GT",fontsize=10,color="white",style="solid",shape="box"];3765 -> 7232[label="",style="solid", color="burlywood", weight=9]; 7232 -> 3864[label="",style="solid", color="burlywood", weight=3]; 3766[label="EQ <= zwu4400",fontsize=16,color="burlywood",shape="box"];7233[label="zwu4400/LT",fontsize=10,color="white",style="solid",shape="box"];3766 -> 7233[label="",style="solid", color="burlywood", weight=9]; 7233 -> 3865[label="",style="solid", color="burlywood", weight=3]; 7234[label="zwu4400/EQ",fontsize=10,color="white",style="solid",shape="box"];3766 -> 7234[label="",style="solid", color="burlywood", weight=9]; 7234 -> 3866[label="",style="solid", color="burlywood", weight=3]; 7235[label="zwu4400/GT",fontsize=10,color="white",style="solid",shape="box"];3766 -> 7235[label="",style="solid", color="burlywood", weight=9]; 7235 -> 3867[label="",style="solid", color="burlywood", weight=3]; 3767[label="GT <= zwu4400",fontsize=16,color="burlywood",shape="box"];7236[label="zwu4400/LT",fontsize=10,color="white",style="solid",shape="box"];3767 -> 7236[label="",style="solid", color="burlywood", weight=9]; 7236 -> 3868[label="",style="solid", color="burlywood", weight=3]; 7237[label="zwu4400/EQ",fontsize=10,color="white",style="solid",shape="box"];3767 -> 7237[label="",style="solid", color="burlywood", weight=9]; 7237 -> 3869[label="",style="solid", color="burlywood", weight=3]; 7238[label="zwu4400/GT",fontsize=10,color="white",style="solid",shape="box"];3767 -> 7238[label="",style="solid", color="burlywood", weight=9]; 7238 -> 3870[label="",style="solid", color="burlywood", weight=3]; 3768[label="False <= zwu4400",fontsize=16,color="burlywood",shape="box"];7239[label="zwu4400/False",fontsize=10,color="white",style="solid",shape="box"];3768 -> 7239[label="",style="solid", color="burlywood", weight=9]; 7239 -> 3871[label="",style="solid", color="burlywood", weight=3]; 7240[label="zwu4400/True",fontsize=10,color="white",style="solid",shape="box"];3768 -> 7240[label="",style="solid", color="burlywood", weight=9]; 7240 -> 3872[label="",style="solid", color="burlywood", weight=3]; 3769[label="True <= zwu4400",fontsize=16,color="burlywood",shape="box"];7241[label="zwu4400/False",fontsize=10,color="white",style="solid",shape="box"];3769 -> 7241[label="",style="solid", color="burlywood", weight=9]; 7241 -> 3873[label="",style="solid", color="burlywood", weight=3]; 7242[label="zwu4400/True",fontsize=10,color="white",style="solid",shape="box"];3769 -> 7242[label="",style="solid", color="burlywood", weight=9]; 7242 -> 3874[label="",style="solid", color="burlywood", weight=3]; 3770 -> 3884[label="",style="dashed", color="red", weight=0]; 3770[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3770 -> 3885[label="",style="dashed", color="magenta", weight=3]; 3771[label="(zwu43000,zwu43001,zwu43002) <= zwu4400",fontsize=16,color="burlywood",shape="box"];7243[label="zwu4400/(zwu44000,zwu44001,zwu44002)",fontsize=10,color="white",style="solid",shape="box"];3771 -> 7243[label="",style="solid", color="burlywood", weight=9]; 7243 -> 3876[label="",style="solid", color="burlywood", weight=3]; 3772[label="(zwu43000,zwu43001) <= zwu4400",fontsize=16,color="burlywood",shape="box"];7244[label="zwu4400/(zwu44000,zwu44001)",fontsize=10,color="white",style="solid",shape="box"];3772 -> 7244[label="",style="solid", color="burlywood", weight=9]; 7244 -> 3877[label="",style="solid", color="burlywood", weight=3]; 3773 -> 3884[label="",style="dashed", color="red", weight=0]; 3773[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3773 -> 3886[label="",style="dashed", color="magenta", weight=3]; 3774 -> 3884[label="",style="dashed", color="red", weight=0]; 3774[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3774 -> 3887[label="",style="dashed", color="magenta", weight=3]; 3775[label="Nothing <= zwu4400",fontsize=16,color="burlywood",shape="box"];7245[label="zwu4400/Nothing",fontsize=10,color="white",style="solid",shape="box"];3775 -> 7245[label="",style="solid", color="burlywood", weight=9]; 7245 -> 3880[label="",style="solid", color="burlywood", weight=3]; 7246[label="zwu4400/Just zwu44000",fontsize=10,color="white",style="solid",shape="box"];3775 -> 7246[label="",style="solid", color="burlywood", weight=9]; 7246 -> 3881[label="",style="solid", color="burlywood", weight=3]; 3776[label="Just zwu43000 <= zwu4400",fontsize=16,color="burlywood",shape="box"];7247[label="zwu4400/Nothing",fontsize=10,color="white",style="solid",shape="box"];3776 -> 7247[label="",style="solid", color="burlywood", weight=9]; 7247 -> 3882[label="",style="solid", color="burlywood", weight=3]; 7248[label="zwu4400/Just zwu44000",fontsize=10,color="white",style="solid",shape="box"];3776 -> 7248[label="",style="solid", color="burlywood", weight=9]; 7248 -> 3883[label="",style="solid", color="burlywood", weight=3]; 3777 -> 3884[label="",style="dashed", color="red", weight=0]; 3777[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3777 -> 3888[label="",style="dashed", color="magenta", weight=3]; 3778 -> 3884[label="",style="dashed", color="red", weight=0]; 3778[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3778 -> 3889[label="",style="dashed", color="magenta", weight=3]; 3779 -> 3884[label="",style="dashed", color="red", weight=0]; 3779[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3779 -> 3890[label="",style="dashed", color="magenta", weight=3]; 3780 -> 3884[label="",style="dashed", color="red", weight=0]; 3780[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3780 -> 3891[label="",style="dashed", color="magenta", weight=3]; 3781 -> 3884[label="",style="dashed", color="red", weight=0]; 3781[label="compare zwu4300 zwu4400 /= GT",fontsize=16,color="magenta"];3781 -> 3892[label="",style="dashed", color="magenta", weight=3]; 3782[label="Left zwu43000 <= zwu4400",fontsize=16,color="burlywood",shape="box"];7249[label="zwu4400/Left zwu44000",fontsize=10,color="white",style="solid",shape="box"];3782 -> 7249[label="",style="solid", color="burlywood", weight=9]; 7249 -> 3893[label="",style="solid", color="burlywood", weight=3]; 7250[label="zwu4400/Right zwu44000",fontsize=10,color="white",style="solid",shape="box"];3782 -> 7250[label="",style="solid", color="burlywood", weight=9]; 7250 -> 3894[label="",style="solid", color="burlywood", weight=3]; 3783[label="Right zwu43000 <= zwu4400",fontsize=16,color="burlywood",shape="box"];7251[label="zwu4400/Left zwu44000",fontsize=10,color="white",style="solid",shape="box"];3783 -> 7251[label="",style="solid", color="burlywood", weight=9]; 7251 -> 3895[label="",style="solid", color="burlywood", weight=3]; 7252[label="zwu4400/Right zwu44000",fontsize=10,color="white",style="solid",shape="box"];3783 -> 7252[label="",style="solid", color="burlywood", weight=9]; 7252 -> 3896[label="",style="solid", color="burlywood", weight=3]; 3784[label="compare0 (Just zwu217) (Just zwu218) otherwise",fontsize=16,color="black",shape="box"];3784 -> 3897[label="",style="solid", color="black", weight=3]; 3785[label="LT",fontsize=16,color="green",shape="box"];1452[label="primCmpInt (primPlusInt (FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51) (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51)) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];1452 -> 1652[label="",style="solid", color="black", weight=3]; 2210 -> 1012[label="",style="dashed", color="red", weight=0]; 2210[label="FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51",fontsize=16,color="magenta"];2210 -> 2216[label="",style="dashed", color="magenta", weight=3]; 2210 -> 2217[label="",style="dashed", color="magenta", weight=3]; 2211[label="FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51",fontsize=16,color="black",shape="triangle"];2211 -> 2218[label="",style="solid", color="black", weight=3]; 2209[label="zwu177 > zwu176",fontsize=16,color="black",shape="triangle"];2209 -> 2219[label="",style="solid", color="black", weight=3]; 1458[label="FiniteMap.mkBalBranch6MkBalBranch4 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 False",fontsize=16,color="black",shape="box"];1458 -> 1656[label="",style="solid", color="black", weight=3]; 1459[label="FiniteMap.mkBalBranch6MkBalBranch4 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 True",fontsize=16,color="black",shape="box"];1459 -> 1657[label="",style="solid", color="black", weight=3]; 4903[label="FiniteMap.mkBranchResult zwu273 zwu274 zwu276 zwu275",fontsize=16,color="black",shape="box"];4903 -> 4931[label="",style="solid", color="black", weight=3]; 3798[label="zwu6001",fontsize=16,color="green",shape="box"];3799[label="zwu4001",fontsize=16,color="green",shape="box"];3800[label="zwu6001",fontsize=16,color="green",shape="box"];3801[label="zwu4001",fontsize=16,color="green",shape="box"];3802[label="zwu6001",fontsize=16,color="green",shape="box"];3803[label="zwu4001",fontsize=16,color="green",shape="box"];3804[label="zwu6001",fontsize=16,color="green",shape="box"];3805[label="zwu4001",fontsize=16,color="green",shape="box"];3806[label="zwu6001",fontsize=16,color="green",shape="box"];3807[label="zwu4001",fontsize=16,color="green",shape="box"];3808[label="zwu6001",fontsize=16,color="green",shape="box"];3809[label="zwu4001",fontsize=16,color="green",shape="box"];3810[label="zwu6001",fontsize=16,color="green",shape="box"];3811[label="zwu4001",fontsize=16,color="green",shape="box"];3812[label="zwu6001",fontsize=16,color="green",shape="box"];3813[label="zwu4001",fontsize=16,color="green",shape="box"];3814[label="zwu6001",fontsize=16,color="green",shape="box"];3815[label="zwu4001",fontsize=16,color="green",shape="box"];3816[label="zwu6001",fontsize=16,color="green",shape="box"];3817[label="zwu4001",fontsize=16,color="green",shape="box"];3818[label="zwu6001",fontsize=16,color="green",shape="box"];3819[label="zwu4001",fontsize=16,color="green",shape="box"];3820[label="zwu6001",fontsize=16,color="green",shape="box"];3821[label="zwu4001",fontsize=16,color="green",shape="box"];3822[label="zwu6001",fontsize=16,color="green",shape="box"];3823[label="zwu4001",fontsize=16,color="green",shape="box"];3824[label="zwu6001",fontsize=16,color="green",shape="box"];3825[label="zwu4001",fontsize=16,color="green",shape="box"];3826[label="zwu6002",fontsize=16,color="green",shape="box"];3827[label="zwu4002",fontsize=16,color="green",shape="box"];3828[label="zwu6002",fontsize=16,color="green",shape="box"];3829[label="zwu4002",fontsize=16,color="green",shape="box"];3830[label="zwu6002",fontsize=16,color="green",shape="box"];3831[label="zwu4002",fontsize=16,color="green",shape="box"];3832[label="zwu6002",fontsize=16,color="green",shape="box"];3833[label="zwu4002",fontsize=16,color="green",shape="box"];3834[label="zwu6002",fontsize=16,color="green",shape="box"];3835[label="zwu4002",fontsize=16,color="green",shape="box"];3836[label="zwu6002",fontsize=16,color="green",shape="box"];3837[label="zwu4002",fontsize=16,color="green",shape="box"];3838[label="zwu6002",fontsize=16,color="green",shape="box"];3839[label="zwu4002",fontsize=16,color="green",shape="box"];3840[label="zwu6002",fontsize=16,color="green",shape="box"];3841[label="zwu4002",fontsize=16,color="green",shape="box"];3842[label="zwu6002",fontsize=16,color="green",shape="box"];3843[label="zwu4002",fontsize=16,color="green",shape="box"];3844[label="zwu6002",fontsize=16,color="green",shape="box"];3845[label="zwu4002",fontsize=16,color="green",shape="box"];3846[label="zwu6002",fontsize=16,color="green",shape="box"];3847[label="zwu4002",fontsize=16,color="green",shape="box"];3848[label="zwu6002",fontsize=16,color="green",shape="box"];3849[label="zwu4002",fontsize=16,color="green",shape="box"];3850[label="zwu6002",fontsize=16,color="green",shape="box"];3851[label="zwu4002",fontsize=16,color="green",shape="box"];3852[label="zwu6002",fontsize=16,color="green",shape="box"];3853[label="zwu4002",fontsize=16,color="green",shape="box"];3854[label="zwu60000",fontsize=16,color="green",shape="box"];3855[label="zwu40000",fontsize=16,color="green",shape="box"];3856[label="zwu60000",fontsize=16,color="green",shape="box"];3857[label="zwu40000",fontsize=16,color="green",shape="box"];1229[label="primMulInt zwu4001 zwu6000",fontsize=16,color="burlywood",shape="triangle"];7253[label="zwu4001/Pos zwu40010",fontsize=10,color="white",style="solid",shape="box"];1229 -> 7253[label="",style="solid", color="burlywood", weight=9]; 7253 -> 1535[label="",style="solid", color="burlywood", weight=3]; 7254[label="zwu4001/Neg zwu40010",fontsize=10,color="white",style="solid",shape="box"];1229 -> 7254[label="",style="solid", color="burlywood", weight=9]; 7254 -> 1536[label="",style="solid", color="burlywood", weight=3]; 3858 -> 3322[label="",style="dashed", color="red", weight=0]; 3858[label="primEqNat zwu40000 zwu60000",fontsize=16,color="magenta"];3858 -> 3898[label="",style="dashed", color="magenta", weight=3]; 3858 -> 3899[label="",style="dashed", color="magenta", weight=3]; 3859[label="False",fontsize=16,color="green",shape="box"];3860[label="False",fontsize=16,color="green",shape="box"];3861[label="True",fontsize=16,color="green",shape="box"];2906 -> 2812[label="",style="dashed", color="red", weight=0]; 2906[label="zwu24 == zwu19",fontsize=16,color="magenta"];2906 -> 3018[label="",style="dashed", color="magenta", weight=3]; 2906 -> 3019[label="",style="dashed", color="magenta", weight=3]; 2907 -> 2813[label="",style="dashed", color="red", weight=0]; 2907[label="zwu24 == zwu19",fontsize=16,color="magenta"];2907 -> 3020[label="",style="dashed", color="magenta", weight=3]; 2907 -> 3021[label="",style="dashed", color="magenta", weight=3]; 2908 -> 2814[label="",style="dashed", color="red", weight=0]; 2908[label="zwu24 == zwu19",fontsize=16,color="magenta"];2908 -> 3022[label="",style="dashed", color="magenta", weight=3]; 2908 -> 3023[label="",style="dashed", color="magenta", weight=3]; 2909 -> 2815[label="",style="dashed", color="red", weight=0]; 2909[label="zwu24 == zwu19",fontsize=16,color="magenta"];2909 -> 3024[label="",style="dashed", color="magenta", weight=3]; 2909 -> 3025[label="",style="dashed", color="magenta", weight=3]; 2910 -> 2816[label="",style="dashed", color="red", weight=0]; 2910[label="zwu24 == zwu19",fontsize=16,color="magenta"];2910 -> 3026[label="",style="dashed", color="magenta", weight=3]; 2910 -> 3027[label="",style="dashed", color="magenta", weight=3]; 2911 -> 2817[label="",style="dashed", color="red", weight=0]; 2911[label="zwu24 == zwu19",fontsize=16,color="magenta"];2911 -> 3028[label="",style="dashed", color="magenta", weight=3]; 2911 -> 3029[label="",style="dashed", color="magenta", weight=3]; 2912 -> 2818[label="",style="dashed", color="red", weight=0]; 2912[label="zwu24 == zwu19",fontsize=16,color="magenta"];2912 -> 3030[label="",style="dashed", color="magenta", weight=3]; 2912 -> 3031[label="",style="dashed", color="magenta", weight=3]; 2913 -> 2819[label="",style="dashed", color="red", weight=0]; 2913[label="zwu24 == zwu19",fontsize=16,color="magenta"];2913 -> 3032[label="",style="dashed", color="magenta", weight=3]; 2913 -> 3033[label="",style="dashed", color="magenta", weight=3]; 2914 -> 2820[label="",style="dashed", color="red", weight=0]; 2914[label="zwu24 == zwu19",fontsize=16,color="magenta"];2914 -> 3034[label="",style="dashed", color="magenta", weight=3]; 2914 -> 3035[label="",style="dashed", color="magenta", weight=3]; 2915 -> 2821[label="",style="dashed", color="red", weight=0]; 2915[label="zwu24 == zwu19",fontsize=16,color="magenta"];2915 -> 3036[label="",style="dashed", color="magenta", weight=3]; 2915 -> 3037[label="",style="dashed", color="magenta", weight=3]; 2916 -> 135[label="",style="dashed", color="red", weight=0]; 2916[label="zwu24 == zwu19",fontsize=16,color="magenta"];2916 -> 3038[label="",style="dashed", color="magenta", weight=3]; 2916 -> 3039[label="",style="dashed", color="magenta", weight=3]; 2917 -> 2823[label="",style="dashed", color="red", weight=0]; 2917[label="zwu24 == zwu19",fontsize=16,color="magenta"];2917 -> 3040[label="",style="dashed", color="magenta", weight=3]; 2917 -> 3041[label="",style="dashed", color="magenta", weight=3]; 2918 -> 2824[label="",style="dashed", color="red", weight=0]; 2918[label="zwu24 == zwu19",fontsize=16,color="magenta"];2918 -> 3042[label="",style="dashed", color="magenta", weight=3]; 2918 -> 3043[label="",style="dashed", color="magenta", weight=3]; 2919 -> 2825[label="",style="dashed", color="red", weight=0]; 2919[label="zwu24 == zwu19",fontsize=16,color="magenta"];2919 -> 3044[label="",style="dashed", color="magenta", weight=3]; 2919 -> 3045[label="",style="dashed", color="magenta", weight=3]; 1569 -> 1744[label="",style="dashed", color="red", weight=0]; 1569[label="primCmpInt (Pos (primPlusNat (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1569 -> 1745[label="",style="dashed", color="magenta", weight=3]; 1587 -> 546[label="",style="dashed", color="red", weight=0]; 1587[label="FiniteMap.sizeFM (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1587 -> 1746[label="",style="dashed", color="magenta", weight=3]; 1587 -> 1747[label="",style="dashed", color="magenta", weight=3]; 1587 -> 1748[label="",style="dashed", color="magenta", weight=3]; 1587 -> 1749[label="",style="dashed", color="magenta", weight=3]; 1587 -> 1750[label="",style="dashed", color="magenta", weight=3]; 1588[label="Pos (Succ (Succ (Succ (Succ (Succ Zero)))))",fontsize=16,color="green",shape="box"];1589[label="primCmpInt (Pos (Succ zwu14700)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1589 -> 1751[label="",style="solid", color="black", weight=3]; 1590[label="primCmpInt (Pos Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1590 -> 1752[label="",style="solid", color="black", weight=3]; 1591[label="primCmpInt (Neg (Succ zwu14700)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1591 -> 1753[label="",style="solid", color="black", weight=3]; 1592[label="primCmpInt (Neg Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1592 -> 1754[label="",style="solid", color="black", weight=3]; 1603 -> 546[label="",style="dashed", color="red", weight=0]; 1603[label="FiniteMap.sizeFM (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1603 -> 1756[label="",style="dashed", color="magenta", weight=3]; 1603 -> 1757[label="",style="dashed", color="magenta", weight=3]; 1603 -> 1758[label="",style="dashed", color="magenta", weight=3]; 1603 -> 1759[label="",style="dashed", color="magenta", weight=3]; 1603 -> 1760[label="",style="dashed", color="magenta", weight=3]; 1604[label="primCmpInt (Pos (Succ zwu14800)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1604 -> 1761[label="",style="solid", color="black", weight=3]; 1605[label="primCmpInt (Pos Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1605 -> 1762[label="",style="solid", color="black", weight=3]; 1606[label="primCmpInt (Neg (Succ zwu14800)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1606 -> 1763[label="",style="solid", color="black", weight=3]; 1607[label="primCmpInt (Neg Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1607 -> 1764[label="",style="solid", color="black", weight=3]; 1594 -> 1766[label="",style="dashed", color="red", weight=0]; 1594[label="primCmpInt (Neg (primPlusNat (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200))) (Succ zwu7200)) (Succ zwu7200))) (FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1594 -> 1767[label="",style="dashed", color="magenta", weight=3]; 1617 -> 546[label="",style="dashed", color="red", weight=0]; 1617[label="FiniteMap.sizeFM (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1617 -> 1768[label="",style="dashed", color="magenta", weight=3]; 1617 -> 1769[label="",style="dashed", color="magenta", weight=3]; 1617 -> 1770[label="",style="dashed", color="magenta", weight=3]; 1617 -> 1771[label="",style="dashed", color="magenta", weight=3]; 1617 -> 1772[label="",style="dashed", color="magenta", weight=3]; 1618[label="primCmpInt (Pos (Succ zwu14900)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1618 -> 1773[label="",style="solid", color="black", weight=3]; 1619[label="primCmpInt (Pos Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1619 -> 1774[label="",style="solid", color="black", weight=3]; 1620[label="primCmpInt (Neg (Succ zwu14900)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1620 -> 1775[label="",style="solid", color="black", weight=3]; 1621[label="primCmpInt (Neg Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1621 -> 1776[label="",style="solid", color="black", weight=3]; 1647 -> 546[label="",style="dashed", color="red", weight=0]; 1647[label="FiniteMap.sizeFM (FiniteMap.Branch zwu60 zwu61 zwu62 zwu63 zwu64)",fontsize=16,color="magenta"];1647 -> 1778[label="",style="dashed", color="magenta", weight=3]; 1647 -> 1779[label="",style="dashed", color="magenta", weight=3]; 1647 -> 1780[label="",style="dashed", color="magenta", weight=3]; 1647 -> 1781[label="",style="dashed", color="magenta", weight=3]; 1647 -> 1782[label="",style="dashed", color="magenta", weight=3]; 1648[label="primCmpInt (Pos (Succ zwu15000)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1648 -> 1783[label="",style="solid", color="black", weight=3]; 1649[label="primCmpInt (Pos Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1649 -> 1784[label="",style="solid", color="black", weight=3]; 1650[label="primCmpInt (Neg (Succ zwu15000)) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1650 -> 1785[label="",style="solid", color="black", weight=3]; 1651[label="primCmpInt (Neg Zero) (FiniteMap.mkVBalBranch3Size_l zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="black",shape="box"];1651 -> 1786[label="",style="solid", color="black", weight=3]; 1623[label="primCmpInt (Pos (primPlusNat (primPlusNat (primPlusNat (Succ (Succ (primPlusNat zwu9200 zwu9200))) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1623 -> 1788[label="",style="solid", color="black", weight=3]; 1624[label="FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="triangle"];1624 -> 1789[label="",style="solid", color="black", weight=3]; 1625 -> 1575[label="",style="dashed", color="red", weight=0]; 1625[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1626[label="primCmpInt (Pos zwu1390) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7255[label="zwu1390/Succ zwu13900",fontsize=10,color="white",style="solid",shape="box"];1626 -> 7255[label="",style="solid", color="burlywood", weight=9]; 7255 -> 1790[label="",style="solid", color="burlywood", weight=3]; 7256[label="zwu1390/Zero",fontsize=10,color="white",style="solid",shape="box"];1626 -> 7256[label="",style="solid", color="burlywood", weight=9]; 7256 -> 1791[label="",style="solid", color="burlywood", weight=3]; 1627[label="primCmpInt (Neg zwu1390) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7257[label="zwu1390/Succ zwu13900",fontsize=10,color="white",style="solid",shape="box"];1627 -> 7257[label="",style="solid", color="burlywood", weight=9]; 7257 -> 1792[label="",style="solid", color="burlywood", weight=3]; 7258[label="zwu1390/Zero",fontsize=10,color="white",style="solid",shape="box"];1627 -> 7258[label="",style="solid", color="burlywood", weight=9]; 7258 -> 1793[label="",style="solid", color="burlywood", weight=3]; 1628[label="FiniteMap.glueBal2 (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1628 -> 1794[label="",style="solid", color="black", weight=3]; 1629[label="FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="box"];1629 -> 1795[label="",style="solid", color="black", weight=3]; 1630 -> 1575[label="",style="dashed", color="red", weight=0]; 1630[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1631[label="primCmpInt (Pos zwu1400) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7259[label="zwu1400/Succ zwu14000",fontsize=10,color="white",style="solid",shape="box"];1631 -> 7259[label="",style="solid", color="burlywood", weight=9]; 7259 -> 1796[label="",style="solid", color="burlywood", weight=3]; 7260[label="zwu1400/Zero",fontsize=10,color="white",style="solid",shape="box"];1631 -> 7260[label="",style="solid", color="burlywood", weight=9]; 7260 -> 1797[label="",style="solid", color="burlywood", weight=3]; 1632[label="primCmpInt (Neg zwu1400) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7261[label="zwu1400/Succ zwu14000",fontsize=10,color="white",style="solid",shape="box"];1632 -> 7261[label="",style="solid", color="burlywood", weight=9]; 7261 -> 1798[label="",style="solid", color="burlywood", weight=3]; 7262[label="zwu1400/Zero",fontsize=10,color="white",style="solid",shape="box"];1632 -> 7262[label="",style="solid", color="burlywood", weight=9]; 7262 -> 1799[label="",style="solid", color="burlywood", weight=3]; 1633[label="FiniteMap.glueBal2 (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1633 -> 1800[label="",style="solid", color="black", weight=3]; 1634[label="primCmpInt (Neg (primPlusNat (primPlusNat (primPlusNat (Succ (Succ (primPlusNat zwu9200 zwu9200))) (Succ zwu9200)) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1634 -> 1801[label="",style="solid", color="black", weight=3]; 1635[label="FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="triangle"];1635 -> 1802[label="",style="solid", color="black", weight=3]; 1636 -> 1575[label="",style="dashed", color="red", weight=0]; 1636[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1637[label="primCmpInt (Pos zwu1410) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7263[label="zwu1410/Succ zwu14100",fontsize=10,color="white",style="solid",shape="box"];1637 -> 7263[label="",style="solid", color="burlywood", weight=9]; 7263 -> 1803[label="",style="solid", color="burlywood", weight=3]; 7264[label="zwu1410/Zero",fontsize=10,color="white",style="solid",shape="box"];1637 -> 7264[label="",style="solid", color="burlywood", weight=9]; 7264 -> 1804[label="",style="solid", color="burlywood", weight=3]; 1638[label="primCmpInt (Neg zwu1410) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7265[label="zwu1410/Succ zwu14100",fontsize=10,color="white",style="solid",shape="box"];1638 -> 7265[label="",style="solid", color="burlywood", weight=9]; 7265 -> 1805[label="",style="solid", color="burlywood", weight=3]; 7266[label="zwu1410/Zero",fontsize=10,color="white",style="solid",shape="box"];1638 -> 7266[label="",style="solid", color="burlywood", weight=9]; 7266 -> 1806[label="",style="solid", color="burlywood", weight=3]; 1639[label="FiniteMap.glueBal2 (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1639 -> 1807[label="",style="solid", color="black", weight=3]; 1640[label="FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="black",shape="box"];1640 -> 1808[label="",style="solid", color="black", weight=3]; 1641 -> 1575[label="",style="dashed", color="red", weight=0]; 1641[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];1642[label="primCmpInt (Pos zwu1420) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7267[label="zwu1420/Succ zwu14200",fontsize=10,color="white",style="solid",shape="box"];1642 -> 7267[label="",style="solid", color="burlywood", weight=9]; 7267 -> 1809[label="",style="solid", color="burlywood", weight=3]; 7268[label="zwu1420/Zero",fontsize=10,color="white",style="solid",shape="box"];1642 -> 7268[label="",style="solid", color="burlywood", weight=9]; 7268 -> 1810[label="",style="solid", color="burlywood", weight=3]; 1643[label="primCmpInt (Neg zwu1420) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="box"];7269[label="zwu1420/Succ zwu14200",fontsize=10,color="white",style="solid",shape="box"];1643 -> 7269[label="",style="solid", color="burlywood", weight=9]; 7269 -> 1811[label="",style="solid", color="burlywood", weight=3]; 7270[label="zwu1420/Zero",fontsize=10,color="white",style="solid",shape="box"];1643 -> 7270[label="",style="solid", color="burlywood", weight=9]; 7270 -> 1812[label="",style="solid", color="burlywood", weight=3]; 1644[label="FiniteMap.glueBal2 (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1644 -> 1813[label="",style="solid", color="black", weight=3]; 3862[label="LT <= LT",fontsize=16,color="black",shape="box"];3862 -> 3900[label="",style="solid", color="black", weight=3]; 3863[label="LT <= EQ",fontsize=16,color="black",shape="box"];3863 -> 3901[label="",style="solid", color="black", weight=3]; 3864[label="LT <= GT",fontsize=16,color="black",shape="box"];3864 -> 3902[label="",style="solid", color="black", weight=3]; 3865[label="EQ <= LT",fontsize=16,color="black",shape="box"];3865 -> 3903[label="",style="solid", color="black", weight=3]; 3866[label="EQ <= EQ",fontsize=16,color="black",shape="box"];3866 -> 3904[label="",style="solid", color="black", weight=3]; 3867[label="EQ <= GT",fontsize=16,color="black",shape="box"];3867 -> 3905[label="",style="solid", color="black", weight=3]; 3868[label="GT <= LT",fontsize=16,color="black",shape="box"];3868 -> 3906[label="",style="solid", color="black", weight=3]; 3869[label="GT <= EQ",fontsize=16,color="black",shape="box"];3869 -> 3907[label="",style="solid", color="black", weight=3]; 3870[label="GT <= GT",fontsize=16,color="black",shape="box"];3870 -> 3908[label="",style="solid", color="black", weight=3]; 3871[label="False <= False",fontsize=16,color="black",shape="box"];3871 -> 3909[label="",style="solid", color="black", weight=3]; 3872[label="False <= True",fontsize=16,color="black",shape="box"];3872 -> 3910[label="",style="solid", color="black", weight=3]; 3873[label="True <= False",fontsize=16,color="black",shape="box"];3873 -> 3911[label="",style="solid", color="black", weight=3]; 3874[label="True <= True",fontsize=16,color="black",shape="box"];3874 -> 3912[label="",style="solid", color="black", weight=3]; 3885[label="compare zwu4300 zwu4400",fontsize=16,color="black",shape="triangle"];3885 -> 3913[label="",style="solid", color="black", weight=3]; 3884[label="zwu246 /= GT",fontsize=16,color="black",shape="triangle"];3884 -> 3914[label="",style="solid", color="black", weight=3]; 3876[label="(zwu43000,zwu43001,zwu43002) <= (zwu44000,zwu44001,zwu44002)",fontsize=16,color="black",shape="box"];3876 -> 3915[label="",style="solid", color="black", weight=3]; 3877[label="(zwu43000,zwu43001) <= (zwu44000,zwu44001)",fontsize=16,color="black",shape="box"];3877 -> 3916[label="",style="solid", color="black", weight=3]; 3886[label="compare zwu4300 zwu4400",fontsize=16,color="burlywood",shape="triangle"];7271[label="zwu4300/Integer zwu43000",fontsize=10,color="white",style="solid",shape="box"];3886 -> 7271[label="",style="solid", color="burlywood", weight=9]; 7271 -> 3917[label="",style="solid", color="burlywood", weight=3]; 3887[label="compare zwu4300 zwu4400",fontsize=16,color="burlywood",shape="triangle"];7272[label="zwu4300/zwu43000 : zwu43001",fontsize=10,color="white",style="solid",shape="box"];3887 -> 7272[label="",style="solid", color="burlywood", weight=9]; 7272 -> 3918[label="",style="solid", color="burlywood", weight=3]; 7273[label="zwu4300/[]",fontsize=10,color="white",style="solid",shape="box"];3887 -> 7273[label="",style="solid", color="burlywood", weight=9]; 7273 -> 3919[label="",style="solid", color="burlywood", weight=3]; 3880[label="Nothing <= Nothing",fontsize=16,color="black",shape="box"];3880 -> 3920[label="",style="solid", color="black", weight=3]; 3881[label="Nothing <= Just zwu44000",fontsize=16,color="black",shape="box"];3881 -> 3921[label="",style="solid", color="black", weight=3]; 3882[label="Just zwu43000 <= Nothing",fontsize=16,color="black",shape="box"];3882 -> 3922[label="",style="solid", color="black", weight=3]; 3883[label="Just zwu43000 <= Just zwu44000",fontsize=16,color="black",shape="box"];3883 -> 3923[label="",style="solid", color="black", weight=3]; 3888 -> 1707[label="",style="dashed", color="red", weight=0]; 3888[label="compare zwu4300 zwu4400",fontsize=16,color="magenta"];3888 -> 3924[label="",style="dashed", color="magenta", weight=3]; 3888 -> 3925[label="",style="dashed", color="magenta", weight=3]; 3889[label="compare zwu4300 zwu4400",fontsize=16,color="burlywood",shape="triangle"];7274[label="zwu4300/zwu43000 :% zwu43001",fontsize=10,color="white",style="solid",shape="box"];3889 -> 7274[label="",style="solid", color="burlywood", weight=9]; 7274 -> 3926[label="",style="solid", color="burlywood", weight=3]; 3890[label="compare zwu4300 zwu4400",fontsize=16,color="burlywood",shape="triangle"];7275[label="zwu4300/()",fontsize=10,color="white",style="solid",shape="box"];3890 -> 7275[label="",style="solid", color="burlywood", weight=9]; 7275 -> 3927[label="",style="solid", color="burlywood", weight=3]; 3891[label="compare zwu4300 zwu4400",fontsize=16,color="black",shape="triangle"];3891 -> 3928[label="",style="solid", color="black", weight=3]; 3892[label="compare zwu4300 zwu4400",fontsize=16,color="black",shape="triangle"];3892 -> 3929[label="",style="solid", color="black", weight=3]; 3893[label="Left zwu43000 <= Left zwu44000",fontsize=16,color="black",shape="box"];3893 -> 4028[label="",style="solid", color="black", weight=3]; 3894[label="Left zwu43000 <= Right zwu44000",fontsize=16,color="black",shape="box"];3894 -> 4029[label="",style="solid", color="black", weight=3]; 3895[label="Right zwu43000 <= Left zwu44000",fontsize=16,color="black",shape="box"];3895 -> 4030[label="",style="solid", color="black", weight=3]; 3896[label="Right zwu43000 <= Right zwu44000",fontsize=16,color="black",shape="box"];3896 -> 4031[label="",style="solid", color="black", weight=3]; 3897[label="compare0 (Just zwu217) (Just zwu218) True",fontsize=16,color="black",shape="box"];3897 -> 4032[label="",style="solid", color="black", weight=3]; 1652[label="primCmpInt (primPlusInt (FiniteMap.sizeFM zwu51) (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51)) (Pos (Succ (Succ Zero)))",fontsize=16,color="burlywood",shape="box"];7276[label="zwu51/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1652 -> 7276[label="",style="solid", color="burlywood", weight=9]; 7276 -> 1818[label="",style="solid", color="burlywood", weight=3]; 7277[label="zwu51/FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514",fontsize=10,color="white",style="solid",shape="box"];1652 -> 7277[label="",style="solid", color="burlywood", weight=9]; 7277 -> 1819[label="",style="solid", color="burlywood", weight=3]; 2216 -> 2215[label="",style="dashed", color="red", weight=0]; 2216[label="FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51",fontsize=16,color="magenta"];2217 -> 1575[label="",style="dashed", color="red", weight=0]; 2217[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];2218 -> 1820[label="",style="dashed", color="red", weight=0]; 2218[label="FiniteMap.sizeFM zwu64",fontsize=16,color="magenta"];2218 -> 2391[label="",style="dashed", color="magenta", weight=3]; 2219 -> 135[label="",style="dashed", color="red", weight=0]; 2219[label="compare zwu177 zwu176 == GT",fontsize=16,color="magenta"];2219 -> 2392[label="",style="dashed", color="magenta", weight=3]; 2219 -> 2393[label="",style="dashed", color="magenta", weight=3]; 1656 -> 2205[label="",style="dashed", color="red", weight=0]; 1656[label="FiniteMap.mkBalBranch6MkBalBranch3 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 (FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51)",fontsize=16,color="magenta"];1656 -> 2206[label="",style="dashed", color="magenta", weight=3]; 1657[label="FiniteMap.mkBalBranch6MkBalBranch0 zwu64 zwu60 zwu61 zwu51 zwu51 zwu64 zwu64",fontsize=16,color="burlywood",shape="box"];7278[label="zwu64/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1657 -> 7278[label="",style="solid", color="burlywood", weight=9]; 7278 -> 1826[label="",style="solid", color="burlywood", weight=3]; 7279[label="zwu64/FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644",fontsize=10,color="white",style="solid",shape="box"];1657 -> 7279[label="",style="solid", color="burlywood", weight=9]; 7279 -> 1827[label="",style="solid", color="burlywood", weight=3]; 4931[label="FiniteMap.Branch zwu273 zwu274 (FiniteMap.mkBranchUnbox zwu276 zwu273 zwu275 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size zwu276 zwu273 zwu275 + FiniteMap.mkBranchRight_size zwu276 zwu273 zwu275)) zwu275 zwu276",fontsize=16,color="green",shape="box"];4931 -> 4934[label="",style="dashed", color="green", weight=3]; 1535[label="primMulInt (Pos zwu40010) zwu6000",fontsize=16,color="burlywood",shape="box"];7280[label="zwu6000/Pos zwu60000",fontsize=10,color="white",style="solid",shape="box"];1535 -> 7280[label="",style="solid", color="burlywood", weight=9]; 7280 -> 1687[label="",style="solid", color="burlywood", weight=3]; 7281[label="zwu6000/Neg zwu60000",fontsize=10,color="white",style="solid",shape="box"];1535 -> 7281[label="",style="solid", color="burlywood", weight=9]; 7281 -> 1688[label="",style="solid", color="burlywood", weight=3]; 1536[label="primMulInt (Neg zwu40010) zwu6000",fontsize=16,color="burlywood",shape="box"];7282[label="zwu6000/Pos zwu60000",fontsize=10,color="white",style="solid",shape="box"];1536 -> 7282[label="",style="solid", color="burlywood", weight=9]; 7282 -> 1689[label="",style="solid", color="burlywood", weight=3]; 7283[label="zwu6000/Neg zwu60000",fontsize=10,color="white",style="solid",shape="box"];1536 -> 7283[label="",style="solid", color="burlywood", weight=9]; 7283 -> 1690[label="",style="solid", color="burlywood", weight=3]; 3898[label="zwu60000",fontsize=16,color="green",shape="box"];3899[label="zwu40000",fontsize=16,color="green",shape="box"];3018[label="zwu19",fontsize=16,color="green",shape="box"];3019[label="zwu24",fontsize=16,color="green",shape="box"];3020[label="zwu19",fontsize=16,color="green",shape="box"];3021[label="zwu24",fontsize=16,color="green",shape="box"];3022[label="zwu19",fontsize=16,color="green",shape="box"];3023[label="zwu24",fontsize=16,color="green",shape="box"];3024[label="zwu19",fontsize=16,color="green",shape="box"];3025[label="zwu24",fontsize=16,color="green",shape="box"];3026[label="zwu19",fontsize=16,color="green",shape="box"];3027[label="zwu24",fontsize=16,color="green",shape="box"];3028[label="zwu19",fontsize=16,color="green",shape="box"];3029[label="zwu24",fontsize=16,color="green",shape="box"];3030[label="zwu19",fontsize=16,color="green",shape="box"];3031[label="zwu24",fontsize=16,color="green",shape="box"];3032[label="zwu19",fontsize=16,color="green",shape="box"];3033[label="zwu24",fontsize=16,color="green",shape="box"];3034[label="zwu19",fontsize=16,color="green",shape="box"];3035[label="zwu24",fontsize=16,color="green",shape="box"];3036[label="zwu19",fontsize=16,color="green",shape="box"];3037[label="zwu24",fontsize=16,color="green",shape="box"];3038[label="zwu19",fontsize=16,color="green",shape="box"];3039[label="zwu24",fontsize=16,color="green",shape="box"];3040[label="zwu19",fontsize=16,color="green",shape="box"];3041[label="zwu24",fontsize=16,color="green",shape="box"];3042[label="zwu19",fontsize=16,color="green",shape="box"];3043[label="zwu24",fontsize=16,color="green",shape="box"];3044[label="zwu19",fontsize=16,color="green",shape="box"];3045[label="zwu24",fontsize=16,color="green",shape="box"];1745 -> 1574[label="",style="dashed", color="red", weight=0]; 1745[label="FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="magenta"];1744[label="primCmpInt (Pos (primPlusNat (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200))) (Succ zwu7200)) (Succ zwu7200))) zwu154",fontsize=16,color="black",shape="triangle"];1744 -> 1945[label="",style="solid", color="black", weight=3]; 1746[label="zwu62",fontsize=16,color="green",shape="box"];1747[label="zwu61",fontsize=16,color="green",shape="box"];1748[label="zwu63",fontsize=16,color="green",shape="box"];1749[label="zwu60",fontsize=16,color="green",shape="box"];1750[label="zwu64",fontsize=16,color="green",shape="box"];1751 -> 1946[label="",style="dashed", color="red", weight=0]; 1751[label="primCmpInt (Pos (Succ zwu14700)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1751 -> 1947[label="",style="dashed", color="magenta", weight=3]; 1752 -> 439[label="",style="dashed", color="red", weight=0]; 1752[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1752 -> 1954[label="",style="dashed", color="magenta", weight=3]; 1753 -> 1955[label="",style="dashed", color="red", weight=0]; 1753[label="primCmpInt (Neg (Succ zwu14700)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1753 -> 1956[label="",style="dashed", color="magenta", weight=3]; 1754 -> 443[label="",style="dashed", color="red", weight=0]; 1754[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1754 -> 1963[label="",style="dashed", color="magenta", weight=3]; 1756[label="zwu62",fontsize=16,color="green",shape="box"];1757[label="zwu61",fontsize=16,color="green",shape="box"];1758[label="zwu63",fontsize=16,color="green",shape="box"];1759[label="zwu60",fontsize=16,color="green",shape="box"];1760[label="zwu64",fontsize=16,color="green",shape="box"];1761 -> 1946[label="",style="dashed", color="red", weight=0]; 1761[label="primCmpInt (Pos (Succ zwu14800)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1761 -> 1948[label="",style="dashed", color="magenta", weight=3]; 1761 -> 1949[label="",style="dashed", color="magenta", weight=3]; 1762 -> 439[label="",style="dashed", color="red", weight=0]; 1762[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1762 -> 1965[label="",style="dashed", color="magenta", weight=3]; 1763 -> 1955[label="",style="dashed", color="red", weight=0]; 1763[label="primCmpInt (Neg (Succ zwu14800)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1763 -> 1957[label="",style="dashed", color="magenta", weight=3]; 1763 -> 1958[label="",style="dashed", color="magenta", weight=3]; 1764 -> 443[label="",style="dashed", color="red", weight=0]; 1764[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1764 -> 1966[label="",style="dashed", color="magenta", weight=3]; 1767 -> 1599[label="",style="dashed", color="red", weight=0]; 1767[label="FiniteMap.mkVBalBranch3Size_r zwu60 zwu61 zwu62 zwu63 zwu64 zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="magenta"];1766[label="primCmpInt (Neg (primPlusNat (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200))) (Succ zwu7200)) (Succ zwu7200))) zwu155",fontsize=16,color="black",shape="triangle"];1766 -> 1968[label="",style="solid", color="black", weight=3]; 1768[label="zwu62",fontsize=16,color="green",shape="box"];1769[label="zwu61",fontsize=16,color="green",shape="box"];1770[label="zwu63",fontsize=16,color="green",shape="box"];1771[label="zwu60",fontsize=16,color="green",shape="box"];1772[label="zwu64",fontsize=16,color="green",shape="box"];1773 -> 1946[label="",style="dashed", color="red", weight=0]; 1773[label="primCmpInt (Pos (Succ zwu14900)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1773 -> 1950[label="",style="dashed", color="magenta", weight=3]; 1773 -> 1951[label="",style="dashed", color="magenta", weight=3]; 1774 -> 439[label="",style="dashed", color="red", weight=0]; 1774[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1774 -> 1969[label="",style="dashed", color="magenta", weight=3]; 1775 -> 1955[label="",style="dashed", color="red", weight=0]; 1775[label="primCmpInt (Neg (Succ zwu14900)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1775 -> 1959[label="",style="dashed", color="magenta", weight=3]; 1775 -> 1960[label="",style="dashed", color="magenta", weight=3]; 1776 -> 443[label="",style="dashed", color="red", weight=0]; 1776[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74))",fontsize=16,color="magenta"];1776 -> 1970[label="",style="dashed", color="magenta", weight=3]; 1778[label="zwu62",fontsize=16,color="green",shape="box"];1779[label="zwu61",fontsize=16,color="green",shape="box"];1780[label="zwu63",fontsize=16,color="green",shape="box"];1781[label="zwu60",fontsize=16,color="green",shape="box"];1782[label="zwu64",fontsize=16,color="green",shape="box"];1783 -> 1946[label="",style="dashed", color="red", weight=0]; 1783[label="primCmpInt (Pos (Succ zwu15000)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1783 -> 1952[label="",style="dashed", color="magenta", weight=3]; 1783 -> 1953[label="",style="dashed", color="magenta", weight=3]; 1784 -> 439[label="",style="dashed", color="red", weight=0]; 1784[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1784 -> 1972[label="",style="dashed", color="magenta", weight=3]; 1785 -> 1955[label="",style="dashed", color="red", weight=0]; 1785[label="primCmpInt (Neg (Succ zwu15000)) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1785 -> 1961[label="",style="dashed", color="magenta", weight=3]; 1785 -> 1962[label="",style="dashed", color="magenta", weight=3]; 1786 -> 443[label="",style="dashed", color="red", weight=0]; 1786[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74))",fontsize=16,color="magenta"];1786 -> 1973[label="",style="dashed", color="magenta", weight=3]; 1788 -> 1744[label="",style="dashed", color="red", weight=0]; 1788[label="primCmpInt (Pos (primPlusNat (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat zwu9200 zwu9200)) zwu9200))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1788 -> 1975[label="",style="dashed", color="magenta", weight=3]; 1788 -> 1976[label="",style="dashed", color="magenta", weight=3]; 1789 -> 546[label="",style="dashed", color="red", weight=0]; 1789[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1790[label="primCmpInt (Pos (Succ zwu13900)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1790 -> 1977[label="",style="solid", color="black", weight=3]; 1791[label="primCmpInt (Pos Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1791 -> 1978[label="",style="solid", color="black", weight=3]; 1792[label="primCmpInt (Neg (Succ zwu13900)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1792 -> 1979[label="",style="solid", color="black", weight=3]; 1793[label="primCmpInt (Neg Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1793 -> 1980[label="",style="solid", color="black", weight=3]; 1794 -> 2387[label="",style="dashed", color="red", weight=0]; 1794[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1794 -> 2388[label="",style="dashed", color="magenta", weight=3]; 1795 -> 546[label="",style="dashed", color="red", weight=0]; 1795[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1796[label="primCmpInt (Pos (Succ zwu14000)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1796 -> 1984[label="",style="solid", color="black", weight=3]; 1797[label="primCmpInt (Pos Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1797 -> 1985[label="",style="solid", color="black", weight=3]; 1798[label="primCmpInt (Neg (Succ zwu14000)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1798 -> 1986[label="",style="solid", color="black", weight=3]; 1799[label="primCmpInt (Neg Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Pos Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1799 -> 1987[label="",style="solid", color="black", weight=3]; 1800 -> 2404[label="",style="dashed", color="red", weight=0]; 1800[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="magenta"];1800 -> 2405[label="",style="dashed", color="magenta", weight=3]; 1801 -> 1766[label="",style="dashed", color="red", weight=0]; 1801[label="primCmpInt (Neg (primPlusNat (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat zwu9200 zwu9200)) zwu9200))) (Succ zwu9200)) (Succ zwu9200))) (FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1801 -> 1991[label="",style="dashed", color="magenta", weight=3]; 1801 -> 1992[label="",style="dashed", color="magenta", weight=3]; 1802 -> 546[label="",style="dashed", color="red", weight=0]; 1802[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1803[label="primCmpInt (Pos (Succ zwu14100)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1803 -> 1993[label="",style="solid", color="black", weight=3]; 1804[label="primCmpInt (Pos Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1804 -> 1994[label="",style="solid", color="black", weight=3]; 1805[label="primCmpInt (Neg (Succ zwu14100)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1805 -> 1995[label="",style="solid", color="black", weight=3]; 1806[label="primCmpInt (Neg Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1806 -> 1996[label="",style="solid", color="black", weight=3]; 1807 -> 2422[label="",style="dashed", color="red", weight=0]; 1807[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1807 -> 2423[label="",style="dashed", color="magenta", weight=3]; 1808 -> 546[label="",style="dashed", color="red", weight=0]; 1808[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];1809[label="primCmpInt (Pos (Succ zwu14200)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1809 -> 2000[label="",style="solid", color="black", weight=3]; 1810[label="primCmpInt (Pos Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1810 -> 2001[label="",style="solid", color="black", weight=3]; 1811[label="primCmpInt (Neg (Succ zwu14200)) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1811 -> 2002[label="",style="solid", color="black", weight=3]; 1812[label="primCmpInt (Neg Zero) (FiniteMap.glueVBal3Size_l zwu90 zwu91 (Neg Zero) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="black",shape="box"];1812 -> 2003[label="",style="solid", color="black", weight=3]; 1813 -> 2438[label="",style="dashed", color="red", weight=0]; 1813[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="magenta"];1813 -> 2439[label="",style="dashed", color="magenta", weight=3]; 3900[label="True",fontsize=16,color="green",shape="box"];3901[label="True",fontsize=16,color="green",shape="box"];3902[label="True",fontsize=16,color="green",shape="box"];3903[label="False",fontsize=16,color="green",shape="box"];3904[label="True",fontsize=16,color="green",shape="box"];3905[label="True",fontsize=16,color="green",shape="box"];3906[label="False",fontsize=16,color="green",shape="box"];3907[label="False",fontsize=16,color="green",shape="box"];3908[label="True",fontsize=16,color="green",shape="box"];3909[label="True",fontsize=16,color="green",shape="box"];3910[label="True",fontsize=16,color="green",shape="box"];3911[label="False",fontsize=16,color="green",shape="box"];3912[label="True",fontsize=16,color="green",shape="box"];3913[label="primCmpFloat zwu4300 zwu4400",fontsize=16,color="burlywood",shape="box"];7284[label="zwu4300/Float zwu43000 zwu43001",fontsize=10,color="white",style="solid",shape="box"];3913 -> 7284[label="",style="solid", color="burlywood", weight=9]; 7284 -> 4033[label="",style="solid", color="burlywood", weight=3]; 3914 -> 4034[label="",style="dashed", color="red", weight=0]; 3914[label="not (zwu246 == GT)",fontsize=16,color="magenta"];3914 -> 4035[label="",style="dashed", color="magenta", weight=3]; 3915 -> 4100[label="",style="dashed", color="red", weight=0]; 3915[label="zwu43000 < zwu44000 || zwu43000 == zwu44000 && (zwu43001 < zwu44001 || zwu43001 == zwu44001 && zwu43002 <= zwu44002)",fontsize=16,color="magenta"];3915 -> 4101[label="",style="dashed", color="magenta", weight=3]; 3915 -> 4102[label="",style="dashed", color="magenta", weight=3]; 3916 -> 4100[label="",style="dashed", color="red", weight=0]; 3916[label="zwu43000 < zwu44000 || zwu43000 == zwu44000 && zwu43001 <= zwu44001",fontsize=16,color="magenta"];3916 -> 4103[label="",style="dashed", color="magenta", weight=3]; 3916 -> 4104[label="",style="dashed", color="magenta", weight=3]; 3917[label="compare (Integer zwu43000) zwu4400",fontsize=16,color="burlywood",shape="box"];7285[label="zwu4400/Integer zwu44000",fontsize=10,color="white",style="solid",shape="box"];3917 -> 7285[label="",style="solid", color="burlywood", weight=9]; 7285 -> 4041[label="",style="solid", color="burlywood", weight=3]; 3918[label="compare (zwu43000 : zwu43001) zwu4400",fontsize=16,color="burlywood",shape="box"];7286[label="zwu4400/zwu44000 : zwu44001",fontsize=10,color="white",style="solid",shape="box"];3918 -> 7286[label="",style="solid", color="burlywood", weight=9]; 7286 -> 4042[label="",style="solid", color="burlywood", weight=3]; 7287[label="zwu4400/[]",fontsize=10,color="white",style="solid",shape="box"];3918 -> 7287[label="",style="solid", color="burlywood", weight=9]; 7287 -> 4043[label="",style="solid", color="burlywood", weight=3]; 3919[label="compare [] zwu4400",fontsize=16,color="burlywood",shape="box"];7288[label="zwu4400/zwu44000 : zwu44001",fontsize=10,color="white",style="solid",shape="box"];3919 -> 7288[label="",style="solid", color="burlywood", weight=9]; 7288 -> 4044[label="",style="solid", color="burlywood", weight=3]; 7289[label="zwu4400/[]",fontsize=10,color="white",style="solid",shape="box"];3919 -> 7289[label="",style="solid", color="burlywood", weight=9]; 7289 -> 4045[label="",style="solid", color="burlywood", weight=3]; 3920[label="True",fontsize=16,color="green",shape="box"];3921[label="True",fontsize=16,color="green",shape="box"];3922[label="False",fontsize=16,color="green",shape="box"];3923[label="zwu43000 <= zwu44000",fontsize=16,color="blue",shape="box"];7290[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7290[label="",style="solid", color="blue", weight=9]; 7290 -> 4046[label="",style="solid", color="blue", weight=3]; 7291[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7291[label="",style="solid", color="blue", weight=9]; 7291 -> 4047[label="",style="solid", color="blue", weight=3]; 7292[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7292[label="",style="solid", color="blue", weight=9]; 7292 -> 4048[label="",style="solid", color="blue", weight=3]; 7293[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7293[label="",style="solid", color="blue", weight=9]; 7293 -> 4049[label="",style="solid", color="blue", weight=3]; 7294[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7294[label="",style="solid", color="blue", weight=9]; 7294 -> 4050[label="",style="solid", color="blue", weight=3]; 7295[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7295[label="",style="solid", color="blue", weight=9]; 7295 -> 4051[label="",style="solid", color="blue", weight=3]; 7296[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7296[label="",style="solid", color="blue", weight=9]; 7296 -> 4052[label="",style="solid", color="blue", weight=3]; 7297[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7297[label="",style="solid", color="blue", weight=9]; 7297 -> 4053[label="",style="solid", color="blue", weight=3]; 7298[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7298[label="",style="solid", color="blue", weight=9]; 7298 -> 4054[label="",style="solid", color="blue", weight=3]; 7299[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7299[label="",style="solid", color="blue", weight=9]; 7299 -> 4055[label="",style="solid", color="blue", weight=3]; 7300[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7300[label="",style="solid", color="blue", weight=9]; 7300 -> 4056[label="",style="solid", color="blue", weight=3]; 7301[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7301[label="",style="solid", color="blue", weight=9]; 7301 -> 4057[label="",style="solid", color="blue", weight=3]; 7302[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7302[label="",style="solid", color="blue", weight=9]; 7302 -> 4058[label="",style="solid", color="blue", weight=3]; 7303[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];3923 -> 7303[label="",style="solid", color="blue", weight=9]; 7303 -> 4059[label="",style="solid", color="blue", weight=3]; 3924[label="zwu4300",fontsize=16,color="green",shape="box"];3925[label="zwu4400",fontsize=16,color="green",shape="box"];1707[label="compare zwu43 zwu44",fontsize=16,color="black",shape="triangle"];1707 -> 1884[label="",style="solid", color="black", weight=3]; 3926[label="compare (zwu43000 :% zwu43001) zwu4400",fontsize=16,color="burlywood",shape="box"];7304[label="zwu4400/zwu44000 :% zwu44001",fontsize=10,color="white",style="solid",shape="box"];3926 -> 7304[label="",style="solid", color="burlywood", weight=9]; 7304 -> 4060[label="",style="solid", color="burlywood", weight=3]; 3927[label="compare () zwu4400",fontsize=16,color="burlywood",shape="box"];7305[label="zwu4400/()",fontsize=10,color="white",style="solid",shape="box"];3927 -> 7305[label="",style="solid", color="burlywood", weight=9]; 7305 -> 4061[label="",style="solid", color="burlywood", weight=3]; 3928[label="primCmpDouble zwu4300 zwu4400",fontsize=16,color="burlywood",shape="box"];7306[label="zwu4300/Double zwu43000 zwu43001",fontsize=10,color="white",style="solid",shape="box"];3928 -> 7306[label="",style="solid", color="burlywood", weight=9]; 7306 -> 4062[label="",style="solid", color="burlywood", weight=3]; 3929[label="primCmpChar zwu4300 zwu4400",fontsize=16,color="burlywood",shape="box"];7307[label="zwu4300/Char zwu43000",fontsize=10,color="white",style="solid",shape="box"];3929 -> 7307[label="",style="solid", color="burlywood", weight=9]; 7307 -> 4063[label="",style="solid", color="burlywood", weight=3]; 4028[label="zwu43000 <= zwu44000",fontsize=16,color="blue",shape="box"];7308[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7308[label="",style="solid", color="blue", weight=9]; 7308 -> 4064[label="",style="solid", color="blue", weight=3]; 7309[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7309[label="",style="solid", color="blue", weight=9]; 7309 -> 4065[label="",style="solid", color="blue", weight=3]; 7310[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7310[label="",style="solid", color="blue", weight=9]; 7310 -> 4066[label="",style="solid", color="blue", weight=3]; 7311[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7311[label="",style="solid", color="blue", weight=9]; 7311 -> 4067[label="",style="solid", color="blue", weight=3]; 7312[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7312[label="",style="solid", color="blue", weight=9]; 7312 -> 4068[label="",style="solid", color="blue", weight=3]; 7313[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7313[label="",style="solid", color="blue", weight=9]; 7313 -> 4069[label="",style="solid", color="blue", weight=3]; 7314[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7314[label="",style="solid", color="blue", weight=9]; 7314 -> 4070[label="",style="solid", color="blue", weight=3]; 7315[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7315[label="",style="solid", color="blue", weight=9]; 7315 -> 4071[label="",style="solid", color="blue", weight=3]; 7316[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7316[label="",style="solid", color="blue", weight=9]; 7316 -> 4072[label="",style="solid", color="blue", weight=3]; 7317[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7317[label="",style="solid", color="blue", weight=9]; 7317 -> 4073[label="",style="solid", color="blue", weight=3]; 7318[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7318[label="",style="solid", color="blue", weight=9]; 7318 -> 4074[label="",style="solid", color="blue", weight=3]; 7319[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7319[label="",style="solid", color="blue", weight=9]; 7319 -> 4075[label="",style="solid", color="blue", weight=3]; 7320[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7320[label="",style="solid", color="blue", weight=9]; 7320 -> 4076[label="",style="solid", color="blue", weight=3]; 7321[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4028 -> 7321[label="",style="solid", color="blue", weight=9]; 7321 -> 4077[label="",style="solid", color="blue", weight=3]; 4029[label="True",fontsize=16,color="green",shape="box"];4030[label="False",fontsize=16,color="green",shape="box"];4031[label="zwu43000 <= zwu44000",fontsize=16,color="blue",shape="box"];7322[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7322[label="",style="solid", color="blue", weight=9]; 7322 -> 4078[label="",style="solid", color="blue", weight=3]; 7323[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7323[label="",style="solid", color="blue", weight=9]; 7323 -> 4079[label="",style="solid", color="blue", weight=3]; 7324[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7324[label="",style="solid", color="blue", weight=9]; 7324 -> 4080[label="",style="solid", color="blue", weight=3]; 7325[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7325[label="",style="solid", color="blue", weight=9]; 7325 -> 4081[label="",style="solid", color="blue", weight=3]; 7326[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7326[label="",style="solid", color="blue", weight=9]; 7326 -> 4082[label="",style="solid", color="blue", weight=3]; 7327[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7327[label="",style="solid", color="blue", weight=9]; 7327 -> 4083[label="",style="solid", color="blue", weight=3]; 7328[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7328[label="",style="solid", color="blue", weight=9]; 7328 -> 4084[label="",style="solid", color="blue", weight=3]; 7329[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7329[label="",style="solid", color="blue", weight=9]; 7329 -> 4085[label="",style="solid", color="blue", weight=3]; 7330[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7330[label="",style="solid", color="blue", weight=9]; 7330 -> 4086[label="",style="solid", color="blue", weight=3]; 7331[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7331[label="",style="solid", color="blue", weight=9]; 7331 -> 4087[label="",style="solid", color="blue", weight=3]; 7332[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7332[label="",style="solid", color="blue", weight=9]; 7332 -> 4088[label="",style="solid", color="blue", weight=3]; 7333[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7333[label="",style="solid", color="blue", weight=9]; 7333 -> 4089[label="",style="solid", color="blue", weight=3]; 7334[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7334[label="",style="solid", color="blue", weight=9]; 7334 -> 4090[label="",style="solid", color="blue", weight=3]; 7335[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4031 -> 7335[label="",style="solid", color="blue", weight=9]; 7335 -> 4091[label="",style="solid", color="blue", weight=3]; 4032[label="GT",fontsize=16,color="green",shape="box"];1818[label="primCmpInt (primPlusInt (FiniteMap.sizeFM FiniteMap.EmptyFM) (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 FiniteMap.EmptyFM)) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];1818 -> 2009[label="",style="solid", color="black", weight=3]; 1819[label="primCmpInt (primPlusInt (FiniteMap.sizeFM (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514)) (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514))) (Pos (Succ (Succ Zero)))",fontsize=16,color="black",shape="box"];1819 -> 2010[label="",style="solid", color="black", weight=3]; 2215[label="FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51",fontsize=16,color="black",shape="triangle"];2215 -> 2224[label="",style="solid", color="black", weight=3]; 2391[label="zwu64",fontsize=16,color="green",shape="box"];1820[label="FiniteMap.sizeFM zwu51",fontsize=16,color="burlywood",shape="triangle"];7336[label="zwu51/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];1820 -> 7336[label="",style="solid", color="burlywood", weight=9]; 7336 -> 2011[label="",style="solid", color="burlywood", weight=3]; 7337[label="zwu51/FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514",fontsize=10,color="white",style="solid",shape="box"];1820 -> 7337[label="",style="solid", color="burlywood", weight=9]; 7337 -> 2012[label="",style="solid", color="burlywood", weight=3]; 2392[label="GT",fontsize=16,color="green",shape="box"];2393 -> 1707[label="",style="dashed", color="red", weight=0]; 2393[label="compare zwu177 zwu176",fontsize=16,color="magenta"];2393 -> 2408[label="",style="dashed", color="magenta", weight=3]; 2393 -> 2409[label="",style="dashed", color="magenta", weight=3]; 2206 -> 2209[label="",style="dashed", color="red", weight=0]; 2206[label="FiniteMap.mkBalBranch6Size_l zwu64 zwu60 zwu61 zwu51 > FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51",fontsize=16,color="magenta"];2206 -> 2214[label="",style="dashed", color="magenta", weight=3]; 2206 -> 2215[label="",style="dashed", color="magenta", weight=3]; 2205[label="FiniteMap.mkBalBranch6MkBalBranch3 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 zwu174",fontsize=16,color="burlywood",shape="triangle"];7338[label="zwu174/False",fontsize=10,color="white",style="solid",shape="box"];2205 -> 7338[label="",style="solid", color="burlywood", weight=9]; 7338 -> 2220[label="",style="solid", color="burlywood", weight=3]; 7339[label="zwu174/True",fontsize=10,color="white",style="solid",shape="box"];2205 -> 7339[label="",style="solid", color="burlywood", weight=9]; 7339 -> 2221[label="",style="solid", color="burlywood", weight=3]; 1826[label="FiniteMap.mkBalBranch6MkBalBranch0 FiniteMap.EmptyFM zwu60 zwu61 zwu51 zwu51 FiniteMap.EmptyFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];1826 -> 2018[label="",style="solid", color="black", weight=3]; 1827[label="FiniteMap.mkBalBranch6MkBalBranch0 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644)",fontsize=16,color="black",shape="box"];1827 -> 2019[label="",style="solid", color="black", weight=3]; 4934[label="FiniteMap.mkBranchUnbox zwu276 zwu273 zwu275 (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size zwu276 zwu273 zwu275 + FiniteMap.mkBranchRight_size zwu276 zwu273 zwu275)",fontsize=16,color="black",shape="box"];4934 -> 4937[label="",style="solid", color="black", weight=3]; 1687[label="primMulInt (Pos zwu40010) (Pos zwu60000)",fontsize=16,color="black",shape="box"];1687 -> 1829[label="",style="solid", color="black", weight=3]; 1688[label="primMulInt (Pos zwu40010) (Neg zwu60000)",fontsize=16,color="black",shape="box"];1688 -> 1830[label="",style="solid", color="black", weight=3]; 1689[label="primMulInt (Neg zwu40010) (Pos zwu60000)",fontsize=16,color="black",shape="box"];1689 -> 1831[label="",style="solid", color="black", weight=3]; 1690[label="primMulInt (Neg zwu40010) (Neg zwu60000)",fontsize=16,color="black",shape="box"];1690 -> 1832[label="",style="solid", color="black", weight=3]; 1945 -> 1884[label="",style="dashed", color="red", weight=0]; 1945[label="primCmpInt (Pos (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))) (Succ zwu7200))) zwu154",fontsize=16,color="magenta"];1945 -> 2125[label="",style="dashed", color="magenta", weight=3]; 1945 -> 2126[label="",style="dashed", color="magenta", weight=3]; 1947 -> 1820[label="",style="dashed", color="red", weight=0]; 1947[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1947 -> 2127[label="",style="dashed", color="magenta", weight=3]; 1946 -> 1884[label="",style="dashed", color="red", weight=0]; 1946[label="primCmpInt (Pos (Succ zwu14700)) zwu164",fontsize=16,color="magenta"];1946 -> 2128[label="",style="dashed", color="magenta", weight=3]; 1946 -> 2129[label="",style="dashed", color="magenta", weight=3]; 1954 -> 1820[label="",style="dashed", color="red", weight=0]; 1954[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1954 -> 2130[label="",style="dashed", color="magenta", weight=3]; 1956 -> 1820[label="",style="dashed", color="red", weight=0]; 1956[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1956 -> 2131[label="",style="dashed", color="magenta", weight=3]; 1955 -> 1884[label="",style="dashed", color="red", weight=0]; 1955[label="primCmpInt (Neg (Succ zwu14700)) zwu165",fontsize=16,color="magenta"];1955 -> 2132[label="",style="dashed", color="magenta", weight=3]; 1955 -> 2133[label="",style="dashed", color="magenta", weight=3]; 1963 -> 1820[label="",style="dashed", color="red", weight=0]; 1963[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1963 -> 2134[label="",style="dashed", color="magenta", weight=3]; 1948[label="zwu14800",fontsize=16,color="green",shape="box"];1949 -> 1820[label="",style="dashed", color="red", weight=0]; 1949[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1949 -> 2136[label="",style="dashed", color="magenta", weight=3]; 1965 -> 1820[label="",style="dashed", color="red", weight=0]; 1965[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1965 -> 2137[label="",style="dashed", color="magenta", weight=3]; 1957 -> 1820[label="",style="dashed", color="red", weight=0]; 1957[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1957 -> 2138[label="",style="dashed", color="magenta", weight=3]; 1958[label="zwu14800",fontsize=16,color="green",shape="box"];1966 -> 1820[label="",style="dashed", color="red", weight=0]; 1966[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1966 -> 2139[label="",style="dashed", color="magenta", weight=3]; 1968 -> 1884[label="",style="dashed", color="red", weight=0]; 1968[label="primCmpInt (Neg (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))) (Succ zwu7200))) zwu155",fontsize=16,color="magenta"];1968 -> 2141[label="",style="dashed", color="magenta", weight=3]; 1968 -> 2142[label="",style="dashed", color="magenta", weight=3]; 1950[label="zwu14900",fontsize=16,color="green",shape="box"];1951 -> 1820[label="",style="dashed", color="red", weight=0]; 1951[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1951 -> 2143[label="",style="dashed", color="magenta", weight=3]; 1969 -> 1820[label="",style="dashed", color="red", weight=0]; 1969[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1969 -> 2144[label="",style="dashed", color="magenta", weight=3]; 1959 -> 1820[label="",style="dashed", color="red", weight=0]; 1959[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1959 -> 2145[label="",style="dashed", color="magenta", weight=3]; 1960[label="zwu14900",fontsize=16,color="green",shape="box"];1970 -> 1820[label="",style="dashed", color="red", weight=0]; 1970[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74)",fontsize=16,color="magenta"];1970 -> 2146[label="",style="dashed", color="magenta", weight=3]; 1952[label="zwu15000",fontsize=16,color="green",shape="box"];1953 -> 1820[label="",style="dashed", color="red", weight=0]; 1953[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1953 -> 2148[label="",style="dashed", color="magenta", weight=3]; 1972 -> 1820[label="",style="dashed", color="red", weight=0]; 1972[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1972 -> 2149[label="",style="dashed", color="magenta", weight=3]; 1961 -> 1820[label="",style="dashed", color="red", weight=0]; 1961[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1961 -> 2150[label="",style="dashed", color="magenta", weight=3]; 1962[label="zwu15000",fontsize=16,color="green",shape="box"];1973 -> 1820[label="",style="dashed", color="red", weight=0]; 1973[label="FiniteMap.sizeFM (FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74)",fontsize=16,color="magenta"];1973 -> 2151[label="",style="dashed", color="magenta", weight=3]; 1975[label="zwu9200",fontsize=16,color="green",shape="box"];1976 -> 1624[label="",style="dashed", color="red", weight=0]; 1976[label="FiniteMap.glueVBal3Size_r zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="magenta"];1977 -> 1884[label="",style="dashed", color="red", weight=0]; 1977[label="primCmpInt (Pos (Succ zwu13900)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1977 -> 2153[label="",style="dashed", color="magenta", weight=3]; 1977 -> 2154[label="",style="dashed", color="magenta", weight=3]; 1978 -> 1884[label="",style="dashed", color="red", weight=0]; 1978[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1978 -> 2155[label="",style="dashed", color="magenta", weight=3]; 1978 -> 2156[label="",style="dashed", color="magenta", weight=3]; 1979 -> 1884[label="",style="dashed", color="red", weight=0]; 1979[label="primCmpInt (Neg (Succ zwu13900)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1979 -> 2157[label="",style="dashed", color="magenta", weight=3]; 1979 -> 2158[label="",style="dashed", color="magenta", weight=3]; 1980 -> 1884[label="",style="dashed", color="red", weight=0]; 1980[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1980 -> 2159[label="",style="dashed", color="magenta", weight=3]; 1980 -> 2160[label="",style="dashed", color="magenta", weight=3]; 2388 -> 2209[label="",style="dashed", color="red", weight=0]; 2388[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2388 -> 2394[label="",style="dashed", color="magenta", weight=3]; 2388 -> 2395[label="",style="dashed", color="magenta", weight=3]; 2387[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) zwu180",fontsize=16,color="burlywood",shape="triangle"];7340[label="zwu180/False",fontsize=10,color="white",style="solid",shape="box"];2387 -> 7340[label="",style="solid", color="burlywood", weight=9]; 7340 -> 2396[label="",style="solid", color="burlywood", weight=3]; 7341[label="zwu180/True",fontsize=10,color="white",style="solid",shape="box"];2387 -> 7341[label="",style="solid", color="burlywood", weight=9]; 7341 -> 2397[label="",style="solid", color="burlywood", weight=3]; 1984 -> 1884[label="",style="dashed", color="red", weight=0]; 1984[label="primCmpInt (Pos (Succ zwu14000)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="magenta"];1984 -> 2164[label="",style="dashed", color="magenta", weight=3]; 1984 -> 2165[label="",style="dashed", color="magenta", weight=3]; 1985 -> 1884[label="",style="dashed", color="red", weight=0]; 1985[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="magenta"];1985 -> 2166[label="",style="dashed", color="magenta", weight=3]; 1985 -> 2167[label="",style="dashed", color="magenta", weight=3]; 1986 -> 1884[label="",style="dashed", color="red", weight=0]; 1986[label="primCmpInt (Neg (Succ zwu14000)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="magenta"];1986 -> 2168[label="",style="dashed", color="magenta", weight=3]; 1986 -> 2169[label="",style="dashed", color="magenta", weight=3]; 1987 -> 1884[label="",style="dashed", color="red", weight=0]; 1987[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="magenta"];1987 -> 2170[label="",style="dashed", color="magenta", weight=3]; 1987 -> 2171[label="",style="dashed", color="magenta", weight=3]; 2405 -> 2209[label="",style="dashed", color="red", weight=0]; 2405[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2405 -> 2410[label="",style="dashed", color="magenta", weight=3]; 2405 -> 2411[label="",style="dashed", color="magenta", weight=3]; 2404[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) zwu182",fontsize=16,color="burlywood",shape="triangle"];7342[label="zwu182/False",fontsize=10,color="white",style="solid",shape="box"];2404 -> 7342[label="",style="solid", color="burlywood", weight=9]; 7342 -> 2412[label="",style="solid", color="burlywood", weight=3]; 7343[label="zwu182/True",fontsize=10,color="white",style="solid",shape="box"];2404 -> 7343[label="",style="solid", color="burlywood", weight=9]; 7343 -> 2413[label="",style="solid", color="burlywood", weight=3]; 1991 -> 1635[label="",style="dashed", color="red", weight=0]; 1991[label="FiniteMap.glueVBal3Size_r zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94 zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="magenta"];1992[label="zwu9200",fontsize=16,color="green",shape="box"];1993 -> 1884[label="",style="dashed", color="red", weight=0]; 1993[label="primCmpInt (Pos (Succ zwu14100)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1993 -> 2175[label="",style="dashed", color="magenta", weight=3]; 1993 -> 2176[label="",style="dashed", color="magenta", weight=3]; 1994 -> 1884[label="",style="dashed", color="red", weight=0]; 1994[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1994 -> 2177[label="",style="dashed", color="magenta", weight=3]; 1994 -> 2178[label="",style="dashed", color="magenta", weight=3]; 1995 -> 1884[label="",style="dashed", color="red", weight=0]; 1995[label="primCmpInt (Neg (Succ zwu14100)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1995 -> 2179[label="",style="dashed", color="magenta", weight=3]; 1995 -> 2180[label="",style="dashed", color="magenta", weight=3]; 1996 -> 1884[label="",style="dashed", color="red", weight=0]; 1996[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];1996 -> 2181[label="",style="dashed", color="magenta", weight=3]; 1996 -> 2182[label="",style="dashed", color="magenta", weight=3]; 2423 -> 2209[label="",style="dashed", color="red", weight=0]; 2423[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2423 -> 2426[label="",style="dashed", color="magenta", weight=3]; 2423 -> 2427[label="",style="dashed", color="magenta", weight=3]; 2422[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) zwu184",fontsize=16,color="burlywood",shape="triangle"];7344[label="zwu184/False",fontsize=10,color="white",style="solid",shape="box"];2422 -> 7344[label="",style="solid", color="burlywood", weight=9]; 7344 -> 2428[label="",style="solid", color="burlywood", weight=3]; 7345[label="zwu184/True",fontsize=10,color="white",style="solid",shape="box"];2422 -> 7345[label="",style="solid", color="burlywood", weight=9]; 7345 -> 2429[label="",style="solid", color="burlywood", weight=3]; 2000 -> 1884[label="",style="dashed", color="red", weight=0]; 2000[label="primCmpInt (Pos (Succ zwu14200)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="magenta"];2000 -> 2186[label="",style="dashed", color="magenta", weight=3]; 2000 -> 2187[label="",style="dashed", color="magenta", weight=3]; 2001 -> 1884[label="",style="dashed", color="red", weight=0]; 2001[label="primCmpInt (Pos Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="magenta"];2001 -> 2188[label="",style="dashed", color="magenta", weight=3]; 2001 -> 2189[label="",style="dashed", color="magenta", weight=3]; 2002 -> 1884[label="",style="dashed", color="red", weight=0]; 2002[label="primCmpInt (Neg (Succ zwu14200)) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="magenta"];2002 -> 2190[label="",style="dashed", color="magenta", weight=3]; 2002 -> 2191[label="",style="dashed", color="magenta", weight=3]; 2003 -> 1884[label="",style="dashed", color="red", weight=0]; 2003[label="primCmpInt (Neg Zero) (FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="magenta"];2003 -> 2192[label="",style="dashed", color="magenta", weight=3]; 2003 -> 2193[label="",style="dashed", color="magenta", weight=3]; 2439 -> 2209[label="",style="dashed", color="red", weight=0]; 2439[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) > FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2439 -> 2442[label="",style="dashed", color="magenta", weight=3]; 2439 -> 2443[label="",style="dashed", color="magenta", weight=3]; 2438[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) zwu186",fontsize=16,color="burlywood",shape="triangle"];7346[label="zwu186/False",fontsize=10,color="white",style="solid",shape="box"];2438 -> 7346[label="",style="solid", color="burlywood", weight=9]; 7346 -> 2444[label="",style="solid", color="burlywood", weight=3]; 7347[label="zwu186/True",fontsize=10,color="white",style="solid",shape="box"];2438 -> 7347[label="",style="solid", color="burlywood", weight=9]; 7347 -> 2445[label="",style="solid", color="burlywood", weight=3]; 4033[label="primCmpFloat (Float zwu43000 zwu43001) zwu4400",fontsize=16,color="burlywood",shape="box"];7348[label="zwu43001/Pos zwu430010",fontsize=10,color="white",style="solid",shape="box"];4033 -> 7348[label="",style="solid", color="burlywood", weight=9]; 7348 -> 4092[label="",style="solid", color="burlywood", weight=3]; 7349[label="zwu43001/Neg zwu430010",fontsize=10,color="white",style="solid",shape="box"];4033 -> 7349[label="",style="solid", color="burlywood", weight=9]; 7349 -> 4093[label="",style="solid", color="burlywood", weight=3]; 4035 -> 135[label="",style="dashed", color="red", weight=0]; 4035[label="zwu246 == GT",fontsize=16,color="magenta"];4035 -> 4094[label="",style="dashed", color="magenta", weight=3]; 4035 -> 4095[label="",style="dashed", color="magenta", weight=3]; 4034[label="not zwu257",fontsize=16,color="burlywood",shape="triangle"];7350[label="zwu257/False",fontsize=10,color="white",style="solid",shape="box"];4034 -> 7350[label="",style="solid", color="burlywood", weight=9]; 7350 -> 4096[label="",style="solid", color="burlywood", weight=3]; 7351[label="zwu257/True",fontsize=10,color="white",style="solid",shape="box"];4034 -> 7351[label="",style="solid", color="burlywood", weight=9]; 7351 -> 4097[label="",style="solid", color="burlywood", weight=3]; 4101 -> 3360[label="",style="dashed", color="red", weight=0]; 4101[label="zwu43000 == zwu44000 && (zwu43001 < zwu44001 || zwu43001 == zwu44001 && zwu43002 <= zwu44002)",fontsize=16,color="magenta"];4101 -> 4109[label="",style="dashed", color="magenta", weight=3]; 4101 -> 4110[label="",style="dashed", color="magenta", weight=3]; 4102[label="zwu43000 < zwu44000",fontsize=16,color="blue",shape="box"];7352[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7352[label="",style="solid", color="blue", weight=9]; 7352 -> 4111[label="",style="solid", color="blue", weight=3]; 7353[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7353[label="",style="solid", color="blue", weight=9]; 7353 -> 4112[label="",style="solid", color="blue", weight=3]; 7354[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7354[label="",style="solid", color="blue", weight=9]; 7354 -> 4113[label="",style="solid", color="blue", weight=3]; 7355[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7355[label="",style="solid", color="blue", weight=9]; 7355 -> 4114[label="",style="solid", color="blue", weight=3]; 7356[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7356[label="",style="solid", color="blue", weight=9]; 7356 -> 4115[label="",style="solid", color="blue", weight=3]; 7357[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7357[label="",style="solid", color="blue", weight=9]; 7357 -> 4116[label="",style="solid", color="blue", weight=3]; 7358[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7358[label="",style="solid", color="blue", weight=9]; 7358 -> 4117[label="",style="solid", color="blue", weight=3]; 7359[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7359[label="",style="solid", color="blue", weight=9]; 7359 -> 4118[label="",style="solid", color="blue", weight=3]; 7360[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7360[label="",style="solid", color="blue", weight=9]; 7360 -> 4119[label="",style="solid", color="blue", weight=3]; 7361[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7361[label="",style="solid", color="blue", weight=9]; 7361 -> 4120[label="",style="solid", color="blue", weight=3]; 7362[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7362[label="",style="solid", color="blue", weight=9]; 7362 -> 4121[label="",style="solid", color="blue", weight=3]; 7363[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7363[label="",style="solid", color="blue", weight=9]; 7363 -> 4122[label="",style="solid", color="blue", weight=3]; 7364[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7364[label="",style="solid", color="blue", weight=9]; 7364 -> 4123[label="",style="solid", color="blue", weight=3]; 7365[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4102 -> 7365[label="",style="solid", color="blue", weight=9]; 7365 -> 4124[label="",style="solid", color="blue", weight=3]; 4100[label="zwu263 || zwu264",fontsize=16,color="burlywood",shape="triangle"];7366[label="zwu263/False",fontsize=10,color="white",style="solid",shape="box"];4100 -> 7366[label="",style="solid", color="burlywood", weight=9]; 7366 -> 4125[label="",style="solid", color="burlywood", weight=3]; 7367[label="zwu263/True",fontsize=10,color="white",style="solid",shape="box"];4100 -> 7367[label="",style="solid", color="burlywood", weight=9]; 7367 -> 4126[label="",style="solid", color="burlywood", weight=3]; 4103 -> 3360[label="",style="dashed", color="red", weight=0]; 4103[label="zwu43000 == zwu44000 && zwu43001 <= zwu44001",fontsize=16,color="magenta"];4103 -> 4127[label="",style="dashed", color="magenta", weight=3]; 4103 -> 4128[label="",style="dashed", color="magenta", weight=3]; 4104[label="zwu43000 < zwu44000",fontsize=16,color="blue",shape="box"];7368[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7368[label="",style="solid", color="blue", weight=9]; 7368 -> 4129[label="",style="solid", color="blue", weight=3]; 7369[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7369[label="",style="solid", color="blue", weight=9]; 7369 -> 4130[label="",style="solid", color="blue", weight=3]; 7370[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7370[label="",style="solid", color="blue", weight=9]; 7370 -> 4131[label="",style="solid", color="blue", weight=3]; 7371[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7371[label="",style="solid", color="blue", weight=9]; 7371 -> 4132[label="",style="solid", color="blue", weight=3]; 7372[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7372[label="",style="solid", color="blue", weight=9]; 7372 -> 4133[label="",style="solid", color="blue", weight=3]; 7373[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7373[label="",style="solid", color="blue", weight=9]; 7373 -> 4134[label="",style="solid", color="blue", weight=3]; 7374[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7374[label="",style="solid", color="blue", weight=9]; 7374 -> 4135[label="",style="solid", color="blue", weight=3]; 7375[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7375[label="",style="solid", color="blue", weight=9]; 7375 -> 4136[label="",style="solid", color="blue", weight=3]; 7376[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7376[label="",style="solid", color="blue", weight=9]; 7376 -> 4137[label="",style="solid", color="blue", weight=3]; 7377[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7377[label="",style="solid", color="blue", weight=9]; 7377 -> 4138[label="",style="solid", color="blue", weight=3]; 7378[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7378[label="",style="solid", color="blue", weight=9]; 7378 -> 4139[label="",style="solid", color="blue", weight=3]; 7379[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7379[label="",style="solid", color="blue", weight=9]; 7379 -> 4140[label="",style="solid", color="blue", weight=3]; 7380[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7380[label="",style="solid", color="blue", weight=9]; 7380 -> 4141[label="",style="solid", color="blue", weight=3]; 7381[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4104 -> 7381[label="",style="solid", color="blue", weight=9]; 7381 -> 4142[label="",style="solid", color="blue", weight=3]; 4041[label="compare (Integer zwu43000) (Integer zwu44000)",fontsize=16,color="black",shape="box"];4041 -> 4143[label="",style="solid", color="black", weight=3]; 4042[label="compare (zwu43000 : zwu43001) (zwu44000 : zwu44001)",fontsize=16,color="black",shape="box"];4042 -> 4144[label="",style="solid", color="black", weight=3]; 4043[label="compare (zwu43000 : zwu43001) []",fontsize=16,color="black",shape="box"];4043 -> 4145[label="",style="solid", color="black", weight=3]; 4044[label="compare [] (zwu44000 : zwu44001)",fontsize=16,color="black",shape="box"];4044 -> 4146[label="",style="solid", color="black", weight=3]; 4045[label="compare [] []",fontsize=16,color="black",shape="box"];4045 -> 4147[label="",style="solid", color="black", weight=3]; 4046 -> 3516[label="",style="dashed", color="red", weight=0]; 4046[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4046 -> 4148[label="",style="dashed", color="magenta", weight=3]; 4046 -> 4149[label="",style="dashed", color="magenta", weight=3]; 4047 -> 3517[label="",style="dashed", color="red", weight=0]; 4047[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4047 -> 4150[label="",style="dashed", color="magenta", weight=3]; 4047 -> 4151[label="",style="dashed", color="magenta", weight=3]; 4048 -> 3518[label="",style="dashed", color="red", weight=0]; 4048[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4048 -> 4152[label="",style="dashed", color="magenta", weight=3]; 4048 -> 4153[label="",style="dashed", color="magenta", weight=3]; 4049 -> 3519[label="",style="dashed", color="red", weight=0]; 4049[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4049 -> 4154[label="",style="dashed", color="magenta", weight=3]; 4049 -> 4155[label="",style="dashed", color="magenta", weight=3]; 4050 -> 3520[label="",style="dashed", color="red", weight=0]; 4050[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4050 -> 4156[label="",style="dashed", color="magenta", weight=3]; 4050 -> 4157[label="",style="dashed", color="magenta", weight=3]; 4051 -> 3521[label="",style="dashed", color="red", weight=0]; 4051[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4051 -> 4158[label="",style="dashed", color="magenta", weight=3]; 4051 -> 4159[label="",style="dashed", color="magenta", weight=3]; 4052 -> 3522[label="",style="dashed", color="red", weight=0]; 4052[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4052 -> 4160[label="",style="dashed", color="magenta", weight=3]; 4052 -> 4161[label="",style="dashed", color="magenta", weight=3]; 4053 -> 3523[label="",style="dashed", color="red", weight=0]; 4053[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4053 -> 4162[label="",style="dashed", color="magenta", weight=3]; 4053 -> 4163[label="",style="dashed", color="magenta", weight=3]; 4054 -> 3524[label="",style="dashed", color="red", weight=0]; 4054[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4054 -> 4164[label="",style="dashed", color="magenta", weight=3]; 4054 -> 4165[label="",style="dashed", color="magenta", weight=3]; 4055 -> 3525[label="",style="dashed", color="red", weight=0]; 4055[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4055 -> 4166[label="",style="dashed", color="magenta", weight=3]; 4055 -> 4167[label="",style="dashed", color="magenta", weight=3]; 4056 -> 3526[label="",style="dashed", color="red", weight=0]; 4056[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4056 -> 4168[label="",style="dashed", color="magenta", weight=3]; 4056 -> 4169[label="",style="dashed", color="magenta", weight=3]; 4057 -> 3527[label="",style="dashed", color="red", weight=0]; 4057[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4057 -> 4170[label="",style="dashed", color="magenta", weight=3]; 4057 -> 4171[label="",style="dashed", color="magenta", weight=3]; 4058 -> 3528[label="",style="dashed", color="red", weight=0]; 4058[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4058 -> 4172[label="",style="dashed", color="magenta", weight=3]; 4058 -> 4173[label="",style="dashed", color="magenta", weight=3]; 4059 -> 3529[label="",style="dashed", color="red", weight=0]; 4059[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4059 -> 4174[label="",style="dashed", color="magenta", weight=3]; 4059 -> 4175[label="",style="dashed", color="magenta", weight=3]; 1884[label="primCmpInt zwu43 zwu44",fontsize=16,color="burlywood",shape="triangle"];7382[label="zwu43/Pos zwu430",fontsize=10,color="white",style="solid",shape="box"];1884 -> 7382[label="",style="solid", color="burlywood", weight=9]; 7382 -> 2119[label="",style="solid", color="burlywood", weight=3]; 7383[label="zwu43/Neg zwu430",fontsize=10,color="white",style="solid",shape="box"];1884 -> 7383[label="",style="solid", color="burlywood", weight=9]; 7383 -> 2120[label="",style="solid", color="burlywood", weight=3]; 4060[label="compare (zwu43000 :% zwu43001) (zwu44000 :% zwu44001)",fontsize=16,color="black",shape="box"];4060 -> 4176[label="",style="solid", color="black", weight=3]; 4061[label="compare () ()",fontsize=16,color="black",shape="box"];4061 -> 4177[label="",style="solid", color="black", weight=3]; 4062[label="primCmpDouble (Double zwu43000 zwu43001) zwu4400",fontsize=16,color="burlywood",shape="box"];7384[label="zwu43001/Pos zwu430010",fontsize=10,color="white",style="solid",shape="box"];4062 -> 7384[label="",style="solid", color="burlywood", weight=9]; 7384 -> 4178[label="",style="solid", color="burlywood", weight=3]; 7385[label="zwu43001/Neg zwu430010",fontsize=10,color="white",style="solid",shape="box"];4062 -> 7385[label="",style="solid", color="burlywood", weight=9]; 7385 -> 4179[label="",style="solid", color="burlywood", weight=3]; 4063[label="primCmpChar (Char zwu43000) zwu4400",fontsize=16,color="burlywood",shape="box"];7386[label="zwu4400/Char zwu44000",fontsize=10,color="white",style="solid",shape="box"];4063 -> 7386[label="",style="solid", color="burlywood", weight=9]; 7386 -> 4180[label="",style="solid", color="burlywood", weight=3]; 4064 -> 3516[label="",style="dashed", color="red", weight=0]; 4064[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4064 -> 4181[label="",style="dashed", color="magenta", weight=3]; 4064 -> 4182[label="",style="dashed", color="magenta", weight=3]; 4065 -> 3517[label="",style="dashed", color="red", weight=0]; 4065[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4065 -> 4183[label="",style="dashed", color="magenta", weight=3]; 4065 -> 4184[label="",style="dashed", color="magenta", weight=3]; 4066 -> 3518[label="",style="dashed", color="red", weight=0]; 4066[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4066 -> 4185[label="",style="dashed", color="magenta", weight=3]; 4066 -> 4186[label="",style="dashed", color="magenta", weight=3]; 4067 -> 3519[label="",style="dashed", color="red", weight=0]; 4067[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4067 -> 4187[label="",style="dashed", color="magenta", weight=3]; 4067 -> 4188[label="",style="dashed", color="magenta", weight=3]; 4068 -> 3520[label="",style="dashed", color="red", weight=0]; 4068[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4068 -> 4189[label="",style="dashed", color="magenta", weight=3]; 4068 -> 4190[label="",style="dashed", color="magenta", weight=3]; 4069 -> 3521[label="",style="dashed", color="red", weight=0]; 4069[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4069 -> 4191[label="",style="dashed", color="magenta", weight=3]; 4069 -> 4192[label="",style="dashed", color="magenta", weight=3]; 4070 -> 3522[label="",style="dashed", color="red", weight=0]; 4070[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4070 -> 4193[label="",style="dashed", color="magenta", weight=3]; 4070 -> 4194[label="",style="dashed", color="magenta", weight=3]; 4071 -> 3523[label="",style="dashed", color="red", weight=0]; 4071[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4071 -> 4195[label="",style="dashed", color="magenta", weight=3]; 4071 -> 4196[label="",style="dashed", color="magenta", weight=3]; 4072 -> 3524[label="",style="dashed", color="red", weight=0]; 4072[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4072 -> 4197[label="",style="dashed", color="magenta", weight=3]; 4072 -> 4198[label="",style="dashed", color="magenta", weight=3]; 4073 -> 3525[label="",style="dashed", color="red", weight=0]; 4073[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4073 -> 4199[label="",style="dashed", color="magenta", weight=3]; 4073 -> 4200[label="",style="dashed", color="magenta", weight=3]; 4074 -> 3526[label="",style="dashed", color="red", weight=0]; 4074[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4074 -> 4201[label="",style="dashed", color="magenta", weight=3]; 4074 -> 4202[label="",style="dashed", color="magenta", weight=3]; 4075 -> 3527[label="",style="dashed", color="red", weight=0]; 4075[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4075 -> 4203[label="",style="dashed", color="magenta", weight=3]; 4075 -> 4204[label="",style="dashed", color="magenta", weight=3]; 4076 -> 3528[label="",style="dashed", color="red", weight=0]; 4076[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4076 -> 4205[label="",style="dashed", color="magenta", weight=3]; 4076 -> 4206[label="",style="dashed", color="magenta", weight=3]; 4077 -> 3529[label="",style="dashed", color="red", weight=0]; 4077[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4077 -> 4207[label="",style="dashed", color="magenta", weight=3]; 4077 -> 4208[label="",style="dashed", color="magenta", weight=3]; 4078 -> 3516[label="",style="dashed", color="red", weight=0]; 4078[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4078 -> 4209[label="",style="dashed", color="magenta", weight=3]; 4078 -> 4210[label="",style="dashed", color="magenta", weight=3]; 4079 -> 3517[label="",style="dashed", color="red", weight=0]; 4079[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4079 -> 4211[label="",style="dashed", color="magenta", weight=3]; 4079 -> 4212[label="",style="dashed", color="magenta", weight=3]; 4080 -> 3518[label="",style="dashed", color="red", weight=0]; 4080[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4080 -> 4213[label="",style="dashed", color="magenta", weight=3]; 4080 -> 4214[label="",style="dashed", color="magenta", weight=3]; 4081 -> 3519[label="",style="dashed", color="red", weight=0]; 4081[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4081 -> 4215[label="",style="dashed", color="magenta", weight=3]; 4081 -> 4216[label="",style="dashed", color="magenta", weight=3]; 4082 -> 3520[label="",style="dashed", color="red", weight=0]; 4082[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4082 -> 4217[label="",style="dashed", color="magenta", weight=3]; 4082 -> 4218[label="",style="dashed", color="magenta", weight=3]; 4083 -> 3521[label="",style="dashed", color="red", weight=0]; 4083[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4083 -> 4219[label="",style="dashed", color="magenta", weight=3]; 4083 -> 4220[label="",style="dashed", color="magenta", weight=3]; 4084 -> 3522[label="",style="dashed", color="red", weight=0]; 4084[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4084 -> 4221[label="",style="dashed", color="magenta", weight=3]; 4084 -> 4222[label="",style="dashed", color="magenta", weight=3]; 4085 -> 3523[label="",style="dashed", color="red", weight=0]; 4085[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4085 -> 4223[label="",style="dashed", color="magenta", weight=3]; 4085 -> 4224[label="",style="dashed", color="magenta", weight=3]; 4086 -> 3524[label="",style="dashed", color="red", weight=0]; 4086[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4086 -> 4225[label="",style="dashed", color="magenta", weight=3]; 4086 -> 4226[label="",style="dashed", color="magenta", weight=3]; 4087 -> 3525[label="",style="dashed", color="red", weight=0]; 4087[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4087 -> 4227[label="",style="dashed", color="magenta", weight=3]; 4087 -> 4228[label="",style="dashed", color="magenta", weight=3]; 4088 -> 3526[label="",style="dashed", color="red", weight=0]; 4088[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4088 -> 4229[label="",style="dashed", color="magenta", weight=3]; 4088 -> 4230[label="",style="dashed", color="magenta", weight=3]; 4089 -> 3527[label="",style="dashed", color="red", weight=0]; 4089[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4089 -> 4231[label="",style="dashed", color="magenta", weight=3]; 4089 -> 4232[label="",style="dashed", color="magenta", weight=3]; 4090 -> 3528[label="",style="dashed", color="red", weight=0]; 4090[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4090 -> 4233[label="",style="dashed", color="magenta", weight=3]; 4090 -> 4234[label="",style="dashed", color="magenta", weight=3]; 4091 -> 3529[label="",style="dashed", color="red", weight=0]; 4091[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];4091 -> 4235[label="",style="dashed", color="magenta", weight=3]; 4091 -> 4236[label="",style="dashed", color="magenta", weight=3]; 2009 -> 1884[label="",style="dashed", color="red", weight=0]; 2009[label="primCmpInt (primPlusInt (Pos Zero) (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 FiniteMap.EmptyFM)) (Pos (Succ (Succ Zero)))",fontsize=16,color="magenta"];2009 -> 2198[label="",style="dashed", color="magenta", weight=3]; 2009 -> 2199[label="",style="dashed", color="magenta", weight=3]; 2010 -> 1884[label="",style="dashed", color="red", weight=0]; 2010[label="primCmpInt (primPlusInt zwu512 (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514))) (Pos (Succ (Succ Zero)))",fontsize=16,color="magenta"];2010 -> 2200[label="",style="dashed", color="magenta", weight=3]; 2010 -> 2201[label="",style="dashed", color="magenta", weight=3]; 2224 -> 1820[label="",style="dashed", color="red", weight=0]; 2224[label="FiniteMap.sizeFM zwu51",fontsize=16,color="magenta"];2011[label="FiniteMap.sizeFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];2011 -> 2202[label="",style="solid", color="black", weight=3]; 2012[label="FiniteMap.sizeFM (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514)",fontsize=16,color="black",shape="box"];2012 -> 2203[label="",style="solid", color="black", weight=3]; 2408[label="zwu177",fontsize=16,color="green",shape="box"];2409[label="zwu176",fontsize=16,color="green",shape="box"];2214 -> 1012[label="",style="dashed", color="red", weight=0]; 2214[label="FiniteMap.sIZE_RATIO * FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51",fontsize=16,color="magenta"];2214 -> 2222[label="",style="dashed", color="magenta", weight=3]; 2214 -> 2223[label="",style="dashed", color="magenta", weight=3]; 2220[label="FiniteMap.mkBalBranch6MkBalBranch3 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 False",fontsize=16,color="black",shape="box"];2220 -> 2398[label="",style="solid", color="black", weight=3]; 2221[label="FiniteMap.mkBalBranch6MkBalBranch3 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 True",fontsize=16,color="black",shape="box"];2221 -> 2399[label="",style="solid", color="black", weight=3]; 2018[label="error []",fontsize=16,color="red",shape="box"];2019[label="FiniteMap.mkBalBranch6MkBalBranch02 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644)",fontsize=16,color="black",shape="box"];2019 -> 2225[label="",style="solid", color="black", weight=3]; 4937[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size zwu276 zwu273 zwu275 + FiniteMap.mkBranchRight_size zwu276 zwu273 zwu275",fontsize=16,color="black",shape="box"];4937 -> 4940[label="",style="solid", color="black", weight=3]; 1829[label="Pos (primMulNat zwu40010 zwu60000)",fontsize=16,color="green",shape="box"];1829 -> 2021[label="",style="dashed", color="green", weight=3]; 1830[label="Neg (primMulNat zwu40010 zwu60000)",fontsize=16,color="green",shape="box"];1830 -> 2022[label="",style="dashed", color="green", weight=3]; 1831[label="Neg (primMulNat zwu40010 zwu60000)",fontsize=16,color="green",shape="box"];1831 -> 2023[label="",style="dashed", color="green", weight=3]; 1832[label="Pos (primMulNat zwu40010 zwu60000)",fontsize=16,color="green",shape="box"];1832 -> 2024[label="",style="dashed", color="green", weight=3]; 2125[label="Pos (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))) (Succ zwu7200))",fontsize=16,color="green",shape="box"];2125 -> 2377[label="",style="dashed", color="green", weight=3]; 2126[label="zwu154",fontsize=16,color="green",shape="box"];2127[label="FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2128[label="Pos (Succ zwu14700)",fontsize=16,color="green",shape="box"];2129[label="zwu164",fontsize=16,color="green",shape="box"];2130[label="FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2131[label="FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2132[label="Neg (Succ zwu14700)",fontsize=16,color="green",shape="box"];2133[label="zwu165",fontsize=16,color="green",shape="box"];2134[label="FiniteMap.Branch zwu70 zwu71 (Pos (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2136[label="FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2137[label="FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2138[label="FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2139[label="FiniteMap.Branch zwu70 zwu71 (Pos Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2141[label="Neg (primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))) (Succ zwu7200))",fontsize=16,color="green",shape="box"];2141 -> 2380[label="",style="dashed", color="green", weight=3]; 2142[label="zwu155",fontsize=16,color="green",shape="box"];2143[label="FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2144[label="FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2145[label="FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2146[label="FiniteMap.Branch zwu70 zwu71 (Neg (Succ zwu7200)) zwu73 zwu74",fontsize=16,color="green",shape="box"];2148[label="FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2149[label="FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2150[label="FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2151[label="FiniteMap.Branch zwu70 zwu71 (Neg Zero) zwu73 zwu74",fontsize=16,color="green",shape="box"];2153[label="Pos (Succ zwu13900)",fontsize=16,color="green",shape="box"];2154 -> 1820[label="",style="dashed", color="red", weight=0]; 2154[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2154 -> 2383[label="",style="dashed", color="magenta", weight=3]; 2155[label="Pos Zero",fontsize=16,color="green",shape="box"];2156 -> 1820[label="",style="dashed", color="red", weight=0]; 2156[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2156 -> 2384[label="",style="dashed", color="magenta", weight=3]; 2157[label="Neg (Succ zwu13900)",fontsize=16,color="green",shape="box"];2158 -> 1820[label="",style="dashed", color="red", weight=0]; 2158[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2158 -> 2385[label="",style="dashed", color="magenta", weight=3]; 2159[label="Neg Zero",fontsize=16,color="green",shape="box"];2160 -> 1820[label="",style="dashed", color="red", weight=0]; 2160[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2160 -> 2386[label="",style="dashed", color="magenta", weight=3]; 2394 -> 1820[label="",style="dashed", color="red", weight=0]; 2394[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2394 -> 2414[label="",style="dashed", color="magenta", weight=3]; 2395 -> 1820[label="",style="dashed", color="red", weight=0]; 2395[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2395 -> 2415[label="",style="dashed", color="magenta", weight=3]; 2396[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) False",fontsize=16,color="black",shape="box"];2396 -> 2416[label="",style="solid", color="black", weight=3]; 2397[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2397 -> 2417[label="",style="solid", color="black", weight=3]; 2164[label="Pos (Succ zwu14000)",fontsize=16,color="green",shape="box"];2165 -> 1820[label="",style="dashed", color="red", weight=0]; 2165[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2165 -> 2400[label="",style="dashed", color="magenta", weight=3]; 2166[label="Pos Zero",fontsize=16,color="green",shape="box"];2167 -> 1820[label="",style="dashed", color="red", weight=0]; 2167[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2167 -> 2401[label="",style="dashed", color="magenta", weight=3]; 2168[label="Neg (Succ zwu14000)",fontsize=16,color="green",shape="box"];2169 -> 1820[label="",style="dashed", color="red", weight=0]; 2169[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2169 -> 2402[label="",style="dashed", color="magenta", weight=3]; 2170[label="Neg Zero",fontsize=16,color="green",shape="box"];2171 -> 1820[label="",style="dashed", color="red", weight=0]; 2171[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2171 -> 2403[label="",style="dashed", color="magenta", weight=3]; 2410 -> 1820[label="",style="dashed", color="red", weight=0]; 2410[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2410 -> 2430[label="",style="dashed", color="magenta", weight=3]; 2411 -> 1820[label="",style="dashed", color="red", weight=0]; 2411[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2411 -> 2431[label="",style="dashed", color="magenta", weight=3]; 2412[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) False",fontsize=16,color="black",shape="box"];2412 -> 2432[label="",style="solid", color="black", weight=3]; 2413[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2413 -> 2433[label="",style="solid", color="black", weight=3]; 2175[label="Pos (Succ zwu14100)",fontsize=16,color="green",shape="box"];2176 -> 1820[label="",style="dashed", color="red", weight=0]; 2176[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2176 -> 2418[label="",style="dashed", color="magenta", weight=3]; 2177[label="Pos Zero",fontsize=16,color="green",shape="box"];2178 -> 1820[label="",style="dashed", color="red", weight=0]; 2178[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2178 -> 2419[label="",style="dashed", color="magenta", weight=3]; 2179[label="Neg (Succ zwu14100)",fontsize=16,color="green",shape="box"];2180 -> 1820[label="",style="dashed", color="red", weight=0]; 2180[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2180 -> 2420[label="",style="dashed", color="magenta", weight=3]; 2181[label="Neg Zero",fontsize=16,color="green",shape="box"];2182 -> 1820[label="",style="dashed", color="red", weight=0]; 2182[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2182 -> 2421[label="",style="dashed", color="magenta", weight=3]; 2426 -> 1820[label="",style="dashed", color="red", weight=0]; 2426[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="magenta"];2426 -> 2446[label="",style="dashed", color="magenta", weight=3]; 2427 -> 1820[label="",style="dashed", color="red", weight=0]; 2427[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2427 -> 2447[label="",style="dashed", color="magenta", weight=3]; 2428[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) False",fontsize=16,color="black",shape="box"];2428 -> 2448[label="",style="solid", color="black", weight=3]; 2429[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2429 -> 2449[label="",style="solid", color="black", weight=3]; 2186[label="Pos (Succ zwu14200)",fontsize=16,color="green",shape="box"];2187 -> 1820[label="",style="dashed", color="red", weight=0]; 2187[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2187 -> 2434[label="",style="dashed", color="magenta", weight=3]; 2188[label="Pos Zero",fontsize=16,color="green",shape="box"];2189 -> 1820[label="",style="dashed", color="red", weight=0]; 2189[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2189 -> 2435[label="",style="dashed", color="magenta", weight=3]; 2190[label="Neg (Succ zwu14200)",fontsize=16,color="green",shape="box"];2191 -> 1820[label="",style="dashed", color="red", weight=0]; 2191[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2191 -> 2436[label="",style="dashed", color="magenta", weight=3]; 2192[label="Neg Zero",fontsize=16,color="green",shape="box"];2193 -> 1820[label="",style="dashed", color="red", weight=0]; 2193[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2193 -> 2437[label="",style="dashed", color="magenta", weight=3]; 2442 -> 1820[label="",style="dashed", color="red", weight=0]; 2442[label="FiniteMap.sizeFM (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="magenta"];2442 -> 2453[label="",style="dashed", color="magenta", weight=3]; 2443 -> 1820[label="",style="dashed", color="red", weight=0]; 2443[label="FiniteMap.sizeFM (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2443 -> 2454[label="",style="dashed", color="magenta", weight=3]; 2444[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) False",fontsize=16,color="black",shape="box"];2444 -> 2455[label="",style="solid", color="black", weight=3]; 2445[label="FiniteMap.glueBal2GlueBal1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2445 -> 2456[label="",style="solid", color="black", weight=3]; 4092[label="primCmpFloat (Float zwu43000 (Pos zwu430010)) zwu4400",fontsize=16,color="burlywood",shape="box"];7387[label="zwu4400/Float zwu44000 zwu44001",fontsize=10,color="white",style="solid",shape="box"];4092 -> 7387[label="",style="solid", color="burlywood", weight=9]; 7387 -> 4237[label="",style="solid", color="burlywood", weight=3]; 4093[label="primCmpFloat (Float zwu43000 (Neg zwu430010)) zwu4400",fontsize=16,color="burlywood",shape="box"];7388[label="zwu4400/Float zwu44000 zwu44001",fontsize=10,color="white",style="solid",shape="box"];4093 -> 7388[label="",style="solid", color="burlywood", weight=9]; 7388 -> 4238[label="",style="solid", color="burlywood", weight=3]; 4094[label="GT",fontsize=16,color="green",shape="box"];4095[label="zwu246",fontsize=16,color="green",shape="box"];4096[label="not False",fontsize=16,color="black",shape="box"];4096 -> 4239[label="",style="solid", color="black", weight=3]; 4097[label="not True",fontsize=16,color="black",shape="box"];4097 -> 4240[label="",style="solid", color="black", weight=3]; 4109[label="zwu43000 == zwu44000",fontsize=16,color="blue",shape="box"];7389[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7389[label="",style="solid", color="blue", weight=9]; 7389 -> 4287[label="",style="solid", color="blue", weight=3]; 7390[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7390[label="",style="solid", color="blue", weight=9]; 7390 -> 4288[label="",style="solid", color="blue", weight=3]; 7391[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7391[label="",style="solid", color="blue", weight=9]; 7391 -> 4289[label="",style="solid", color="blue", weight=3]; 7392[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7392[label="",style="solid", color="blue", weight=9]; 7392 -> 4290[label="",style="solid", color="blue", weight=3]; 7393[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7393[label="",style="solid", color="blue", weight=9]; 7393 -> 4291[label="",style="solid", color="blue", weight=3]; 7394[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7394[label="",style="solid", color="blue", weight=9]; 7394 -> 4292[label="",style="solid", color="blue", weight=3]; 7395[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7395[label="",style="solid", color="blue", weight=9]; 7395 -> 4293[label="",style="solid", color="blue", weight=3]; 7396[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7396[label="",style="solid", color="blue", weight=9]; 7396 -> 4294[label="",style="solid", color="blue", weight=3]; 7397[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7397[label="",style="solid", color="blue", weight=9]; 7397 -> 4295[label="",style="solid", color="blue", weight=3]; 7398[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7398[label="",style="solid", color="blue", weight=9]; 7398 -> 4296[label="",style="solid", color="blue", weight=3]; 7399[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7399[label="",style="solid", color="blue", weight=9]; 7399 -> 4297[label="",style="solid", color="blue", weight=3]; 7400[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7400[label="",style="solid", color="blue", weight=9]; 7400 -> 4298[label="",style="solid", color="blue", weight=3]; 7401[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7401[label="",style="solid", color="blue", weight=9]; 7401 -> 4299[label="",style="solid", color="blue", weight=3]; 7402[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4109 -> 7402[label="",style="solid", color="blue", weight=9]; 7402 -> 4300[label="",style="solid", color="blue", weight=3]; 4110 -> 4100[label="",style="dashed", color="red", weight=0]; 4110[label="zwu43001 < zwu44001 || zwu43001 == zwu44001 && zwu43002 <= zwu44002",fontsize=16,color="magenta"];4110 -> 4301[label="",style="dashed", color="magenta", weight=3]; 4110 -> 4302[label="",style="dashed", color="magenta", weight=3]; 4111[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4111 -> 4303[label="",style="solid", color="black", weight=3]; 4112[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4112 -> 4304[label="",style="solid", color="black", weight=3]; 4113[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4113 -> 4305[label="",style="solid", color="black", weight=3]; 4114[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4114 -> 4306[label="",style="solid", color="black", weight=3]; 4115[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4115 -> 4307[label="",style="solid", color="black", weight=3]; 4116[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4116 -> 4308[label="",style="solid", color="black", weight=3]; 4117[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4117 -> 4309[label="",style="solid", color="black", weight=3]; 4118[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4118 -> 4310[label="",style="solid", color="black", weight=3]; 4119 -> 1855[label="",style="dashed", color="red", weight=0]; 4119[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4119 -> 4311[label="",style="dashed", color="magenta", weight=3]; 4119 -> 4312[label="",style="dashed", color="magenta", weight=3]; 4120[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4120 -> 4313[label="",style="solid", color="black", weight=3]; 4121[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4121 -> 4314[label="",style="solid", color="black", weight=3]; 4122[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4122 -> 4315[label="",style="solid", color="black", weight=3]; 4123[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4123 -> 4316[label="",style="solid", color="black", weight=3]; 4124[label="zwu43000 < zwu44000",fontsize=16,color="black",shape="triangle"];4124 -> 4317[label="",style="solid", color="black", weight=3]; 4125[label="False || zwu264",fontsize=16,color="black",shape="box"];4125 -> 4318[label="",style="solid", color="black", weight=3]; 4126[label="True || zwu264",fontsize=16,color="black",shape="box"];4126 -> 4319[label="",style="solid", color="black", weight=3]; 4127[label="zwu43000 == zwu44000",fontsize=16,color="blue",shape="box"];7403[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7403[label="",style="solid", color="blue", weight=9]; 7403 -> 4320[label="",style="solid", color="blue", weight=3]; 7404[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7404[label="",style="solid", color="blue", weight=9]; 7404 -> 4321[label="",style="solid", color="blue", weight=3]; 7405[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7405[label="",style="solid", color="blue", weight=9]; 7405 -> 4322[label="",style="solid", color="blue", weight=3]; 7406[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7406[label="",style="solid", color="blue", weight=9]; 7406 -> 4323[label="",style="solid", color="blue", weight=3]; 7407[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7407[label="",style="solid", color="blue", weight=9]; 7407 -> 4324[label="",style="solid", color="blue", weight=3]; 7408[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7408[label="",style="solid", color="blue", weight=9]; 7408 -> 4325[label="",style="solid", color="blue", weight=3]; 7409[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7409[label="",style="solid", color="blue", weight=9]; 7409 -> 4326[label="",style="solid", color="blue", weight=3]; 7410[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7410[label="",style="solid", color="blue", weight=9]; 7410 -> 4327[label="",style="solid", color="blue", weight=3]; 7411[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7411[label="",style="solid", color="blue", weight=9]; 7411 -> 4328[label="",style="solid", color="blue", weight=3]; 7412[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7412[label="",style="solid", color="blue", weight=9]; 7412 -> 4329[label="",style="solid", color="blue", weight=3]; 7413[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7413[label="",style="solid", color="blue", weight=9]; 7413 -> 4330[label="",style="solid", color="blue", weight=3]; 7414[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7414[label="",style="solid", color="blue", weight=9]; 7414 -> 4331[label="",style="solid", color="blue", weight=3]; 7415[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7415[label="",style="solid", color="blue", weight=9]; 7415 -> 4332[label="",style="solid", color="blue", weight=3]; 7416[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4127 -> 7416[label="",style="solid", color="blue", weight=9]; 7416 -> 4333[label="",style="solid", color="blue", weight=3]; 4128[label="zwu43001 <= zwu44001",fontsize=16,color="blue",shape="box"];7417[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7417[label="",style="solid", color="blue", weight=9]; 7417 -> 4334[label="",style="solid", color="blue", weight=3]; 7418[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7418[label="",style="solid", color="blue", weight=9]; 7418 -> 4335[label="",style="solid", color="blue", weight=3]; 7419[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7419[label="",style="solid", color="blue", weight=9]; 7419 -> 4336[label="",style="solid", color="blue", weight=3]; 7420[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7420[label="",style="solid", color="blue", weight=9]; 7420 -> 4337[label="",style="solid", color="blue", weight=3]; 7421[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7421[label="",style="solid", color="blue", weight=9]; 7421 -> 4338[label="",style="solid", color="blue", weight=3]; 7422[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7422[label="",style="solid", color="blue", weight=9]; 7422 -> 4339[label="",style="solid", color="blue", weight=3]; 7423[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7423[label="",style="solid", color="blue", weight=9]; 7423 -> 4340[label="",style="solid", color="blue", weight=3]; 7424[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7424[label="",style="solid", color="blue", weight=9]; 7424 -> 4341[label="",style="solid", color="blue", weight=3]; 7425[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7425[label="",style="solid", color="blue", weight=9]; 7425 -> 4342[label="",style="solid", color="blue", weight=3]; 7426[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7426[label="",style="solid", color="blue", weight=9]; 7426 -> 4343[label="",style="solid", color="blue", weight=3]; 7427[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7427[label="",style="solid", color="blue", weight=9]; 7427 -> 4344[label="",style="solid", color="blue", weight=3]; 7428[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7428[label="",style="solid", color="blue", weight=9]; 7428 -> 4345[label="",style="solid", color="blue", weight=3]; 7429[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7429[label="",style="solid", color="blue", weight=9]; 7429 -> 4346[label="",style="solid", color="blue", weight=3]; 7430[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4128 -> 7430[label="",style="solid", color="blue", weight=9]; 7430 -> 4347[label="",style="solid", color="blue", weight=3]; 4129 -> 4111[label="",style="dashed", color="red", weight=0]; 4129[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4129 -> 4348[label="",style="dashed", color="magenta", weight=3]; 4129 -> 4349[label="",style="dashed", color="magenta", weight=3]; 4130 -> 4112[label="",style="dashed", color="red", weight=0]; 4130[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4130 -> 4350[label="",style="dashed", color="magenta", weight=3]; 4130 -> 4351[label="",style="dashed", color="magenta", weight=3]; 4131 -> 4113[label="",style="dashed", color="red", weight=0]; 4131[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4131 -> 4352[label="",style="dashed", color="magenta", weight=3]; 4131 -> 4353[label="",style="dashed", color="magenta", weight=3]; 4132 -> 4114[label="",style="dashed", color="red", weight=0]; 4132[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4132 -> 4354[label="",style="dashed", color="magenta", weight=3]; 4132 -> 4355[label="",style="dashed", color="magenta", weight=3]; 4133 -> 4115[label="",style="dashed", color="red", weight=0]; 4133[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4133 -> 4356[label="",style="dashed", color="magenta", weight=3]; 4133 -> 4357[label="",style="dashed", color="magenta", weight=3]; 4134 -> 4116[label="",style="dashed", color="red", weight=0]; 4134[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4134 -> 4358[label="",style="dashed", color="magenta", weight=3]; 4134 -> 4359[label="",style="dashed", color="magenta", weight=3]; 4135 -> 4117[label="",style="dashed", color="red", weight=0]; 4135[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4135 -> 4360[label="",style="dashed", color="magenta", weight=3]; 4135 -> 4361[label="",style="dashed", color="magenta", weight=3]; 4136 -> 4118[label="",style="dashed", color="red", weight=0]; 4136[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4136 -> 4362[label="",style="dashed", color="magenta", weight=3]; 4136 -> 4363[label="",style="dashed", color="magenta", weight=3]; 4137 -> 1855[label="",style="dashed", color="red", weight=0]; 4137[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4137 -> 4364[label="",style="dashed", color="magenta", weight=3]; 4137 -> 4365[label="",style="dashed", color="magenta", weight=3]; 4138 -> 4120[label="",style="dashed", color="red", weight=0]; 4138[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4138 -> 4366[label="",style="dashed", color="magenta", weight=3]; 4138 -> 4367[label="",style="dashed", color="magenta", weight=3]; 4139 -> 4121[label="",style="dashed", color="red", weight=0]; 4139[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4139 -> 4368[label="",style="dashed", color="magenta", weight=3]; 4139 -> 4369[label="",style="dashed", color="magenta", weight=3]; 4140 -> 4122[label="",style="dashed", color="red", weight=0]; 4140[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4140 -> 4370[label="",style="dashed", color="magenta", weight=3]; 4140 -> 4371[label="",style="dashed", color="magenta", weight=3]; 4141 -> 4123[label="",style="dashed", color="red", weight=0]; 4141[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4141 -> 4372[label="",style="dashed", color="magenta", weight=3]; 4141 -> 4373[label="",style="dashed", color="magenta", weight=3]; 4142 -> 4124[label="",style="dashed", color="red", weight=0]; 4142[label="zwu43000 < zwu44000",fontsize=16,color="magenta"];4142 -> 4374[label="",style="dashed", color="magenta", weight=3]; 4142 -> 4375[label="",style="dashed", color="magenta", weight=3]; 4143 -> 1884[label="",style="dashed", color="red", weight=0]; 4143[label="primCmpInt zwu43000 zwu44000",fontsize=16,color="magenta"];4143 -> 4376[label="",style="dashed", color="magenta", weight=3]; 4143 -> 4377[label="",style="dashed", color="magenta", weight=3]; 4144 -> 4378[label="",style="dashed", color="red", weight=0]; 4144[label="primCompAux zwu43000 zwu44000 (compare zwu43001 zwu44001)",fontsize=16,color="magenta"];4144 -> 4379[label="",style="dashed", color="magenta", weight=3]; 4145[label="GT",fontsize=16,color="green",shape="box"];4146[label="LT",fontsize=16,color="green",shape="box"];4147[label="EQ",fontsize=16,color="green",shape="box"];4148[label="zwu44000",fontsize=16,color="green",shape="box"];4149[label="zwu43000",fontsize=16,color="green",shape="box"];4150[label="zwu44000",fontsize=16,color="green",shape="box"];4151[label="zwu43000",fontsize=16,color="green",shape="box"];4152[label="zwu44000",fontsize=16,color="green",shape="box"];4153[label="zwu43000",fontsize=16,color="green",shape="box"];4154[label="zwu44000",fontsize=16,color="green",shape="box"];4155[label="zwu43000",fontsize=16,color="green",shape="box"];4156[label="zwu44000",fontsize=16,color="green",shape="box"];4157[label="zwu43000",fontsize=16,color="green",shape="box"];4158[label="zwu44000",fontsize=16,color="green",shape="box"];4159[label="zwu43000",fontsize=16,color="green",shape="box"];4160[label="zwu44000",fontsize=16,color="green",shape="box"];4161[label="zwu43000",fontsize=16,color="green",shape="box"];4162[label="zwu44000",fontsize=16,color="green",shape="box"];4163[label="zwu43000",fontsize=16,color="green",shape="box"];4164[label="zwu44000",fontsize=16,color="green",shape="box"];4165[label="zwu43000",fontsize=16,color="green",shape="box"];4166[label="zwu44000",fontsize=16,color="green",shape="box"];4167[label="zwu43000",fontsize=16,color="green",shape="box"];4168[label="zwu44000",fontsize=16,color="green",shape="box"];4169[label="zwu43000",fontsize=16,color="green",shape="box"];4170[label="zwu44000",fontsize=16,color="green",shape="box"];4171[label="zwu43000",fontsize=16,color="green",shape="box"];4172[label="zwu44000",fontsize=16,color="green",shape="box"];4173[label="zwu43000",fontsize=16,color="green",shape="box"];4174[label="zwu44000",fontsize=16,color="green",shape="box"];4175[label="zwu43000",fontsize=16,color="green",shape="box"];2119[label="primCmpInt (Pos zwu430) zwu44",fontsize=16,color="burlywood",shape="box"];7431[label="zwu430/Succ zwu4300",fontsize=10,color="white",style="solid",shape="box"];2119 -> 7431[label="",style="solid", color="burlywood", weight=9]; 7431 -> 2368[label="",style="solid", color="burlywood", weight=3]; 7432[label="zwu430/Zero",fontsize=10,color="white",style="solid",shape="box"];2119 -> 7432[label="",style="solid", color="burlywood", weight=9]; 7432 -> 2369[label="",style="solid", color="burlywood", weight=3]; 2120[label="primCmpInt (Neg zwu430) zwu44",fontsize=16,color="burlywood",shape="box"];7433[label="zwu430/Succ zwu4300",fontsize=10,color="white",style="solid",shape="box"];2120 -> 7433[label="",style="solid", color="burlywood", weight=9]; 7433 -> 2370[label="",style="solid", color="burlywood", weight=3]; 7434[label="zwu430/Zero",fontsize=10,color="white",style="solid",shape="box"];2120 -> 7434[label="",style="solid", color="burlywood", weight=9]; 7434 -> 2371[label="",style="solid", color="burlywood", weight=3]; 4176[label="compare (zwu43000 * zwu44001) (zwu44000 * zwu43001)",fontsize=16,color="blue",shape="box"];7435[label="compare :: Integer -> Integer -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4176 -> 7435[label="",style="solid", color="blue", weight=9]; 7435 -> 4380[label="",style="solid", color="blue", weight=3]; 7436[label="compare :: Int -> Int -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4176 -> 7436[label="",style="solid", color="blue", weight=9]; 7436 -> 4381[label="",style="solid", color="blue", weight=3]; 4177[label="EQ",fontsize=16,color="green",shape="box"];4178[label="primCmpDouble (Double zwu43000 (Pos zwu430010)) zwu4400",fontsize=16,color="burlywood",shape="box"];7437[label="zwu4400/Double zwu44000 zwu44001",fontsize=10,color="white",style="solid",shape="box"];4178 -> 7437[label="",style="solid", color="burlywood", weight=9]; 7437 -> 4382[label="",style="solid", color="burlywood", weight=3]; 4179[label="primCmpDouble (Double zwu43000 (Neg zwu430010)) zwu4400",fontsize=16,color="burlywood",shape="box"];7438[label="zwu4400/Double zwu44000 zwu44001",fontsize=10,color="white",style="solid",shape="box"];4179 -> 7438[label="",style="solid", color="burlywood", weight=9]; 7438 -> 4383[label="",style="solid", color="burlywood", weight=3]; 4180[label="primCmpChar (Char zwu43000) (Char zwu44000)",fontsize=16,color="black",shape="box"];4180 -> 4384[label="",style="solid", color="black", weight=3]; 4181[label="zwu44000",fontsize=16,color="green",shape="box"];4182[label="zwu43000",fontsize=16,color="green",shape="box"];4183[label="zwu44000",fontsize=16,color="green",shape="box"];4184[label="zwu43000",fontsize=16,color="green",shape="box"];4185[label="zwu44000",fontsize=16,color="green",shape="box"];4186[label="zwu43000",fontsize=16,color="green",shape="box"];4187[label="zwu44000",fontsize=16,color="green",shape="box"];4188[label="zwu43000",fontsize=16,color="green",shape="box"];4189[label="zwu44000",fontsize=16,color="green",shape="box"];4190[label="zwu43000",fontsize=16,color="green",shape="box"];4191[label="zwu44000",fontsize=16,color="green",shape="box"];4192[label="zwu43000",fontsize=16,color="green",shape="box"];4193[label="zwu44000",fontsize=16,color="green",shape="box"];4194[label="zwu43000",fontsize=16,color="green",shape="box"];4195[label="zwu44000",fontsize=16,color="green",shape="box"];4196[label="zwu43000",fontsize=16,color="green",shape="box"];4197[label="zwu44000",fontsize=16,color="green",shape="box"];4198[label="zwu43000",fontsize=16,color="green",shape="box"];4199[label="zwu44000",fontsize=16,color="green",shape="box"];4200[label="zwu43000",fontsize=16,color="green",shape="box"];4201[label="zwu44000",fontsize=16,color="green",shape="box"];4202[label="zwu43000",fontsize=16,color="green",shape="box"];4203[label="zwu44000",fontsize=16,color="green",shape="box"];4204[label="zwu43000",fontsize=16,color="green",shape="box"];4205[label="zwu44000",fontsize=16,color="green",shape="box"];4206[label="zwu43000",fontsize=16,color="green",shape="box"];4207[label="zwu44000",fontsize=16,color="green",shape="box"];4208[label="zwu43000",fontsize=16,color="green",shape="box"];4209[label="zwu44000",fontsize=16,color="green",shape="box"];4210[label="zwu43000",fontsize=16,color="green",shape="box"];4211[label="zwu44000",fontsize=16,color="green",shape="box"];4212[label="zwu43000",fontsize=16,color="green",shape="box"];4213[label="zwu44000",fontsize=16,color="green",shape="box"];4214[label="zwu43000",fontsize=16,color="green",shape="box"];4215[label="zwu44000",fontsize=16,color="green",shape="box"];4216[label="zwu43000",fontsize=16,color="green",shape="box"];4217[label="zwu44000",fontsize=16,color="green",shape="box"];4218[label="zwu43000",fontsize=16,color="green",shape="box"];4219[label="zwu44000",fontsize=16,color="green",shape="box"];4220[label="zwu43000",fontsize=16,color="green",shape="box"];4221[label="zwu44000",fontsize=16,color="green",shape="box"];4222[label="zwu43000",fontsize=16,color="green",shape="box"];4223[label="zwu44000",fontsize=16,color="green",shape="box"];4224[label="zwu43000",fontsize=16,color="green",shape="box"];4225[label="zwu44000",fontsize=16,color="green",shape="box"];4226[label="zwu43000",fontsize=16,color="green",shape="box"];4227[label="zwu44000",fontsize=16,color="green",shape="box"];4228[label="zwu43000",fontsize=16,color="green",shape="box"];4229[label="zwu44000",fontsize=16,color="green",shape="box"];4230[label="zwu43000",fontsize=16,color="green",shape="box"];4231[label="zwu44000",fontsize=16,color="green",shape="box"];4232[label="zwu43000",fontsize=16,color="green",shape="box"];4233[label="zwu44000",fontsize=16,color="green",shape="box"];4234[label="zwu43000",fontsize=16,color="green",shape="box"];4235[label="zwu44000",fontsize=16,color="green",shape="box"];4236[label="zwu43000",fontsize=16,color="green",shape="box"];2198 -> 2457[label="",style="dashed", color="red", weight=0]; 2198[label="primPlusInt (Pos Zero) (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 FiniteMap.EmptyFM)",fontsize=16,color="magenta"];2198 -> 2460[label="",style="dashed", color="magenta", weight=3]; 2198 -> 2461[label="",style="dashed", color="magenta", weight=3]; 2199[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];2200 -> 2457[label="",style="dashed", color="red", weight=0]; 2200[label="primPlusInt zwu512 (FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514))",fontsize=16,color="magenta"];2200 -> 2462[label="",style="dashed", color="magenta", weight=3]; 2201[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];2202[label="Pos Zero",fontsize=16,color="green",shape="box"];2203[label="zwu512",fontsize=16,color="green",shape="box"];2222 -> 2211[label="",style="dashed", color="red", weight=0]; 2222[label="FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 zwu51",fontsize=16,color="magenta"];2223 -> 1575[label="",style="dashed", color="red", weight=0]; 2223[label="FiniteMap.sIZE_RATIO",fontsize=16,color="magenta"];2398[label="FiniteMap.mkBalBranch6MkBalBranch2 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 otherwise",fontsize=16,color="black",shape="box"];2398 -> 2475[label="",style="solid", color="black", weight=3]; 2399[label="FiniteMap.mkBalBranch6MkBalBranch1 zwu64 zwu60 zwu61 zwu51 zwu51 zwu64 zwu51",fontsize=16,color="burlywood",shape="box"];7439[label="zwu51/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2399 -> 7439[label="",style="solid", color="burlywood", weight=9]; 7439 -> 2476[label="",style="solid", color="burlywood", weight=3]; 7440[label="zwu51/FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514",fontsize=10,color="white",style="solid",shape="box"];2399 -> 7440[label="",style="solid", color="burlywood", weight=9]; 7440 -> 2477[label="",style="solid", color="burlywood", weight=3]; 2225 -> 2478[label="",style="dashed", color="red", weight=0]; 2225[label="FiniteMap.mkBalBranch6MkBalBranch01 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu640 zwu641 zwu642 zwu643 zwu644 (FiniteMap.sizeFM zwu643 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM zwu644)",fontsize=16,color="magenta"];2225 -> 2479[label="",style="dashed", color="magenta", weight=3]; 4940 -> 2457[label="",style="dashed", color="red", weight=0]; 4940[label="primPlusInt (Pos (Succ Zero) + FiniteMap.mkBranchLeft_size zwu276 zwu273 zwu275) (FiniteMap.mkBranchRight_size zwu276 zwu273 zwu275)",fontsize=16,color="magenta"];4940 -> 4946[label="",style="dashed", color="magenta", weight=3]; 4940 -> 4947[label="",style="dashed", color="magenta", weight=3]; 2021[label="primMulNat zwu40010 zwu60000",fontsize=16,color="burlywood",shape="triangle"];7441[label="zwu40010/Succ zwu400100",fontsize=10,color="white",style="solid",shape="box"];2021 -> 7441[label="",style="solid", color="burlywood", weight=9]; 7441 -> 2227[label="",style="solid", color="burlywood", weight=3]; 7442[label="zwu40010/Zero",fontsize=10,color="white",style="solid",shape="box"];2021 -> 7442[label="",style="solid", color="burlywood", weight=9]; 7442 -> 2228[label="",style="solid", color="burlywood", weight=3]; 2022 -> 2021[label="",style="dashed", color="red", weight=0]; 2022[label="primMulNat zwu40010 zwu60000",fontsize=16,color="magenta"];2022 -> 2229[label="",style="dashed", color="magenta", weight=3]; 2023 -> 2021[label="",style="dashed", color="red", weight=0]; 2023[label="primMulNat zwu40010 zwu60000",fontsize=16,color="magenta"];2023 -> 2230[label="",style="dashed", color="magenta", weight=3]; 2024 -> 2021[label="",style="dashed", color="red", weight=0]; 2024[label="primMulNat zwu40010 zwu60000",fontsize=16,color="magenta"];2024 -> 2231[label="",style="dashed", color="magenta", weight=3]; 2024 -> 2232[label="",style="dashed", color="magenta", weight=3]; 2377 -> 2753[label="",style="dashed", color="red", weight=0]; 2377[label="primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))) (Succ zwu7200)",fontsize=16,color="magenta"];2377 -> 2754[label="",style="dashed", color="magenta", weight=3]; 2377 -> 2755[label="",style="dashed", color="magenta", weight=3]; 2380 -> 2753[label="",style="dashed", color="red", weight=0]; 2380[label="primPlusNat (Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))) (Succ zwu7200)",fontsize=16,color="magenta"];2380 -> 2756[label="",style="dashed", color="magenta", weight=3]; 2380 -> 2757[label="",style="dashed", color="magenta", weight=3]; 2383[label="FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2384[label="FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2385[label="FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2386[label="FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2414[label="FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2415[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2416[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) otherwise",fontsize=16,color="black",shape="box"];2416 -> 2587[label="",style="solid", color="black", weight=3]; 2417 -> 414[label="",style="dashed", color="red", weight=0]; 2417[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2417 -> 2588[label="",style="dashed", color="magenta", weight=3]; 2417 -> 2589[label="",style="dashed", color="magenta", weight=3]; 2417 -> 2590[label="",style="dashed", color="magenta", weight=3]; 2417 -> 2591[label="",style="dashed", color="magenta", weight=3]; 2400[label="FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2401[label="FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2402[label="FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2403[label="FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2430[label="FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2431[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2432[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) otherwise",fontsize=16,color="black",shape="box"];2432 -> 2592[label="",style="solid", color="black", weight=3]; 2433 -> 414[label="",style="dashed", color="red", weight=0]; 2433[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2433 -> 2593[label="",style="dashed", color="magenta", weight=3]; 2433 -> 2594[label="",style="dashed", color="magenta", weight=3]; 2433 -> 2595[label="",style="dashed", color="magenta", weight=3]; 2433 -> 2596[label="",style="dashed", color="magenta", weight=3]; 2418[label="FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2419[label="FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2420[label="FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2421[label="FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2446[label="FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2447[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2448[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) otherwise",fontsize=16,color="black",shape="box"];2448 -> 2597[label="",style="solid", color="black", weight=3]; 2449 -> 414[label="",style="dashed", color="red", weight=0]; 2449[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2449 -> 2598[label="",style="dashed", color="magenta", weight=3]; 2449 -> 2599[label="",style="dashed", color="magenta", weight=3]; 2449 -> 2600[label="",style="dashed", color="magenta", weight=3]; 2449 -> 2601[label="",style="dashed", color="magenta", weight=3]; 2434[label="FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2435[label="FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2436[label="FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2437[label="FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2453[label="FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2454[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2455[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) otherwise",fontsize=16,color="black",shape="box"];2455 -> 2602[label="",style="solid", color="black", weight=3]; 2456 -> 414[label="",style="dashed", color="red", weight=0]; 2456[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2456 -> 2603[label="",style="dashed", color="magenta", weight=3]; 2456 -> 2604[label="",style="dashed", color="magenta", weight=3]; 2456 -> 2605[label="",style="dashed", color="magenta", weight=3]; 2456 -> 2606[label="",style="dashed", color="magenta", weight=3]; 4237[label="primCmpFloat (Float zwu43000 (Pos zwu430010)) (Float zwu44000 zwu44001)",fontsize=16,color="burlywood",shape="box"];7443[label="zwu44001/Pos zwu440010",fontsize=10,color="white",style="solid",shape="box"];4237 -> 7443[label="",style="solid", color="burlywood", weight=9]; 7443 -> 4385[label="",style="solid", color="burlywood", weight=3]; 7444[label="zwu44001/Neg zwu440010",fontsize=10,color="white",style="solid",shape="box"];4237 -> 7444[label="",style="solid", color="burlywood", weight=9]; 7444 -> 4386[label="",style="solid", color="burlywood", weight=3]; 4238[label="primCmpFloat (Float zwu43000 (Neg zwu430010)) (Float zwu44000 zwu44001)",fontsize=16,color="burlywood",shape="box"];7445[label="zwu44001/Pos zwu440010",fontsize=10,color="white",style="solid",shape="box"];4238 -> 7445[label="",style="solid", color="burlywood", weight=9]; 7445 -> 4387[label="",style="solid", color="burlywood", weight=3]; 7446[label="zwu44001/Neg zwu440010",fontsize=10,color="white",style="solid",shape="box"];4238 -> 7446[label="",style="solid", color="burlywood", weight=9]; 7446 -> 4388[label="",style="solid", color="burlywood", weight=3]; 4239[label="True",fontsize=16,color="green",shape="box"];4240[label="False",fontsize=16,color="green",shape="box"];4287 -> 135[label="",style="dashed", color="red", weight=0]; 4287[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4287 -> 4389[label="",style="dashed", color="magenta", weight=3]; 4287 -> 4390[label="",style="dashed", color="magenta", weight=3]; 4288 -> 2818[label="",style="dashed", color="red", weight=0]; 4288[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4288 -> 4391[label="",style="dashed", color="magenta", weight=3]; 4288 -> 4392[label="",style="dashed", color="magenta", weight=3]; 4289 -> 2817[label="",style="dashed", color="red", weight=0]; 4289[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4289 -> 4393[label="",style="dashed", color="magenta", weight=3]; 4289 -> 4394[label="",style="dashed", color="magenta", weight=3]; 4290 -> 2814[label="",style="dashed", color="red", weight=0]; 4290[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4290 -> 4395[label="",style="dashed", color="magenta", weight=3]; 4290 -> 4396[label="",style="dashed", color="magenta", weight=3]; 4291 -> 2824[label="",style="dashed", color="red", weight=0]; 4291[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4291 -> 4397[label="",style="dashed", color="magenta", weight=3]; 4291 -> 4398[label="",style="dashed", color="magenta", weight=3]; 4292 -> 2821[label="",style="dashed", color="red", weight=0]; 4292[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4292 -> 4399[label="",style="dashed", color="magenta", weight=3]; 4292 -> 4400[label="",style="dashed", color="magenta", weight=3]; 4293 -> 2825[label="",style="dashed", color="red", weight=0]; 4293[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4293 -> 4401[label="",style="dashed", color="magenta", weight=3]; 4293 -> 4402[label="",style="dashed", color="magenta", weight=3]; 4294 -> 2812[label="",style="dashed", color="red", weight=0]; 4294[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4294 -> 4403[label="",style="dashed", color="magenta", weight=3]; 4294 -> 4404[label="",style="dashed", color="magenta", weight=3]; 4295 -> 2816[label="",style="dashed", color="red", weight=0]; 4295[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4295 -> 4405[label="",style="dashed", color="magenta", weight=3]; 4295 -> 4406[label="",style="dashed", color="magenta", weight=3]; 4296 -> 2813[label="",style="dashed", color="red", weight=0]; 4296[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4296 -> 4407[label="",style="dashed", color="magenta", weight=3]; 4296 -> 4408[label="",style="dashed", color="magenta", weight=3]; 4297 -> 2819[label="",style="dashed", color="red", weight=0]; 4297[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4297 -> 4409[label="",style="dashed", color="magenta", weight=3]; 4297 -> 4410[label="",style="dashed", color="magenta", weight=3]; 4298 -> 2820[label="",style="dashed", color="red", weight=0]; 4298[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4298 -> 4411[label="",style="dashed", color="magenta", weight=3]; 4298 -> 4412[label="",style="dashed", color="magenta", weight=3]; 4299 -> 2823[label="",style="dashed", color="red", weight=0]; 4299[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4299 -> 4413[label="",style="dashed", color="magenta", weight=3]; 4299 -> 4414[label="",style="dashed", color="magenta", weight=3]; 4300 -> 2815[label="",style="dashed", color="red", weight=0]; 4300[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4300 -> 4415[label="",style="dashed", color="magenta", weight=3]; 4300 -> 4416[label="",style="dashed", color="magenta", weight=3]; 4301 -> 3360[label="",style="dashed", color="red", weight=0]; 4301[label="zwu43001 == zwu44001 && zwu43002 <= zwu44002",fontsize=16,color="magenta"];4301 -> 4417[label="",style="dashed", color="magenta", weight=3]; 4301 -> 4418[label="",style="dashed", color="magenta", weight=3]; 4302[label="zwu43001 < zwu44001",fontsize=16,color="blue",shape="box"];7447[label="< :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7447[label="",style="solid", color="blue", weight=9]; 7447 -> 4419[label="",style="solid", color="blue", weight=3]; 7448[label="< :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7448[label="",style="solid", color="blue", weight=9]; 7448 -> 4420[label="",style="solid", color="blue", weight=3]; 7449[label="< :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7449[label="",style="solid", color="blue", weight=9]; 7449 -> 4421[label="",style="solid", color="blue", weight=3]; 7450[label="< :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7450[label="",style="solid", color="blue", weight=9]; 7450 -> 4422[label="",style="solid", color="blue", weight=3]; 7451[label="< :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7451[label="",style="solid", color="blue", weight=9]; 7451 -> 4423[label="",style="solid", color="blue", weight=3]; 7452[label="< :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7452[label="",style="solid", color="blue", weight=9]; 7452 -> 4424[label="",style="solid", color="blue", weight=3]; 7453[label="< :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7453[label="",style="solid", color="blue", weight=9]; 7453 -> 4425[label="",style="solid", color="blue", weight=3]; 7454[label="< :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7454[label="",style="solid", color="blue", weight=9]; 7454 -> 4426[label="",style="solid", color="blue", weight=3]; 7455[label="< :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7455[label="",style="solid", color="blue", weight=9]; 7455 -> 4427[label="",style="solid", color="blue", weight=3]; 7456[label="< :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7456[label="",style="solid", color="blue", weight=9]; 7456 -> 4428[label="",style="solid", color="blue", weight=3]; 7457[label="< :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7457[label="",style="solid", color="blue", weight=9]; 7457 -> 4429[label="",style="solid", color="blue", weight=3]; 7458[label="< :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7458[label="",style="solid", color="blue", weight=9]; 7458 -> 4430[label="",style="solid", color="blue", weight=3]; 7459[label="< :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7459[label="",style="solid", color="blue", weight=9]; 7459 -> 4431[label="",style="solid", color="blue", weight=3]; 7460[label="< :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4302 -> 7460[label="",style="solid", color="blue", weight=9]; 7460 -> 4432[label="",style="solid", color="blue", weight=3]; 4303 -> 135[label="",style="dashed", color="red", weight=0]; 4303[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4303 -> 4433[label="",style="dashed", color="magenta", weight=3]; 4303 -> 4434[label="",style="dashed", color="magenta", weight=3]; 4304 -> 135[label="",style="dashed", color="red", weight=0]; 4304[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4304 -> 4435[label="",style="dashed", color="magenta", weight=3]; 4304 -> 4436[label="",style="dashed", color="magenta", weight=3]; 4305 -> 135[label="",style="dashed", color="red", weight=0]; 4305[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4305 -> 4437[label="",style="dashed", color="magenta", weight=3]; 4305 -> 4438[label="",style="dashed", color="magenta", weight=3]; 4306 -> 135[label="",style="dashed", color="red", weight=0]; 4306[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4306 -> 4439[label="",style="dashed", color="magenta", weight=3]; 4306 -> 4440[label="",style="dashed", color="magenta", weight=3]; 4307 -> 135[label="",style="dashed", color="red", weight=0]; 4307[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4307 -> 4441[label="",style="dashed", color="magenta", weight=3]; 4307 -> 4442[label="",style="dashed", color="magenta", weight=3]; 4308 -> 135[label="",style="dashed", color="red", weight=0]; 4308[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4308 -> 4443[label="",style="dashed", color="magenta", weight=3]; 4308 -> 4444[label="",style="dashed", color="magenta", weight=3]; 4309 -> 135[label="",style="dashed", color="red", weight=0]; 4309[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4309 -> 4445[label="",style="dashed", color="magenta", weight=3]; 4309 -> 4446[label="",style="dashed", color="magenta", weight=3]; 4310 -> 135[label="",style="dashed", color="red", weight=0]; 4310[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4310 -> 4447[label="",style="dashed", color="magenta", weight=3]; 4310 -> 4448[label="",style="dashed", color="magenta", weight=3]; 4311[label="zwu43000",fontsize=16,color="green",shape="box"];4312[label="zwu44000",fontsize=16,color="green",shape="box"];1855[label="zwu430 < zwu440",fontsize=16,color="black",shape="triangle"];1855 -> 2034[label="",style="solid", color="black", weight=3]; 4313 -> 135[label="",style="dashed", color="red", weight=0]; 4313[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4313 -> 4449[label="",style="dashed", color="magenta", weight=3]; 4313 -> 4450[label="",style="dashed", color="magenta", weight=3]; 4314 -> 135[label="",style="dashed", color="red", weight=0]; 4314[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4314 -> 4451[label="",style="dashed", color="magenta", weight=3]; 4314 -> 4452[label="",style="dashed", color="magenta", weight=3]; 4315 -> 135[label="",style="dashed", color="red", weight=0]; 4315[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4315 -> 4453[label="",style="dashed", color="magenta", weight=3]; 4315 -> 4454[label="",style="dashed", color="magenta", weight=3]; 4316 -> 135[label="",style="dashed", color="red", weight=0]; 4316[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4316 -> 4455[label="",style="dashed", color="magenta", weight=3]; 4316 -> 4456[label="",style="dashed", color="magenta", weight=3]; 4317 -> 135[label="",style="dashed", color="red", weight=0]; 4317[label="compare zwu43000 zwu44000 == LT",fontsize=16,color="magenta"];4317 -> 4457[label="",style="dashed", color="magenta", weight=3]; 4317 -> 4458[label="",style="dashed", color="magenta", weight=3]; 4318[label="zwu264",fontsize=16,color="green",shape="box"];4319[label="True",fontsize=16,color="green",shape="box"];4320 -> 135[label="",style="dashed", color="red", weight=0]; 4320[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4320 -> 4459[label="",style="dashed", color="magenta", weight=3]; 4320 -> 4460[label="",style="dashed", color="magenta", weight=3]; 4321 -> 2818[label="",style="dashed", color="red", weight=0]; 4321[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4321 -> 4461[label="",style="dashed", color="magenta", weight=3]; 4321 -> 4462[label="",style="dashed", color="magenta", weight=3]; 4322 -> 2817[label="",style="dashed", color="red", weight=0]; 4322[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4322 -> 4463[label="",style="dashed", color="magenta", weight=3]; 4322 -> 4464[label="",style="dashed", color="magenta", weight=3]; 4323 -> 2814[label="",style="dashed", color="red", weight=0]; 4323[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4323 -> 4465[label="",style="dashed", color="magenta", weight=3]; 4323 -> 4466[label="",style="dashed", color="magenta", weight=3]; 4324 -> 2824[label="",style="dashed", color="red", weight=0]; 4324[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4324 -> 4467[label="",style="dashed", color="magenta", weight=3]; 4324 -> 4468[label="",style="dashed", color="magenta", weight=3]; 4325 -> 2821[label="",style="dashed", color="red", weight=0]; 4325[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4325 -> 4469[label="",style="dashed", color="magenta", weight=3]; 4325 -> 4470[label="",style="dashed", color="magenta", weight=3]; 4326 -> 2825[label="",style="dashed", color="red", weight=0]; 4326[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4326 -> 4471[label="",style="dashed", color="magenta", weight=3]; 4326 -> 4472[label="",style="dashed", color="magenta", weight=3]; 4327 -> 2812[label="",style="dashed", color="red", weight=0]; 4327[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4327 -> 4473[label="",style="dashed", color="magenta", weight=3]; 4327 -> 4474[label="",style="dashed", color="magenta", weight=3]; 4328 -> 2816[label="",style="dashed", color="red", weight=0]; 4328[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4328 -> 4475[label="",style="dashed", color="magenta", weight=3]; 4328 -> 4476[label="",style="dashed", color="magenta", weight=3]; 4329 -> 2813[label="",style="dashed", color="red", weight=0]; 4329[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4329 -> 4477[label="",style="dashed", color="magenta", weight=3]; 4329 -> 4478[label="",style="dashed", color="magenta", weight=3]; 4330 -> 2819[label="",style="dashed", color="red", weight=0]; 4330[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4330 -> 4479[label="",style="dashed", color="magenta", weight=3]; 4330 -> 4480[label="",style="dashed", color="magenta", weight=3]; 4331 -> 2820[label="",style="dashed", color="red", weight=0]; 4331[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4331 -> 4481[label="",style="dashed", color="magenta", weight=3]; 4331 -> 4482[label="",style="dashed", color="magenta", weight=3]; 4332 -> 2823[label="",style="dashed", color="red", weight=0]; 4332[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4332 -> 4483[label="",style="dashed", color="magenta", weight=3]; 4332 -> 4484[label="",style="dashed", color="magenta", weight=3]; 4333 -> 2815[label="",style="dashed", color="red", weight=0]; 4333[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4333 -> 4485[label="",style="dashed", color="magenta", weight=3]; 4333 -> 4486[label="",style="dashed", color="magenta", weight=3]; 4334 -> 3516[label="",style="dashed", color="red", weight=0]; 4334[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4334 -> 4487[label="",style="dashed", color="magenta", weight=3]; 4334 -> 4488[label="",style="dashed", color="magenta", weight=3]; 4335 -> 3517[label="",style="dashed", color="red", weight=0]; 4335[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4335 -> 4489[label="",style="dashed", color="magenta", weight=3]; 4335 -> 4490[label="",style="dashed", color="magenta", weight=3]; 4336 -> 3518[label="",style="dashed", color="red", weight=0]; 4336[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4336 -> 4491[label="",style="dashed", color="magenta", weight=3]; 4336 -> 4492[label="",style="dashed", color="magenta", weight=3]; 4337 -> 3519[label="",style="dashed", color="red", weight=0]; 4337[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4337 -> 4493[label="",style="dashed", color="magenta", weight=3]; 4337 -> 4494[label="",style="dashed", color="magenta", weight=3]; 4338 -> 3520[label="",style="dashed", color="red", weight=0]; 4338[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4338 -> 4495[label="",style="dashed", color="magenta", weight=3]; 4338 -> 4496[label="",style="dashed", color="magenta", weight=3]; 4339 -> 3521[label="",style="dashed", color="red", weight=0]; 4339[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4339 -> 4497[label="",style="dashed", color="magenta", weight=3]; 4339 -> 4498[label="",style="dashed", color="magenta", weight=3]; 4340 -> 3522[label="",style="dashed", color="red", weight=0]; 4340[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4340 -> 4499[label="",style="dashed", color="magenta", weight=3]; 4340 -> 4500[label="",style="dashed", color="magenta", weight=3]; 4341 -> 3523[label="",style="dashed", color="red", weight=0]; 4341[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4341 -> 4501[label="",style="dashed", color="magenta", weight=3]; 4341 -> 4502[label="",style="dashed", color="magenta", weight=3]; 4342 -> 3524[label="",style="dashed", color="red", weight=0]; 4342[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4342 -> 4503[label="",style="dashed", color="magenta", weight=3]; 4342 -> 4504[label="",style="dashed", color="magenta", weight=3]; 4343 -> 3525[label="",style="dashed", color="red", weight=0]; 4343[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4343 -> 4505[label="",style="dashed", color="magenta", weight=3]; 4343 -> 4506[label="",style="dashed", color="magenta", weight=3]; 4344 -> 3526[label="",style="dashed", color="red", weight=0]; 4344[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4344 -> 4507[label="",style="dashed", color="magenta", weight=3]; 4344 -> 4508[label="",style="dashed", color="magenta", weight=3]; 4345 -> 3527[label="",style="dashed", color="red", weight=0]; 4345[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4345 -> 4509[label="",style="dashed", color="magenta", weight=3]; 4345 -> 4510[label="",style="dashed", color="magenta", weight=3]; 4346 -> 3528[label="",style="dashed", color="red", weight=0]; 4346[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4346 -> 4511[label="",style="dashed", color="magenta", weight=3]; 4346 -> 4512[label="",style="dashed", color="magenta", weight=3]; 4347 -> 3529[label="",style="dashed", color="red", weight=0]; 4347[label="zwu43001 <= zwu44001",fontsize=16,color="magenta"];4347 -> 4513[label="",style="dashed", color="magenta", weight=3]; 4347 -> 4514[label="",style="dashed", color="magenta", weight=3]; 4348[label="zwu43000",fontsize=16,color="green",shape="box"];4349[label="zwu44000",fontsize=16,color="green",shape="box"];4350[label="zwu43000",fontsize=16,color="green",shape="box"];4351[label="zwu44000",fontsize=16,color="green",shape="box"];4352[label="zwu43000",fontsize=16,color="green",shape="box"];4353[label="zwu44000",fontsize=16,color="green",shape="box"];4354[label="zwu43000",fontsize=16,color="green",shape="box"];4355[label="zwu44000",fontsize=16,color="green",shape="box"];4356[label="zwu43000",fontsize=16,color="green",shape="box"];4357[label="zwu44000",fontsize=16,color="green",shape="box"];4358[label="zwu43000",fontsize=16,color="green",shape="box"];4359[label="zwu44000",fontsize=16,color="green",shape="box"];4360[label="zwu43000",fontsize=16,color="green",shape="box"];4361[label="zwu44000",fontsize=16,color="green",shape="box"];4362[label="zwu43000",fontsize=16,color="green",shape="box"];4363[label="zwu44000",fontsize=16,color="green",shape="box"];4364[label="zwu43000",fontsize=16,color="green",shape="box"];4365[label="zwu44000",fontsize=16,color="green",shape="box"];4366[label="zwu43000",fontsize=16,color="green",shape="box"];4367[label="zwu44000",fontsize=16,color="green",shape="box"];4368[label="zwu43000",fontsize=16,color="green",shape="box"];4369[label="zwu44000",fontsize=16,color="green",shape="box"];4370[label="zwu43000",fontsize=16,color="green",shape="box"];4371[label="zwu44000",fontsize=16,color="green",shape="box"];4372[label="zwu43000",fontsize=16,color="green",shape="box"];4373[label="zwu44000",fontsize=16,color="green",shape="box"];4374[label="zwu43000",fontsize=16,color="green",shape="box"];4375[label="zwu44000",fontsize=16,color="green",shape="box"];4376[label="zwu43000",fontsize=16,color="green",shape="box"];4377[label="zwu44000",fontsize=16,color="green",shape="box"];4379 -> 3887[label="",style="dashed", color="red", weight=0]; 4379[label="compare zwu43001 zwu44001",fontsize=16,color="magenta"];4379 -> 4515[label="",style="dashed", color="magenta", weight=3]; 4379 -> 4516[label="",style="dashed", color="magenta", weight=3]; 4378[label="primCompAux zwu43000 zwu44000 zwu265",fontsize=16,color="black",shape="triangle"];4378 -> 4517[label="",style="solid", color="black", weight=3]; 2368[label="primCmpInt (Pos (Succ zwu4300)) zwu44",fontsize=16,color="burlywood",shape="box"];7461[label="zwu44/Pos zwu440",fontsize=10,color="white",style="solid",shape="box"];2368 -> 7461[label="",style="solid", color="burlywood", weight=9]; 7461 -> 2572[label="",style="solid", color="burlywood", weight=3]; 7462[label="zwu44/Neg zwu440",fontsize=10,color="white",style="solid",shape="box"];2368 -> 7462[label="",style="solid", color="burlywood", weight=9]; 7462 -> 2573[label="",style="solid", color="burlywood", weight=3]; 2369[label="primCmpInt (Pos Zero) zwu44",fontsize=16,color="burlywood",shape="box"];7463[label="zwu44/Pos zwu440",fontsize=10,color="white",style="solid",shape="box"];2369 -> 7463[label="",style="solid", color="burlywood", weight=9]; 7463 -> 2574[label="",style="solid", color="burlywood", weight=3]; 7464[label="zwu44/Neg zwu440",fontsize=10,color="white",style="solid",shape="box"];2369 -> 7464[label="",style="solid", color="burlywood", weight=9]; 7464 -> 2575[label="",style="solid", color="burlywood", weight=3]; 2370[label="primCmpInt (Neg (Succ zwu4300)) zwu44",fontsize=16,color="burlywood",shape="box"];7465[label="zwu44/Pos zwu440",fontsize=10,color="white",style="solid",shape="box"];2370 -> 7465[label="",style="solid", color="burlywood", weight=9]; 7465 -> 2576[label="",style="solid", color="burlywood", weight=3]; 7466[label="zwu44/Neg zwu440",fontsize=10,color="white",style="solid",shape="box"];2370 -> 7466[label="",style="solid", color="burlywood", weight=9]; 7466 -> 2577[label="",style="solid", color="burlywood", weight=3]; 2371[label="primCmpInt (Neg Zero) zwu44",fontsize=16,color="burlywood",shape="box"];7467[label="zwu44/Pos zwu440",fontsize=10,color="white",style="solid",shape="box"];2371 -> 7467[label="",style="solid", color="burlywood", weight=9]; 7467 -> 2578[label="",style="solid", color="burlywood", weight=3]; 7468[label="zwu44/Neg zwu440",fontsize=10,color="white",style="solid",shape="box"];2371 -> 7468[label="",style="solid", color="burlywood", weight=9]; 7468 -> 2579[label="",style="solid", color="burlywood", weight=3]; 4380 -> 3886[label="",style="dashed", color="red", weight=0]; 4380[label="compare (zwu43000 * zwu44001) (zwu44000 * zwu43001)",fontsize=16,color="magenta"];4380 -> 4582[label="",style="dashed", color="magenta", weight=3]; 4380 -> 4583[label="",style="dashed", color="magenta", weight=3]; 4381 -> 1707[label="",style="dashed", color="red", weight=0]; 4381[label="compare (zwu43000 * zwu44001) (zwu44000 * zwu43001)",fontsize=16,color="magenta"];4381 -> 4584[label="",style="dashed", color="magenta", weight=3]; 4381 -> 4585[label="",style="dashed", color="magenta", weight=3]; 4382[label="primCmpDouble (Double zwu43000 (Pos zwu430010)) (Double zwu44000 zwu44001)",fontsize=16,color="burlywood",shape="box"];7469[label="zwu44001/Pos zwu440010",fontsize=10,color="white",style="solid",shape="box"];4382 -> 7469[label="",style="solid", color="burlywood", weight=9]; 7469 -> 4586[label="",style="solid", color="burlywood", weight=3]; 7470[label="zwu44001/Neg zwu440010",fontsize=10,color="white",style="solid",shape="box"];4382 -> 7470[label="",style="solid", color="burlywood", weight=9]; 7470 -> 4587[label="",style="solid", color="burlywood", weight=3]; 4383[label="primCmpDouble (Double zwu43000 (Neg zwu430010)) (Double zwu44000 zwu44001)",fontsize=16,color="burlywood",shape="box"];7471[label="zwu44001/Pos zwu440010",fontsize=10,color="white",style="solid",shape="box"];4383 -> 7471[label="",style="solid", color="burlywood", weight=9]; 7471 -> 4588[label="",style="solid", color="burlywood", weight=3]; 7472[label="zwu44001/Neg zwu440010",fontsize=10,color="white",style="solid",shape="box"];4383 -> 7472[label="",style="solid", color="burlywood", weight=9]; 7472 -> 4589[label="",style="solid", color="burlywood", weight=3]; 4384 -> 3060[label="",style="dashed", color="red", weight=0]; 4384[label="primCmpNat zwu43000 zwu44000",fontsize=16,color="magenta"];4384 -> 4590[label="",style="dashed", color="magenta", weight=3]; 4384 -> 4591[label="",style="dashed", color="magenta", weight=3]; 2460 -> 2211[label="",style="dashed", color="red", weight=0]; 2460[label="FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 FiniteMap.EmptyFM",fontsize=16,color="magenta"];2460 -> 2607[label="",style="dashed", color="magenta", weight=3]; 2461[label="Pos Zero",fontsize=16,color="green",shape="box"];2457[label="primPlusInt zwu512 zwu189",fontsize=16,color="burlywood",shape="triangle"];7473[label="zwu512/Pos zwu5120",fontsize=10,color="white",style="solid",shape="box"];2457 -> 7473[label="",style="solid", color="burlywood", weight=9]; 7473 -> 2482[label="",style="solid", color="burlywood", weight=3]; 7474[label="zwu512/Neg zwu5120",fontsize=10,color="white",style="solid",shape="box"];2457 -> 7474[label="",style="solid", color="burlywood", weight=9]; 7474 -> 2483[label="",style="solid", color="burlywood", weight=3]; 2462 -> 2211[label="",style="dashed", color="red", weight=0]; 2462[label="FiniteMap.mkBalBranch6Size_r zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514)",fontsize=16,color="magenta"];2462 -> 2608[label="",style="dashed", color="magenta", weight=3]; 2475[label="FiniteMap.mkBalBranch6MkBalBranch2 zwu64 zwu60 zwu61 zwu51 zwu60 zwu61 zwu51 zwu64 True",fontsize=16,color="black",shape="box"];2475 -> 2609[label="",style="solid", color="black", weight=3]; 2476[label="FiniteMap.mkBalBranch6MkBalBranch1 zwu64 zwu60 zwu61 FiniteMap.EmptyFM FiniteMap.EmptyFM zwu64 FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];2476 -> 2610[label="",style="solid", color="black", weight=3]; 2477[label="FiniteMap.mkBalBranch6MkBalBranch1 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514)",fontsize=16,color="black",shape="box"];2477 -> 2611[label="",style="solid", color="black", weight=3]; 2479 -> 1855[label="",style="dashed", color="red", weight=0]; 2479[label="FiniteMap.sizeFM zwu643 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM zwu644",fontsize=16,color="magenta"];2479 -> 2612[label="",style="dashed", color="magenta", weight=3]; 2479 -> 2613[label="",style="dashed", color="magenta", weight=3]; 2478[label="FiniteMap.mkBalBranch6MkBalBranch01 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu640 zwu641 zwu642 zwu643 zwu644 zwu190",fontsize=16,color="burlywood",shape="triangle"];7475[label="zwu190/False",fontsize=10,color="white",style="solid",shape="box"];2478 -> 7475[label="",style="solid", color="burlywood", weight=9]; 7475 -> 2614[label="",style="solid", color="burlywood", weight=3]; 7476[label="zwu190/True",fontsize=10,color="white",style="solid",shape="box"];2478 -> 7476[label="",style="solid", color="burlywood", weight=9]; 7476 -> 2615[label="",style="solid", color="burlywood", weight=3]; 4946[label="FiniteMap.mkBranchRight_size zwu276 zwu273 zwu275",fontsize=16,color="black",shape="box"];4946 -> 5096[label="",style="solid", color="black", weight=3]; 4947[label="Pos (Succ Zero) + FiniteMap.mkBranchLeft_size zwu276 zwu273 zwu275",fontsize=16,color="black",shape="box"];4947 -> 5097[label="",style="solid", color="black", weight=3]; 2227[label="primMulNat (Succ zwu400100) zwu60000",fontsize=16,color="burlywood",shape="box"];7477[label="zwu60000/Succ zwu600000",fontsize=10,color="white",style="solid",shape="box"];2227 -> 7477[label="",style="solid", color="burlywood", weight=9]; 7477 -> 2484[label="",style="solid", color="burlywood", weight=3]; 7478[label="zwu60000/Zero",fontsize=10,color="white",style="solid",shape="box"];2227 -> 7478[label="",style="solid", color="burlywood", weight=9]; 7478 -> 2485[label="",style="solid", color="burlywood", weight=3]; 2228[label="primMulNat Zero zwu60000",fontsize=16,color="burlywood",shape="box"];7479[label="zwu60000/Succ zwu600000",fontsize=10,color="white",style="solid",shape="box"];2228 -> 7479[label="",style="solid", color="burlywood", weight=9]; 7479 -> 2486[label="",style="solid", color="burlywood", weight=3]; 7480[label="zwu60000/Zero",fontsize=10,color="white",style="solid",shape="box"];2228 -> 7480[label="",style="solid", color="burlywood", weight=9]; 7480 -> 2487[label="",style="solid", color="burlywood", weight=3]; 2229[label="zwu60000",fontsize=16,color="green",shape="box"];2230[label="zwu40010",fontsize=16,color="green",shape="box"];2231[label="zwu40010",fontsize=16,color="green",shape="box"];2232[label="zwu60000",fontsize=16,color="green",shape="box"];2754[label="zwu7200",fontsize=16,color="green",shape="box"];2755[label="Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))",fontsize=16,color="green",shape="box"];2755 -> 2759[label="",style="dashed", color="green", weight=3]; 2753[label="primPlusNat zwu195 (Succ zwu600000)",fontsize=16,color="burlywood",shape="triangle"];7481[label="zwu195/Succ zwu1950",fontsize=10,color="white",style="solid",shape="box"];2753 -> 7481[label="",style="solid", color="burlywood", weight=9]; 7481 -> 2760[label="",style="solid", color="burlywood", weight=3]; 7482[label="zwu195/Zero",fontsize=10,color="white",style="solid",shape="box"];2753 -> 7482[label="",style="solid", color="burlywood", weight=9]; 7482 -> 2761[label="",style="solid", color="burlywood", weight=3]; 2756[label="zwu7200",fontsize=16,color="green",shape="box"];2757[label="Succ (Succ (primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200))",fontsize=16,color="green",shape="box"];2757 -> 2762[label="",style="dashed", color="green", weight=3]; 2587[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2587 -> 2727[label="",style="solid", color="black", weight=3]; 2588[label="FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2589[label="FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2589 -> 2728[label="",style="solid", color="black", weight=3]; 2590[label="FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="burlywood",shape="triangle"];7483[label="zwu83/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2590 -> 7483[label="",style="solid", color="burlywood", weight=9]; 7483 -> 2729[label="",style="solid", color="burlywood", weight=3]; 7484[label="zwu83/FiniteMap.Branch zwu830 zwu831 zwu832 zwu833 zwu834",fontsize=10,color="white",style="solid",shape="box"];2590 -> 7484[label="",style="solid", color="burlywood", weight=9]; 7484 -> 2730[label="",style="solid", color="burlywood", weight=3]; 2591[label="FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2591 -> 2731[label="",style="solid", color="black", weight=3]; 2592[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2592 -> 2732[label="",style="solid", color="black", weight=3]; 2593[label="FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2594[label="FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2594 -> 2733[label="",style="solid", color="black", weight=3]; 2595 -> 2590[label="",style="dashed", color="red", weight=0]; 2595[label="FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2596[label="FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2596 -> 2734[label="",style="solid", color="black", weight=3]; 2597[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2597 -> 2735[label="",style="solid", color="black", weight=3]; 2598[label="FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94",fontsize=16,color="green",shape="box"];2599[label="FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2599 -> 2736[label="",style="solid", color="black", weight=3]; 2600 -> 2590[label="",style="dashed", color="red", weight=0]; 2600[label="FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2601[label="FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2601 -> 2737[label="",style="solid", color="black", weight=3]; 2602[label="FiniteMap.glueBal2GlueBal0 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) True",fontsize=16,color="black",shape="box"];2602 -> 2738[label="",style="solid", color="black", weight=3]; 2603[label="FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94",fontsize=16,color="green",shape="box"];2604[label="FiniteMap.glueBal2Mid_elt2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2604 -> 2739[label="",style="solid", color="black", weight=3]; 2605 -> 2590[label="",style="dashed", color="red", weight=0]; 2605[label="FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2606[label="FiniteMap.glueBal2Mid_key2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2606 -> 2740[label="",style="solid", color="black", weight=3]; 4385[label="primCmpFloat (Float zwu43000 (Pos zwu430010)) (Float zwu44000 (Pos zwu440010))",fontsize=16,color="black",shape="box"];4385 -> 4592[label="",style="solid", color="black", weight=3]; 4386[label="primCmpFloat (Float zwu43000 (Pos zwu430010)) (Float zwu44000 (Neg zwu440010))",fontsize=16,color="black",shape="box"];4386 -> 4593[label="",style="solid", color="black", weight=3]; 4387[label="primCmpFloat (Float zwu43000 (Neg zwu430010)) (Float zwu44000 (Pos zwu440010))",fontsize=16,color="black",shape="box"];4387 -> 4594[label="",style="solid", color="black", weight=3]; 4388[label="primCmpFloat (Float zwu43000 (Neg zwu430010)) (Float zwu44000 (Neg zwu440010))",fontsize=16,color="black",shape="box"];4388 -> 4595[label="",style="solid", color="black", weight=3]; 4389[label="zwu44000",fontsize=16,color="green",shape="box"];4390[label="zwu43000",fontsize=16,color="green",shape="box"];4391[label="zwu44000",fontsize=16,color="green",shape="box"];4392[label="zwu43000",fontsize=16,color="green",shape="box"];4393[label="zwu44000",fontsize=16,color="green",shape="box"];4394[label="zwu43000",fontsize=16,color="green",shape="box"];4395[label="zwu44000",fontsize=16,color="green",shape="box"];4396[label="zwu43000",fontsize=16,color="green",shape="box"];4397[label="zwu44000",fontsize=16,color="green",shape="box"];4398[label="zwu43000",fontsize=16,color="green",shape="box"];4399[label="zwu44000",fontsize=16,color="green",shape="box"];4400[label="zwu43000",fontsize=16,color="green",shape="box"];4401[label="zwu44000",fontsize=16,color="green",shape="box"];4402[label="zwu43000",fontsize=16,color="green",shape="box"];4403[label="zwu44000",fontsize=16,color="green",shape="box"];4404[label="zwu43000",fontsize=16,color="green",shape="box"];4405[label="zwu44000",fontsize=16,color="green",shape="box"];4406[label="zwu43000",fontsize=16,color="green",shape="box"];4407[label="zwu44000",fontsize=16,color="green",shape="box"];4408[label="zwu43000",fontsize=16,color="green",shape="box"];4409[label="zwu44000",fontsize=16,color="green",shape="box"];4410[label="zwu43000",fontsize=16,color="green",shape="box"];4411[label="zwu44000",fontsize=16,color="green",shape="box"];4412[label="zwu43000",fontsize=16,color="green",shape="box"];4413[label="zwu44000",fontsize=16,color="green",shape="box"];4414[label="zwu43000",fontsize=16,color="green",shape="box"];4415[label="zwu44000",fontsize=16,color="green",shape="box"];4416[label="zwu43000",fontsize=16,color="green",shape="box"];4417[label="zwu43001 == zwu44001",fontsize=16,color="blue",shape="box"];7485[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7485[label="",style="solid", color="blue", weight=9]; 7485 -> 4596[label="",style="solid", color="blue", weight=3]; 7486[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7486[label="",style="solid", color="blue", weight=9]; 7486 -> 4597[label="",style="solid", color="blue", weight=3]; 7487[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7487[label="",style="solid", color="blue", weight=9]; 7487 -> 4598[label="",style="solid", color="blue", weight=3]; 7488[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7488[label="",style="solid", color="blue", weight=9]; 7488 -> 4599[label="",style="solid", color="blue", weight=3]; 7489[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7489[label="",style="solid", color="blue", weight=9]; 7489 -> 4600[label="",style="solid", color="blue", weight=3]; 7490[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7490[label="",style="solid", color="blue", weight=9]; 7490 -> 4601[label="",style="solid", color="blue", weight=3]; 7491[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7491[label="",style="solid", color="blue", weight=9]; 7491 -> 4602[label="",style="solid", color="blue", weight=3]; 7492[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7492[label="",style="solid", color="blue", weight=9]; 7492 -> 4603[label="",style="solid", color="blue", weight=3]; 7493[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7493[label="",style="solid", color="blue", weight=9]; 7493 -> 4604[label="",style="solid", color="blue", weight=3]; 7494[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7494[label="",style="solid", color="blue", weight=9]; 7494 -> 4605[label="",style="solid", color="blue", weight=3]; 7495[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7495[label="",style="solid", color="blue", weight=9]; 7495 -> 4606[label="",style="solid", color="blue", weight=3]; 7496[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7496[label="",style="solid", color="blue", weight=9]; 7496 -> 4607[label="",style="solid", color="blue", weight=3]; 7497[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7497[label="",style="solid", color="blue", weight=9]; 7497 -> 4608[label="",style="solid", color="blue", weight=3]; 7498[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4417 -> 7498[label="",style="solid", color="blue", weight=9]; 7498 -> 4609[label="",style="solid", color="blue", weight=3]; 4418[label="zwu43002 <= zwu44002",fontsize=16,color="blue",shape="box"];7499[label="<= :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7499[label="",style="solid", color="blue", weight=9]; 7499 -> 4610[label="",style="solid", color="blue", weight=3]; 7500[label="<= :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7500[label="",style="solid", color="blue", weight=9]; 7500 -> 4611[label="",style="solid", color="blue", weight=3]; 7501[label="<= :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7501[label="",style="solid", color="blue", weight=9]; 7501 -> 4612[label="",style="solid", color="blue", weight=3]; 7502[label="<= :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7502[label="",style="solid", color="blue", weight=9]; 7502 -> 4613[label="",style="solid", color="blue", weight=3]; 7503[label="<= :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7503[label="",style="solid", color="blue", weight=9]; 7503 -> 4614[label="",style="solid", color="blue", weight=3]; 7504[label="<= :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7504[label="",style="solid", color="blue", weight=9]; 7504 -> 4615[label="",style="solid", color="blue", weight=3]; 7505[label="<= :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7505[label="",style="solid", color="blue", weight=9]; 7505 -> 4616[label="",style="solid", color="blue", weight=3]; 7506[label="<= :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7506[label="",style="solid", color="blue", weight=9]; 7506 -> 4617[label="",style="solid", color="blue", weight=3]; 7507[label="<= :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7507[label="",style="solid", color="blue", weight=9]; 7507 -> 4618[label="",style="solid", color="blue", weight=3]; 7508[label="<= :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7508[label="",style="solid", color="blue", weight=9]; 7508 -> 4619[label="",style="solid", color="blue", weight=3]; 7509[label="<= :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7509[label="",style="solid", color="blue", weight=9]; 7509 -> 4620[label="",style="solid", color="blue", weight=3]; 7510[label="<= :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7510[label="",style="solid", color="blue", weight=9]; 7510 -> 4621[label="",style="solid", color="blue", weight=3]; 7511[label="<= :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7511[label="",style="solid", color="blue", weight=9]; 7511 -> 4622[label="",style="solid", color="blue", weight=3]; 7512[label="<= :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];4418 -> 7512[label="",style="solid", color="blue", weight=9]; 7512 -> 4623[label="",style="solid", color="blue", weight=3]; 4419 -> 4111[label="",style="dashed", color="red", weight=0]; 4419[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4419 -> 4624[label="",style="dashed", color="magenta", weight=3]; 4419 -> 4625[label="",style="dashed", color="magenta", weight=3]; 4420 -> 4112[label="",style="dashed", color="red", weight=0]; 4420[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4420 -> 4626[label="",style="dashed", color="magenta", weight=3]; 4420 -> 4627[label="",style="dashed", color="magenta", weight=3]; 4421 -> 4113[label="",style="dashed", color="red", weight=0]; 4421[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4421 -> 4628[label="",style="dashed", color="magenta", weight=3]; 4421 -> 4629[label="",style="dashed", color="magenta", weight=3]; 4422 -> 4114[label="",style="dashed", color="red", weight=0]; 4422[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4422 -> 4630[label="",style="dashed", color="magenta", weight=3]; 4422 -> 4631[label="",style="dashed", color="magenta", weight=3]; 4423 -> 4115[label="",style="dashed", color="red", weight=0]; 4423[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4423 -> 4632[label="",style="dashed", color="magenta", weight=3]; 4423 -> 4633[label="",style="dashed", color="magenta", weight=3]; 4424 -> 4116[label="",style="dashed", color="red", weight=0]; 4424[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4424 -> 4634[label="",style="dashed", color="magenta", weight=3]; 4424 -> 4635[label="",style="dashed", color="magenta", weight=3]; 4425 -> 4117[label="",style="dashed", color="red", weight=0]; 4425[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4425 -> 4636[label="",style="dashed", color="magenta", weight=3]; 4425 -> 4637[label="",style="dashed", color="magenta", weight=3]; 4426 -> 4118[label="",style="dashed", color="red", weight=0]; 4426[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4426 -> 4638[label="",style="dashed", color="magenta", weight=3]; 4426 -> 4639[label="",style="dashed", color="magenta", weight=3]; 4427 -> 1855[label="",style="dashed", color="red", weight=0]; 4427[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4427 -> 4640[label="",style="dashed", color="magenta", weight=3]; 4427 -> 4641[label="",style="dashed", color="magenta", weight=3]; 4428 -> 4120[label="",style="dashed", color="red", weight=0]; 4428[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4428 -> 4642[label="",style="dashed", color="magenta", weight=3]; 4428 -> 4643[label="",style="dashed", color="magenta", weight=3]; 4429 -> 4121[label="",style="dashed", color="red", weight=0]; 4429[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4429 -> 4644[label="",style="dashed", color="magenta", weight=3]; 4429 -> 4645[label="",style="dashed", color="magenta", weight=3]; 4430 -> 4122[label="",style="dashed", color="red", weight=0]; 4430[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4430 -> 4646[label="",style="dashed", color="magenta", weight=3]; 4430 -> 4647[label="",style="dashed", color="magenta", weight=3]; 4431 -> 4123[label="",style="dashed", color="red", weight=0]; 4431[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4431 -> 4648[label="",style="dashed", color="magenta", weight=3]; 4431 -> 4649[label="",style="dashed", color="magenta", weight=3]; 4432 -> 4124[label="",style="dashed", color="red", weight=0]; 4432[label="zwu43001 < zwu44001",fontsize=16,color="magenta"];4432 -> 4650[label="",style="dashed", color="magenta", weight=3]; 4432 -> 4651[label="",style="dashed", color="magenta", weight=3]; 4433[label="LT",fontsize=16,color="green",shape="box"];4434[label="compare zwu43000 zwu44000",fontsize=16,color="black",shape="triangle"];4434 -> 4652[label="",style="solid", color="black", weight=3]; 4435[label="LT",fontsize=16,color="green",shape="box"];4436[label="compare zwu43000 zwu44000",fontsize=16,color="black",shape="triangle"];4436 -> 4653[label="",style="solid", color="black", weight=3]; 4437[label="LT",fontsize=16,color="green",shape="box"];4438 -> 3885[label="",style="dashed", color="red", weight=0]; 4438[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4438 -> 4654[label="",style="dashed", color="magenta", weight=3]; 4438 -> 4655[label="",style="dashed", color="magenta", weight=3]; 4439[label="LT",fontsize=16,color="green",shape="box"];4440[label="compare zwu43000 zwu44000",fontsize=16,color="black",shape="triangle"];4440 -> 4656[label="",style="solid", color="black", weight=3]; 4441[label="LT",fontsize=16,color="green",shape="box"];4442[label="compare zwu43000 zwu44000",fontsize=16,color="black",shape="triangle"];4442 -> 4657[label="",style="solid", color="black", weight=3]; 4443[label="LT",fontsize=16,color="green",shape="box"];4444 -> 3886[label="",style="dashed", color="red", weight=0]; 4444[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4444 -> 4658[label="",style="dashed", color="magenta", weight=3]; 4444 -> 4659[label="",style="dashed", color="magenta", weight=3]; 4445[label="LT",fontsize=16,color="green",shape="box"];4446 -> 3887[label="",style="dashed", color="red", weight=0]; 4446[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4446 -> 4660[label="",style="dashed", color="magenta", weight=3]; 4446 -> 4661[label="",style="dashed", color="magenta", weight=3]; 4447[label="LT",fontsize=16,color="green",shape="box"];4448[label="compare zwu43000 zwu44000",fontsize=16,color="black",shape="triangle"];4448 -> 4662[label="",style="solid", color="black", weight=3]; 2034 -> 135[label="",style="dashed", color="red", weight=0]; 2034[label="compare zwu430 zwu440 == LT",fontsize=16,color="magenta"];2034 -> 2251[label="",style="dashed", color="magenta", weight=3]; 2034 -> 2252[label="",style="dashed", color="magenta", weight=3]; 4449[label="LT",fontsize=16,color="green",shape="box"];4450 -> 3889[label="",style="dashed", color="red", weight=0]; 4450[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4450 -> 4663[label="",style="dashed", color="magenta", weight=3]; 4450 -> 4664[label="",style="dashed", color="magenta", weight=3]; 4451[label="LT",fontsize=16,color="green",shape="box"];4452 -> 3890[label="",style="dashed", color="red", weight=0]; 4452[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4452 -> 4665[label="",style="dashed", color="magenta", weight=3]; 4452 -> 4666[label="",style="dashed", color="magenta", weight=3]; 4453[label="LT",fontsize=16,color="green",shape="box"];4454 -> 3891[label="",style="dashed", color="red", weight=0]; 4454[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4454 -> 4667[label="",style="dashed", color="magenta", weight=3]; 4454 -> 4668[label="",style="dashed", color="magenta", weight=3]; 4455[label="LT",fontsize=16,color="green",shape="box"];4456 -> 3892[label="",style="dashed", color="red", weight=0]; 4456[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4456 -> 4669[label="",style="dashed", color="magenta", weight=3]; 4456 -> 4670[label="",style="dashed", color="magenta", weight=3]; 4457[label="LT",fontsize=16,color="green",shape="box"];4458[label="compare zwu43000 zwu44000",fontsize=16,color="black",shape="triangle"];4458 -> 4671[label="",style="solid", color="black", weight=3]; 4459[label="zwu44000",fontsize=16,color="green",shape="box"];4460[label="zwu43000",fontsize=16,color="green",shape="box"];4461[label="zwu44000",fontsize=16,color="green",shape="box"];4462[label="zwu43000",fontsize=16,color="green",shape="box"];4463[label="zwu44000",fontsize=16,color="green",shape="box"];4464[label="zwu43000",fontsize=16,color="green",shape="box"];4465[label="zwu44000",fontsize=16,color="green",shape="box"];4466[label="zwu43000",fontsize=16,color="green",shape="box"];4467[label="zwu44000",fontsize=16,color="green",shape="box"];4468[label="zwu43000",fontsize=16,color="green",shape="box"];4469[label="zwu44000",fontsize=16,color="green",shape="box"];4470[label="zwu43000",fontsize=16,color="green",shape="box"];4471[label="zwu44000",fontsize=16,color="green",shape="box"];4472[label="zwu43000",fontsize=16,color="green",shape="box"];4473[label="zwu44000",fontsize=16,color="green",shape="box"];4474[label="zwu43000",fontsize=16,color="green",shape="box"];4475[label="zwu44000",fontsize=16,color="green",shape="box"];4476[label="zwu43000",fontsize=16,color="green",shape="box"];4477[label="zwu44000",fontsize=16,color="green",shape="box"];4478[label="zwu43000",fontsize=16,color="green",shape="box"];4479[label="zwu44000",fontsize=16,color="green",shape="box"];4480[label="zwu43000",fontsize=16,color="green",shape="box"];4481[label="zwu44000",fontsize=16,color="green",shape="box"];4482[label="zwu43000",fontsize=16,color="green",shape="box"];4483[label="zwu44000",fontsize=16,color="green",shape="box"];4484[label="zwu43000",fontsize=16,color="green",shape="box"];4485[label="zwu44000",fontsize=16,color="green",shape="box"];4486[label="zwu43000",fontsize=16,color="green",shape="box"];4487[label="zwu44001",fontsize=16,color="green",shape="box"];4488[label="zwu43001",fontsize=16,color="green",shape="box"];4489[label="zwu44001",fontsize=16,color="green",shape="box"];4490[label="zwu43001",fontsize=16,color="green",shape="box"];4491[label="zwu44001",fontsize=16,color="green",shape="box"];4492[label="zwu43001",fontsize=16,color="green",shape="box"];4493[label="zwu44001",fontsize=16,color="green",shape="box"];4494[label="zwu43001",fontsize=16,color="green",shape="box"];4495[label="zwu44001",fontsize=16,color="green",shape="box"];4496[label="zwu43001",fontsize=16,color="green",shape="box"];4497[label="zwu44001",fontsize=16,color="green",shape="box"];4498[label="zwu43001",fontsize=16,color="green",shape="box"];4499[label="zwu44001",fontsize=16,color="green",shape="box"];4500[label="zwu43001",fontsize=16,color="green",shape="box"];4501[label="zwu44001",fontsize=16,color="green",shape="box"];4502[label="zwu43001",fontsize=16,color="green",shape="box"];4503[label="zwu44001",fontsize=16,color="green",shape="box"];4504[label="zwu43001",fontsize=16,color="green",shape="box"];4505[label="zwu44001",fontsize=16,color="green",shape="box"];4506[label="zwu43001",fontsize=16,color="green",shape="box"];4507[label="zwu44001",fontsize=16,color="green",shape="box"];4508[label="zwu43001",fontsize=16,color="green",shape="box"];4509[label="zwu44001",fontsize=16,color="green",shape="box"];4510[label="zwu43001",fontsize=16,color="green",shape="box"];4511[label="zwu44001",fontsize=16,color="green",shape="box"];4512[label="zwu43001",fontsize=16,color="green",shape="box"];4513[label="zwu44001",fontsize=16,color="green",shape="box"];4514[label="zwu43001",fontsize=16,color="green",shape="box"];4515[label="zwu44001",fontsize=16,color="green",shape="box"];4516[label="zwu43001",fontsize=16,color="green",shape="box"];4517 -> 4672[label="",style="dashed", color="red", weight=0]; 4517[label="primCompAux0 zwu265 (compare zwu43000 zwu44000)",fontsize=16,color="magenta"];4517 -> 4673[label="",style="dashed", color="magenta", weight=3]; 4517 -> 4674[label="",style="dashed", color="magenta", weight=3]; 2572[label="primCmpInt (Pos (Succ zwu4300)) (Pos zwu440)",fontsize=16,color="black",shape="box"];2572 -> 2704[label="",style="solid", color="black", weight=3]; 2573[label="primCmpInt (Pos (Succ zwu4300)) (Neg zwu440)",fontsize=16,color="black",shape="box"];2573 -> 2705[label="",style="solid", color="black", weight=3]; 2574[label="primCmpInt (Pos Zero) (Pos zwu440)",fontsize=16,color="burlywood",shape="box"];7513[label="zwu440/Succ zwu4400",fontsize=10,color="white",style="solid",shape="box"];2574 -> 7513[label="",style="solid", color="burlywood", weight=9]; 7513 -> 2706[label="",style="solid", color="burlywood", weight=3]; 7514[label="zwu440/Zero",fontsize=10,color="white",style="solid",shape="box"];2574 -> 7514[label="",style="solid", color="burlywood", weight=9]; 7514 -> 2707[label="",style="solid", color="burlywood", weight=3]; 2575[label="primCmpInt (Pos Zero) (Neg zwu440)",fontsize=16,color="burlywood",shape="box"];7515[label="zwu440/Succ zwu4400",fontsize=10,color="white",style="solid",shape="box"];2575 -> 7515[label="",style="solid", color="burlywood", weight=9]; 7515 -> 2708[label="",style="solid", color="burlywood", weight=3]; 7516[label="zwu440/Zero",fontsize=10,color="white",style="solid",shape="box"];2575 -> 7516[label="",style="solid", color="burlywood", weight=9]; 7516 -> 2709[label="",style="solid", color="burlywood", weight=3]; 2576[label="primCmpInt (Neg (Succ zwu4300)) (Pos zwu440)",fontsize=16,color="black",shape="box"];2576 -> 2710[label="",style="solid", color="black", weight=3]; 2577[label="primCmpInt (Neg (Succ zwu4300)) (Neg zwu440)",fontsize=16,color="black",shape="box"];2577 -> 2711[label="",style="solid", color="black", weight=3]; 2578[label="primCmpInt (Neg Zero) (Pos zwu440)",fontsize=16,color="burlywood",shape="box"];7517[label="zwu440/Succ zwu4400",fontsize=10,color="white",style="solid",shape="box"];2578 -> 7517[label="",style="solid", color="burlywood", weight=9]; 7517 -> 2712[label="",style="solid", color="burlywood", weight=3]; 7518[label="zwu440/Zero",fontsize=10,color="white",style="solid",shape="box"];2578 -> 7518[label="",style="solid", color="burlywood", weight=9]; 7518 -> 2713[label="",style="solid", color="burlywood", weight=3]; 2579[label="primCmpInt (Neg Zero) (Neg zwu440)",fontsize=16,color="burlywood",shape="box"];7519[label="zwu440/Succ zwu4400",fontsize=10,color="white",style="solid",shape="box"];2579 -> 7519[label="",style="solid", color="burlywood", weight=9]; 7519 -> 2714[label="",style="solid", color="burlywood", weight=3]; 7520[label="zwu440/Zero",fontsize=10,color="white",style="solid",shape="box"];2579 -> 7520[label="",style="solid", color="burlywood", weight=9]; 7520 -> 2715[label="",style="solid", color="burlywood", weight=3]; 4582[label="zwu44000 * zwu43001",fontsize=16,color="burlywood",shape="triangle"];7521[label="zwu44000/Integer zwu440000",fontsize=10,color="white",style="solid",shape="box"];4582 -> 7521[label="",style="solid", color="burlywood", weight=9]; 7521 -> 4675[label="",style="solid", color="burlywood", weight=3]; 4583 -> 4582[label="",style="dashed", color="red", weight=0]; 4583[label="zwu43000 * zwu44001",fontsize=16,color="magenta"];4583 -> 4676[label="",style="dashed", color="magenta", weight=3]; 4583 -> 4677[label="",style="dashed", color="magenta", weight=3]; 4584 -> 1012[label="",style="dashed", color="red", weight=0]; 4584[label="zwu43000 * zwu44001",fontsize=16,color="magenta"];4584 -> 4678[label="",style="dashed", color="magenta", weight=3]; 4584 -> 4679[label="",style="dashed", color="magenta", weight=3]; 4585 -> 1012[label="",style="dashed", color="red", weight=0]; 4585[label="zwu44000 * zwu43001",fontsize=16,color="magenta"];4585 -> 4680[label="",style="dashed", color="magenta", weight=3]; 4585 -> 4681[label="",style="dashed", color="magenta", weight=3]; 4586[label="primCmpDouble (Double zwu43000 (Pos zwu430010)) (Double zwu44000 (Pos zwu440010))",fontsize=16,color="black",shape="box"];4586 -> 4682[label="",style="solid", color="black", weight=3]; 4587[label="primCmpDouble (Double zwu43000 (Pos zwu430010)) (Double zwu44000 (Neg zwu440010))",fontsize=16,color="black",shape="box"];4587 -> 4683[label="",style="solid", color="black", weight=3]; 4588[label="primCmpDouble (Double zwu43000 (Neg zwu430010)) (Double zwu44000 (Pos zwu440010))",fontsize=16,color="black",shape="box"];4588 -> 4684[label="",style="solid", color="black", weight=3]; 4589[label="primCmpDouble (Double zwu43000 (Neg zwu430010)) (Double zwu44000 (Neg zwu440010))",fontsize=16,color="black",shape="box"];4589 -> 4685[label="",style="solid", color="black", weight=3]; 4590[label="zwu44000",fontsize=16,color="green",shape="box"];4591[label="zwu43000",fontsize=16,color="green",shape="box"];3060[label="primCmpNat zwu4300 zwu4400",fontsize=16,color="burlywood",shape="triangle"];7522[label="zwu4300/Succ zwu43000",fontsize=10,color="white",style="solid",shape="box"];3060 -> 7522[label="",style="solid", color="burlywood", weight=9]; 7522 -> 3180[label="",style="solid", color="burlywood", weight=3]; 7523[label="zwu4300/Zero",fontsize=10,color="white",style="solid",shape="box"];3060 -> 7523[label="",style="solid", color="burlywood", weight=9]; 7523 -> 3181[label="",style="solid", color="burlywood", weight=3]; 2607[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];2482[label="primPlusInt (Pos zwu5120) zwu189",fontsize=16,color="burlywood",shape="box"];7524[label="zwu189/Pos zwu1890",fontsize=10,color="white",style="solid",shape="box"];2482 -> 7524[label="",style="solid", color="burlywood", weight=9]; 7524 -> 2619[label="",style="solid", color="burlywood", weight=3]; 7525[label="zwu189/Neg zwu1890",fontsize=10,color="white",style="solid",shape="box"];2482 -> 7525[label="",style="solid", color="burlywood", weight=9]; 7525 -> 2620[label="",style="solid", color="burlywood", weight=3]; 2483[label="primPlusInt (Neg zwu5120) zwu189",fontsize=16,color="burlywood",shape="box"];7526[label="zwu189/Pos zwu1890",fontsize=10,color="white",style="solid",shape="box"];2483 -> 7526[label="",style="solid", color="burlywood", weight=9]; 7526 -> 2621[label="",style="solid", color="burlywood", weight=3]; 7527[label="zwu189/Neg zwu1890",fontsize=10,color="white",style="solid",shape="box"];2483 -> 7527[label="",style="solid", color="burlywood", weight=9]; 7527 -> 2622[label="",style="solid", color="burlywood", weight=3]; 2608[label="FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514",fontsize=16,color="green",shape="box"];2609 -> 4807[label="",style="dashed", color="red", weight=0]; 2609[label="FiniteMap.mkBranch (Pos (Succ (Succ Zero))) zwu60 zwu61 zwu51 zwu64",fontsize=16,color="magenta"];2609 -> 4853[label="",style="dashed", color="magenta", weight=3]; 2609 -> 4854[label="",style="dashed", color="magenta", weight=3]; 2609 -> 4855[label="",style="dashed", color="magenta", weight=3]; 2609 -> 4856[label="",style="dashed", color="magenta", weight=3]; 2609 -> 4857[label="",style="dashed", color="magenta", weight=3]; 2610[label="error []",fontsize=16,color="red",shape="box"];2611[label="FiniteMap.mkBalBranch6MkBalBranch12 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514)",fontsize=16,color="black",shape="box"];2611 -> 2742[label="",style="solid", color="black", weight=3]; 2612 -> 1820[label="",style="dashed", color="red", weight=0]; 2612[label="FiniteMap.sizeFM zwu643",fontsize=16,color="magenta"];2612 -> 2743[label="",style="dashed", color="magenta", weight=3]; 2613 -> 1012[label="",style="dashed", color="red", weight=0]; 2613[label="Pos (Succ (Succ Zero)) * FiniteMap.sizeFM zwu644",fontsize=16,color="magenta"];2613 -> 2744[label="",style="dashed", color="magenta", weight=3]; 2613 -> 2745[label="",style="dashed", color="magenta", weight=3]; 2614[label="FiniteMap.mkBalBranch6MkBalBranch01 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu640 zwu641 zwu642 zwu643 zwu644 False",fontsize=16,color="black",shape="box"];2614 -> 2746[label="",style="solid", color="black", weight=3]; 2615[label="FiniteMap.mkBalBranch6MkBalBranch01 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu640 zwu641 zwu642 zwu643 zwu644 True",fontsize=16,color="black",shape="box"];2615 -> 2747[label="",style="solid", color="black", weight=3]; 5096[label="FiniteMap.sizeFM zwu276",fontsize=16,color="burlywood",shape="triangle"];7528[label="zwu276/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5096 -> 7528[label="",style="solid", color="burlywood", weight=9]; 7528 -> 5141[label="",style="solid", color="burlywood", weight=3]; 7529[label="zwu276/FiniteMap.Branch zwu2760 zwu2761 zwu2762 zwu2763 zwu2764",fontsize=10,color="white",style="solid",shape="box"];5096 -> 7529[label="",style="solid", color="burlywood", weight=9]; 7529 -> 5142[label="",style="solid", color="burlywood", weight=3]; 5097 -> 2457[label="",style="dashed", color="red", weight=0]; 5097[label="primPlusInt (Pos (Succ Zero)) (FiniteMap.mkBranchLeft_size zwu276 zwu273 zwu275)",fontsize=16,color="magenta"];5097 -> 5143[label="",style="dashed", color="magenta", weight=3]; 5097 -> 5144[label="",style="dashed", color="magenta", weight=3]; 2484[label="primMulNat (Succ zwu400100) (Succ zwu600000)",fontsize=16,color="black",shape="box"];2484 -> 2623[label="",style="solid", color="black", weight=3]; 2485[label="primMulNat (Succ zwu400100) Zero",fontsize=16,color="black",shape="box"];2485 -> 2624[label="",style="solid", color="black", weight=3]; 2486[label="primMulNat Zero (Succ zwu600000)",fontsize=16,color="black",shape="box"];2486 -> 2625[label="",style="solid", color="black", weight=3]; 2487[label="primMulNat Zero Zero",fontsize=16,color="black",shape="box"];2487 -> 2626[label="",style="solid", color="black", weight=3]; 2759[label="primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200",fontsize=16,color="burlywood",shape="triangle"];7530[label="zwu7200/Succ zwu72000",fontsize=10,color="white",style="solid",shape="box"];2759 -> 7530[label="",style="solid", color="burlywood", weight=9]; 7530 -> 2830[label="",style="solid", color="burlywood", weight=3]; 7531[label="zwu7200/Zero",fontsize=10,color="white",style="solid",shape="box"];2759 -> 7531[label="",style="solid", color="burlywood", weight=9]; 7531 -> 2831[label="",style="solid", color="burlywood", weight=3]; 2760[label="primPlusNat (Succ zwu1950) (Succ zwu600000)",fontsize=16,color="black",shape="box"];2760 -> 2832[label="",style="solid", color="black", weight=3]; 2761[label="primPlusNat Zero (Succ zwu600000)",fontsize=16,color="black",shape="box"];2761 -> 2833[label="",style="solid", color="black", weight=3]; 2762 -> 2759[label="",style="dashed", color="red", weight=0]; 2762[label="primPlusNat (Succ (primPlusNat (Succ (primPlusNat zwu7200 zwu7200)) zwu7200)) zwu7200",fontsize=16,color="magenta"];2762 -> 2844[label="",style="dashed", color="magenta", weight=3]; 2727 -> 414[label="",style="dashed", color="red", weight=0]; 2727[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2727 -> 2859[label="",style="dashed", color="magenta", weight=3]; 2727 -> 2860[label="",style="dashed", color="magenta", weight=3]; 2727 -> 2861[label="",style="dashed", color="magenta", weight=3]; 2727 -> 2862[label="",style="dashed", color="magenta", weight=3]; 2728[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2728 -> 2863[label="",style="solid", color="black", weight=3]; 2729[label="FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 FiniteMap.EmptyFM zwu84)",fontsize=16,color="black",shape="box"];2729 -> 2864[label="",style="solid", color="black", weight=3]; 2730[label="FiniteMap.deleteMin (FiniteMap.Branch zwu80 zwu81 zwu82 (FiniteMap.Branch zwu830 zwu831 zwu832 zwu833 zwu834) zwu84)",fontsize=16,color="black",shape="box"];2730 -> 2865[label="",style="solid", color="black", weight=3]; 2731[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2731 -> 2866[label="",style="solid", color="black", weight=3]; 2732 -> 414[label="",style="dashed", color="red", weight=0]; 2732[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)) (FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2732 -> 2867[label="",style="dashed", color="magenta", weight=3]; 2732 -> 2868[label="",style="dashed", color="magenta", weight=3]; 2732 -> 2869[label="",style="dashed", color="magenta", weight=3]; 2732 -> 2870[label="",style="dashed", color="magenta", weight=3]; 2733[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2733 -> 2871[label="",style="solid", color="black", weight=3]; 2734[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2734 -> 2872[label="",style="solid", color="black", weight=3]; 2735 -> 414[label="",style="dashed", color="red", weight=0]; 2735[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2735 -> 2873[label="",style="dashed", color="magenta", weight=3]; 2735 -> 2874[label="",style="dashed", color="magenta", weight=3]; 2735 -> 2875[label="",style="dashed", color="magenta", weight=3]; 2735 -> 2876[label="",style="dashed", color="magenta", weight=3]; 2736[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2736 -> 2877[label="",style="solid", color="black", weight=3]; 2737[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2737 -> 2878[label="",style="solid", color="black", weight=3]; 2738 -> 414[label="",style="dashed", color="red", weight=0]; 2738[label="FiniteMap.mkBalBranch (FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)) (FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)) (FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)) (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84)",fontsize=16,color="magenta"];2738 -> 2879[label="",style="dashed", color="magenta", weight=3]; 2738 -> 2880[label="",style="dashed", color="magenta", weight=3]; 2738 -> 2881[label="",style="dashed", color="magenta", weight=3]; 2738 -> 2882[label="",style="dashed", color="magenta", weight=3]; 2739[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2739 -> 2883[label="",style="solid", color="black", weight=3]; 2740[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv3 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2740 -> 2884[label="",style="solid", color="black", weight=3]; 4592 -> 1707[label="",style="dashed", color="red", weight=0]; 4592[label="compare (zwu43000 * Pos zwu440010) (Pos zwu430010 * zwu44000)",fontsize=16,color="magenta"];4592 -> 4686[label="",style="dashed", color="magenta", weight=3]; 4592 -> 4687[label="",style="dashed", color="magenta", weight=3]; 4593 -> 1707[label="",style="dashed", color="red", weight=0]; 4593[label="compare (zwu43000 * Pos zwu440010) (Neg zwu430010 * zwu44000)",fontsize=16,color="magenta"];4593 -> 4688[label="",style="dashed", color="magenta", weight=3]; 4593 -> 4689[label="",style="dashed", color="magenta", weight=3]; 4594 -> 1707[label="",style="dashed", color="red", weight=0]; 4594[label="compare (zwu43000 * Neg zwu440010) (Pos zwu430010 * zwu44000)",fontsize=16,color="magenta"];4594 -> 4690[label="",style="dashed", color="magenta", weight=3]; 4594 -> 4691[label="",style="dashed", color="magenta", weight=3]; 4595 -> 1707[label="",style="dashed", color="red", weight=0]; 4595[label="compare (zwu43000 * Neg zwu440010) (Neg zwu430010 * zwu44000)",fontsize=16,color="magenta"];4595 -> 4692[label="",style="dashed", color="magenta", weight=3]; 4595 -> 4693[label="",style="dashed", color="magenta", weight=3]; 4596 -> 135[label="",style="dashed", color="red", weight=0]; 4596[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4596 -> 4694[label="",style="dashed", color="magenta", weight=3]; 4596 -> 4695[label="",style="dashed", color="magenta", weight=3]; 4597 -> 2818[label="",style="dashed", color="red", weight=0]; 4597[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4597 -> 4696[label="",style="dashed", color="magenta", weight=3]; 4597 -> 4697[label="",style="dashed", color="magenta", weight=3]; 4598 -> 2817[label="",style="dashed", color="red", weight=0]; 4598[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4598 -> 4698[label="",style="dashed", color="magenta", weight=3]; 4598 -> 4699[label="",style="dashed", color="magenta", weight=3]; 4599 -> 2814[label="",style="dashed", color="red", weight=0]; 4599[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4599 -> 4700[label="",style="dashed", color="magenta", weight=3]; 4599 -> 4701[label="",style="dashed", color="magenta", weight=3]; 4600 -> 2824[label="",style="dashed", color="red", weight=0]; 4600[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4600 -> 4702[label="",style="dashed", color="magenta", weight=3]; 4600 -> 4703[label="",style="dashed", color="magenta", weight=3]; 4601 -> 2821[label="",style="dashed", color="red", weight=0]; 4601[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4601 -> 4704[label="",style="dashed", color="magenta", weight=3]; 4601 -> 4705[label="",style="dashed", color="magenta", weight=3]; 4602 -> 2825[label="",style="dashed", color="red", weight=0]; 4602[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4602 -> 4706[label="",style="dashed", color="magenta", weight=3]; 4602 -> 4707[label="",style="dashed", color="magenta", weight=3]; 4603 -> 2812[label="",style="dashed", color="red", weight=0]; 4603[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4603 -> 4708[label="",style="dashed", color="magenta", weight=3]; 4603 -> 4709[label="",style="dashed", color="magenta", weight=3]; 4604 -> 2816[label="",style="dashed", color="red", weight=0]; 4604[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4604 -> 4710[label="",style="dashed", color="magenta", weight=3]; 4604 -> 4711[label="",style="dashed", color="magenta", weight=3]; 4605 -> 2813[label="",style="dashed", color="red", weight=0]; 4605[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4605 -> 4712[label="",style="dashed", color="magenta", weight=3]; 4605 -> 4713[label="",style="dashed", color="magenta", weight=3]; 4606 -> 2819[label="",style="dashed", color="red", weight=0]; 4606[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4606 -> 4714[label="",style="dashed", color="magenta", weight=3]; 4606 -> 4715[label="",style="dashed", color="magenta", weight=3]; 4607 -> 2820[label="",style="dashed", color="red", weight=0]; 4607[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4607 -> 4716[label="",style="dashed", color="magenta", weight=3]; 4607 -> 4717[label="",style="dashed", color="magenta", weight=3]; 4608 -> 2823[label="",style="dashed", color="red", weight=0]; 4608[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4608 -> 4718[label="",style="dashed", color="magenta", weight=3]; 4608 -> 4719[label="",style="dashed", color="magenta", weight=3]; 4609 -> 2815[label="",style="dashed", color="red", weight=0]; 4609[label="zwu43001 == zwu44001",fontsize=16,color="magenta"];4609 -> 4720[label="",style="dashed", color="magenta", weight=3]; 4609 -> 4721[label="",style="dashed", color="magenta", weight=3]; 4610 -> 3516[label="",style="dashed", color="red", weight=0]; 4610[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4610 -> 4722[label="",style="dashed", color="magenta", weight=3]; 4610 -> 4723[label="",style="dashed", color="magenta", weight=3]; 4611 -> 3517[label="",style="dashed", color="red", weight=0]; 4611[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4611 -> 4724[label="",style="dashed", color="magenta", weight=3]; 4611 -> 4725[label="",style="dashed", color="magenta", weight=3]; 4612 -> 3518[label="",style="dashed", color="red", weight=0]; 4612[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4612 -> 4726[label="",style="dashed", color="magenta", weight=3]; 4612 -> 4727[label="",style="dashed", color="magenta", weight=3]; 4613 -> 3519[label="",style="dashed", color="red", weight=0]; 4613[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4613 -> 4728[label="",style="dashed", color="magenta", weight=3]; 4613 -> 4729[label="",style="dashed", color="magenta", weight=3]; 4614 -> 3520[label="",style="dashed", color="red", weight=0]; 4614[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4614 -> 4730[label="",style="dashed", color="magenta", weight=3]; 4614 -> 4731[label="",style="dashed", color="magenta", weight=3]; 4615 -> 3521[label="",style="dashed", color="red", weight=0]; 4615[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4615 -> 4732[label="",style="dashed", color="magenta", weight=3]; 4615 -> 4733[label="",style="dashed", color="magenta", weight=3]; 4616 -> 3522[label="",style="dashed", color="red", weight=0]; 4616[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4616 -> 4734[label="",style="dashed", color="magenta", weight=3]; 4616 -> 4735[label="",style="dashed", color="magenta", weight=3]; 4617 -> 3523[label="",style="dashed", color="red", weight=0]; 4617[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4617 -> 4736[label="",style="dashed", color="magenta", weight=3]; 4617 -> 4737[label="",style="dashed", color="magenta", weight=3]; 4618 -> 3524[label="",style="dashed", color="red", weight=0]; 4618[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4618 -> 4738[label="",style="dashed", color="magenta", weight=3]; 4618 -> 4739[label="",style="dashed", color="magenta", weight=3]; 4619 -> 3525[label="",style="dashed", color="red", weight=0]; 4619[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4619 -> 4740[label="",style="dashed", color="magenta", weight=3]; 4619 -> 4741[label="",style="dashed", color="magenta", weight=3]; 4620 -> 3526[label="",style="dashed", color="red", weight=0]; 4620[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4620 -> 4742[label="",style="dashed", color="magenta", weight=3]; 4620 -> 4743[label="",style="dashed", color="magenta", weight=3]; 4621 -> 3527[label="",style="dashed", color="red", weight=0]; 4621[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4621 -> 4744[label="",style="dashed", color="magenta", weight=3]; 4621 -> 4745[label="",style="dashed", color="magenta", weight=3]; 4622 -> 3528[label="",style="dashed", color="red", weight=0]; 4622[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4622 -> 4746[label="",style="dashed", color="magenta", weight=3]; 4622 -> 4747[label="",style="dashed", color="magenta", weight=3]; 4623 -> 3529[label="",style="dashed", color="red", weight=0]; 4623[label="zwu43002 <= zwu44002",fontsize=16,color="magenta"];4623 -> 4748[label="",style="dashed", color="magenta", weight=3]; 4623 -> 4749[label="",style="dashed", color="magenta", weight=3]; 4624[label="zwu43001",fontsize=16,color="green",shape="box"];4625[label="zwu44001",fontsize=16,color="green",shape="box"];4626[label="zwu43001",fontsize=16,color="green",shape="box"];4627[label="zwu44001",fontsize=16,color="green",shape="box"];4628[label="zwu43001",fontsize=16,color="green",shape="box"];4629[label="zwu44001",fontsize=16,color="green",shape="box"];4630[label="zwu43001",fontsize=16,color="green",shape="box"];4631[label="zwu44001",fontsize=16,color="green",shape="box"];4632[label="zwu43001",fontsize=16,color="green",shape="box"];4633[label="zwu44001",fontsize=16,color="green",shape="box"];4634[label="zwu43001",fontsize=16,color="green",shape="box"];4635[label="zwu44001",fontsize=16,color="green",shape="box"];4636[label="zwu43001",fontsize=16,color="green",shape="box"];4637[label="zwu44001",fontsize=16,color="green",shape="box"];4638[label="zwu43001",fontsize=16,color="green",shape="box"];4639[label="zwu44001",fontsize=16,color="green",shape="box"];4640[label="zwu43001",fontsize=16,color="green",shape="box"];4641[label="zwu44001",fontsize=16,color="green",shape="box"];4642[label="zwu43001",fontsize=16,color="green",shape="box"];4643[label="zwu44001",fontsize=16,color="green",shape="box"];4644[label="zwu43001",fontsize=16,color="green",shape="box"];4645[label="zwu44001",fontsize=16,color="green",shape="box"];4646[label="zwu43001",fontsize=16,color="green",shape="box"];4647[label="zwu44001",fontsize=16,color="green",shape="box"];4648[label="zwu43001",fontsize=16,color="green",shape="box"];4649[label="zwu44001",fontsize=16,color="green",shape="box"];4650[label="zwu43001",fontsize=16,color="green",shape="box"];4651[label="zwu44001",fontsize=16,color="green",shape="box"];4652[label="compare3 zwu43000 zwu44000",fontsize=16,color="black",shape="box"];4652 -> 4750[label="",style="solid", color="black", weight=3]; 4653[label="compare3 zwu43000 zwu44000",fontsize=16,color="black",shape="box"];4653 -> 4751[label="",style="solid", color="black", weight=3]; 4654[label="zwu44000",fontsize=16,color="green",shape="box"];4655[label="zwu43000",fontsize=16,color="green",shape="box"];4656[label="compare3 zwu43000 zwu44000",fontsize=16,color="black",shape="box"];4656 -> 4752[label="",style="solid", color="black", weight=3]; 4657[label="compare3 zwu43000 zwu44000",fontsize=16,color="black",shape="box"];4657 -> 4753[label="",style="solid", color="black", weight=3]; 4658[label="zwu44000",fontsize=16,color="green",shape="box"];4659[label="zwu43000",fontsize=16,color="green",shape="box"];4660[label="zwu44000",fontsize=16,color="green",shape="box"];4661[label="zwu43000",fontsize=16,color="green",shape="box"];4662[label="compare3 zwu43000 zwu44000",fontsize=16,color="black",shape="box"];4662 -> 4754[label="",style="solid", color="black", weight=3]; 2251[label="LT",fontsize=16,color="green",shape="box"];2252 -> 1707[label="",style="dashed", color="red", weight=0]; 2252[label="compare zwu430 zwu440",fontsize=16,color="magenta"];2252 -> 2501[label="",style="dashed", color="magenta", weight=3]; 2252 -> 2502[label="",style="dashed", color="magenta", weight=3]; 4663[label="zwu44000",fontsize=16,color="green",shape="box"];4664[label="zwu43000",fontsize=16,color="green",shape="box"];4665[label="zwu44000",fontsize=16,color="green",shape="box"];4666[label="zwu43000",fontsize=16,color="green",shape="box"];4667[label="zwu44000",fontsize=16,color="green",shape="box"];4668[label="zwu43000",fontsize=16,color="green",shape="box"];4669[label="zwu44000",fontsize=16,color="green",shape="box"];4670[label="zwu43000",fontsize=16,color="green",shape="box"];4671[label="compare3 zwu43000 zwu44000",fontsize=16,color="black",shape="box"];4671 -> 4755[label="",style="solid", color="black", weight=3]; 4673[label="compare zwu43000 zwu44000",fontsize=16,color="blue",shape="box"];7532[label="compare :: Ordering -> Ordering -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7532[label="",style="solid", color="blue", weight=9]; 7532 -> 4756[label="",style="solid", color="blue", weight=3]; 7533[label="compare :: Bool -> Bool -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7533[label="",style="solid", color="blue", weight=9]; 7533 -> 4757[label="",style="solid", color="blue", weight=3]; 7534[label="compare :: Float -> Float -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7534[label="",style="solid", color="blue", weight=9]; 7534 -> 4758[label="",style="solid", color="blue", weight=3]; 7535[label="compare :: ((@3) a b c) -> ((@3) a b c) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7535[label="",style="solid", color="blue", weight=9]; 7535 -> 4759[label="",style="solid", color="blue", weight=3]; 7536[label="compare :: ((@2) a b) -> ((@2) a b) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7536[label="",style="solid", color="blue", weight=9]; 7536 -> 4760[label="",style="solid", color="blue", weight=3]; 7537[label="compare :: Integer -> Integer -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7537[label="",style="solid", color="blue", weight=9]; 7537 -> 4761[label="",style="solid", color="blue", weight=3]; 7538[label="compare :: ([] a) -> ([] a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7538[label="",style="solid", color="blue", weight=9]; 7538 -> 4762[label="",style="solid", color="blue", weight=3]; 7539[label="compare :: (Maybe a) -> (Maybe a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7539[label="",style="solid", color="blue", weight=9]; 7539 -> 4763[label="",style="solid", color="blue", weight=3]; 7540[label="compare :: Int -> Int -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7540[label="",style="solid", color="blue", weight=9]; 7540 -> 4764[label="",style="solid", color="blue", weight=3]; 7541[label="compare :: (Ratio a) -> (Ratio a) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7541[label="",style="solid", color="blue", weight=9]; 7541 -> 4765[label="",style="solid", color="blue", weight=3]; 7542[label="compare :: () -> () -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7542[label="",style="solid", color="blue", weight=9]; 7542 -> 4766[label="",style="solid", color="blue", weight=3]; 7543[label="compare :: Double -> Double -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7543[label="",style="solid", color="blue", weight=9]; 7543 -> 4767[label="",style="solid", color="blue", weight=3]; 7544[label="compare :: Char -> Char -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7544[label="",style="solid", color="blue", weight=9]; 7544 -> 4768[label="",style="solid", color="blue", weight=3]; 7545[label="compare :: (Either a b) -> (Either a b) -> Ordering",fontsize=10,color="white",style="solid",shape="box"];4673 -> 7545[label="",style="solid", color="blue", weight=9]; 7545 -> 4769[label="",style="solid", color="blue", weight=3]; 4674[label="zwu265",fontsize=16,color="green",shape="box"];4672[label="primCompAux0 zwu269 zwu270",fontsize=16,color="burlywood",shape="triangle"];7546[label="zwu270/LT",fontsize=10,color="white",style="solid",shape="box"];4672 -> 7546[label="",style="solid", color="burlywood", weight=9]; 7546 -> 4770[label="",style="solid", color="burlywood", weight=3]; 7547[label="zwu270/EQ",fontsize=10,color="white",style="solid",shape="box"];4672 -> 7547[label="",style="solid", color="burlywood", weight=9]; 7547 -> 4771[label="",style="solid", color="burlywood", weight=3]; 7548[label="zwu270/GT",fontsize=10,color="white",style="solid",shape="box"];4672 -> 7548[label="",style="solid", color="burlywood", weight=9]; 7548 -> 4772[label="",style="solid", color="burlywood", weight=3]; 2704[label="primCmpNat (Succ zwu4300) zwu440",fontsize=16,color="burlywood",shape="triangle"];7549[label="zwu440/Succ zwu4400",fontsize=10,color="white",style="solid",shape="box"];2704 -> 7549[label="",style="solid", color="burlywood", weight=9]; 7549 -> 2932[label="",style="solid", color="burlywood", weight=3]; 7550[label="zwu440/Zero",fontsize=10,color="white",style="solid",shape="box"];2704 -> 7550[label="",style="solid", color="burlywood", weight=9]; 7550 -> 2933[label="",style="solid", color="burlywood", weight=3]; 2705[label="GT",fontsize=16,color="green",shape="box"];2706[label="primCmpInt (Pos Zero) (Pos (Succ zwu4400))",fontsize=16,color="black",shape="box"];2706 -> 2934[label="",style="solid", color="black", weight=3]; 2707[label="primCmpInt (Pos Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];2707 -> 2935[label="",style="solid", color="black", weight=3]; 2708[label="primCmpInt (Pos Zero) (Neg (Succ zwu4400))",fontsize=16,color="black",shape="box"];2708 -> 2936[label="",style="solid", color="black", weight=3]; 2709[label="primCmpInt (Pos Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];2709 -> 2937[label="",style="solid", color="black", weight=3]; 2710[label="LT",fontsize=16,color="green",shape="box"];2711[label="primCmpNat zwu440 (Succ zwu4300)",fontsize=16,color="burlywood",shape="triangle"];7551[label="zwu440/Succ zwu4400",fontsize=10,color="white",style="solid",shape="box"];2711 -> 7551[label="",style="solid", color="burlywood", weight=9]; 7551 -> 2938[label="",style="solid", color="burlywood", weight=3]; 7552[label="zwu440/Zero",fontsize=10,color="white",style="solid",shape="box"];2711 -> 7552[label="",style="solid", color="burlywood", weight=9]; 7552 -> 2939[label="",style="solid", color="burlywood", weight=3]; 2712[label="primCmpInt (Neg Zero) (Pos (Succ zwu4400))",fontsize=16,color="black",shape="box"];2712 -> 2940[label="",style="solid", color="black", weight=3]; 2713[label="primCmpInt (Neg Zero) (Pos Zero)",fontsize=16,color="black",shape="box"];2713 -> 2941[label="",style="solid", color="black", weight=3]; 2714[label="primCmpInt (Neg Zero) (Neg (Succ zwu4400))",fontsize=16,color="black",shape="box"];2714 -> 2942[label="",style="solid", color="black", weight=3]; 2715[label="primCmpInt (Neg Zero) (Neg Zero)",fontsize=16,color="black",shape="box"];2715 -> 2943[label="",style="solid", color="black", weight=3]; 4675[label="Integer zwu440000 * zwu43001",fontsize=16,color="burlywood",shape="box"];7553[label="zwu43001/Integer zwu430010",fontsize=10,color="white",style="solid",shape="box"];4675 -> 7553[label="",style="solid", color="burlywood", weight=9]; 7553 -> 4904[label="",style="solid", color="burlywood", weight=3]; 4676[label="zwu44001",fontsize=16,color="green",shape="box"];4677[label="zwu43000",fontsize=16,color="green",shape="box"];4678[label="zwu44001",fontsize=16,color="green",shape="box"];4679[label="zwu43000",fontsize=16,color="green",shape="box"];4680[label="zwu43001",fontsize=16,color="green",shape="box"];4681[label="zwu44000",fontsize=16,color="green",shape="box"];4682 -> 1707[label="",style="dashed", color="red", weight=0]; 4682[label="compare (zwu43000 * Pos zwu440010) (Pos zwu430010 * zwu44000)",fontsize=16,color="magenta"];4682 -> 4905[label="",style="dashed", color="magenta", weight=3]; 4682 -> 4906[label="",style="dashed", color="magenta", weight=3]; 4683 -> 1707[label="",style="dashed", color="red", weight=0]; 4683[label="compare (zwu43000 * Pos zwu440010) (Neg zwu430010 * zwu44000)",fontsize=16,color="magenta"];4683 -> 4907[label="",style="dashed", color="magenta", weight=3]; 4683 -> 4908[label="",style="dashed", color="magenta", weight=3]; 4684 -> 1707[label="",style="dashed", color="red", weight=0]; 4684[label="compare (zwu43000 * Neg zwu440010) (Pos zwu430010 * zwu44000)",fontsize=16,color="magenta"];4684 -> 4909[label="",style="dashed", color="magenta", weight=3]; 4684 -> 4910[label="",style="dashed", color="magenta", weight=3]; 4685 -> 1707[label="",style="dashed", color="red", weight=0]; 4685[label="compare (zwu43000 * Neg zwu440010) (Neg zwu430010 * zwu44000)",fontsize=16,color="magenta"];4685 -> 4911[label="",style="dashed", color="magenta", weight=3]; 4685 -> 4912[label="",style="dashed", color="magenta", weight=3]; 3180[label="primCmpNat (Succ zwu43000) zwu4400",fontsize=16,color="burlywood",shape="box"];7554[label="zwu4400/Succ zwu44000",fontsize=10,color="white",style="solid",shape="box"];3180 -> 7554[label="",style="solid", color="burlywood", weight=9]; 7554 -> 3544[label="",style="solid", color="burlywood", weight=3]; 7555[label="zwu4400/Zero",fontsize=10,color="white",style="solid",shape="box"];3180 -> 7555[label="",style="solid", color="burlywood", weight=9]; 7555 -> 3545[label="",style="solid", color="burlywood", weight=3]; 3181[label="primCmpNat Zero zwu4400",fontsize=16,color="burlywood",shape="box"];7556[label="zwu4400/Succ zwu44000",fontsize=10,color="white",style="solid",shape="box"];3181 -> 7556[label="",style="solid", color="burlywood", weight=9]; 7556 -> 3546[label="",style="solid", color="burlywood", weight=3]; 7557[label="zwu4400/Zero",fontsize=10,color="white",style="solid",shape="box"];3181 -> 7557[label="",style="solid", color="burlywood", weight=9]; 7557 -> 3547[label="",style="solid", color="burlywood", weight=3]; 2619[label="primPlusInt (Pos zwu5120) (Pos zwu1890)",fontsize=16,color="black",shape="box"];2619 -> 2749[label="",style="solid", color="black", weight=3]; 2620[label="primPlusInt (Pos zwu5120) (Neg zwu1890)",fontsize=16,color="black",shape="box"];2620 -> 2750[label="",style="solid", color="black", weight=3]; 2621[label="primPlusInt (Neg zwu5120) (Pos zwu1890)",fontsize=16,color="black",shape="box"];2621 -> 2751[label="",style="solid", color="black", weight=3]; 2622[label="primPlusInt (Neg zwu5120) (Neg zwu1890)",fontsize=16,color="black",shape="box"];2622 -> 2752[label="",style="solid", color="black", weight=3]; 4853[label="Succ Zero",fontsize=16,color="green",shape="box"];4854[label="zwu61",fontsize=16,color="green",shape="box"];4855[label="zwu60",fontsize=16,color="green",shape="box"];4856[label="zwu64",fontsize=16,color="green",shape="box"];4857[label="zwu51",fontsize=16,color="green",shape="box"];2742 -> 2885[label="",style="dashed", color="red", weight=0]; 2742[label="FiniteMap.mkBalBranch6MkBalBranch11 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 zwu510 zwu511 zwu512 zwu513 zwu514 (FiniteMap.sizeFM zwu514 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM zwu513)",fontsize=16,color="magenta"];2742 -> 2886[label="",style="dashed", color="magenta", weight=3]; 2743[label="zwu643",fontsize=16,color="green",shape="box"];2744 -> 1820[label="",style="dashed", color="red", weight=0]; 2744[label="FiniteMap.sizeFM zwu644",fontsize=16,color="magenta"];2744 -> 2920[label="",style="dashed", color="magenta", weight=3]; 2745[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];2746[label="FiniteMap.mkBalBranch6MkBalBranch00 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu640 zwu641 zwu642 zwu643 zwu644 otherwise",fontsize=16,color="black",shape="box"];2746 -> 2921[label="",style="solid", color="black", weight=3]; 2747[label="FiniteMap.mkBalBranch6Single_L (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644)",fontsize=16,color="black",shape="box"];2747 -> 2922[label="",style="solid", color="black", weight=3]; 5141[label="FiniteMap.sizeFM FiniteMap.EmptyFM",fontsize=16,color="black",shape="box"];5141 -> 5149[label="",style="solid", color="black", weight=3]; 5142[label="FiniteMap.sizeFM (FiniteMap.Branch zwu2760 zwu2761 zwu2762 zwu2763 zwu2764)",fontsize=16,color="black",shape="box"];5142 -> 5150[label="",style="solid", color="black", weight=3]; 5143[label="FiniteMap.mkBranchLeft_size zwu276 zwu273 zwu275",fontsize=16,color="black",shape="box"];5143 -> 5151[label="",style="solid", color="black", weight=3]; 5144[label="Pos (Succ Zero)",fontsize=16,color="green",shape="box"];2623 -> 2753[label="",style="dashed", color="red", weight=0]; 2623[label="primPlusNat (primMulNat zwu400100 (Succ zwu600000)) (Succ zwu600000)",fontsize=16,color="magenta"];2623 -> 2758[label="",style="dashed", color="magenta", weight=3]; 2624[label="Zero",fontsize=16,color="green",shape="box"];2625[label="Zero",fontsize=16,color="green",shape="box"];2626[label="Zero",fontsize=16,color="green",shape="box"];2830[label="primPlusNat (Succ (primPlusNat (Succ (primPlusNat (Succ zwu72000) (Succ zwu72000))) (Succ zwu72000))) (Succ zwu72000)",fontsize=16,color="black",shape="box"];2830 -> 2929[label="",style="solid", color="black", weight=3]; 2831[label="primPlusNat (Succ (primPlusNat (Succ (primPlusNat Zero Zero)) Zero)) Zero",fontsize=16,color="black",shape="box"];2831 -> 2930[label="",style="solid", color="black", weight=3]; 2832[label="Succ (Succ (primPlusNat zwu1950 zwu600000))",fontsize=16,color="green",shape="box"];2832 -> 2931[label="",style="dashed", color="green", weight=3]; 2833[label="Succ zwu600000",fontsize=16,color="green",shape="box"];2844[label="zwu7200",fontsize=16,color="green",shape="box"];2859[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="burlywood",shape="box"];7558[label="zwu94/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2859 -> 7558[label="",style="solid", color="burlywood", weight=9]; 7558 -> 2948[label="",style="solid", color="burlywood", weight=3]; 7559[label="zwu94/FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944",fontsize=10,color="white",style="solid",shape="box"];2859 -> 7559[label="",style="solid", color="burlywood", weight=9]; 7559 -> 2949[label="",style="solid", color="burlywood", weight=3]; 2860[label="FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2860 -> 2950[label="",style="solid", color="black", weight=3]; 2861[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2862[label="FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2862 -> 2951[label="",style="solid", color="black", weight=3]; 2863 -> 5188[label="",style="dashed", color="red", weight=0]; 2863[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2863 -> 5189[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5190[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5191[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5192[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5193[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5194[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5195[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5196[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5197[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5198[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5199[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5200[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5201[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5202[label="",style="dashed", color="magenta", weight=3]; 2863 -> 5203[label="",style="dashed", color="magenta", weight=3]; 2864[label="zwu84",fontsize=16,color="green",shape="box"];2865 -> 414[label="",style="dashed", color="red", weight=0]; 2865[label="FiniteMap.mkBalBranch zwu80 zwu81 (FiniteMap.deleteMin (FiniteMap.Branch zwu830 zwu831 zwu832 zwu833 zwu834)) zwu84",fontsize=16,color="magenta"];2865 -> 2954[label="",style="dashed", color="magenta", weight=3]; 2865 -> 2955[label="",style="dashed", color="magenta", weight=3]; 2865 -> 2956[label="",style="dashed", color="magenta", weight=3]; 2865 -> 2957[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5292[label="",style="dashed", color="red", weight=0]; 2866[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2866 -> 5293[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5294[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5295[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5296[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5297[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5298[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5299[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5300[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5301[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5302[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5303[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5304[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5305[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5306[label="",style="dashed", color="magenta", weight=3]; 2866 -> 5307[label="",style="dashed", color="magenta", weight=3]; 2867[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="burlywood",shape="box"];7560[label="zwu94/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2867 -> 7560[label="",style="solid", color="burlywood", weight=9]; 7560 -> 2960[label="",style="solid", color="burlywood", weight=3]; 7561[label="zwu94/FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944",fontsize=10,color="white",style="solid",shape="box"];2867 -> 7561[label="",style="solid", color="burlywood", weight=9]; 7561 -> 2961[label="",style="solid", color="burlywood", weight=3]; 2868[label="FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2868 -> 2962[label="",style="solid", color="black", weight=3]; 2869[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2870[label="FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2870 -> 2963[label="",style="solid", color="black", weight=3]; 2871 -> 5399[label="",style="dashed", color="red", weight=0]; 2871[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2871 -> 5400[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5401[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5402[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5403[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5404[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5405[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5406[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5407[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5408[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5409[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5410[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5411[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5412[label="",style="dashed", color="magenta", weight=3]; 2871 -> 5413[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5500[label="",style="dashed", color="red", weight=0]; 2872[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2872 -> 5501[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5502[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5503[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5504[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5505[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5506[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5507[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5508[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5509[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5510[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5511[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5512[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5513[label="",style="dashed", color="magenta", weight=3]; 2872 -> 5514[label="",style="dashed", color="magenta", weight=3]; 2873[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="burlywood",shape="box"];7562[label="zwu94/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2873 -> 7562[label="",style="solid", color="burlywood", weight=9]; 7562 -> 2968[label="",style="solid", color="burlywood", weight=3]; 7563[label="zwu94/FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944",fontsize=10,color="white",style="solid",shape="box"];2873 -> 7563[label="",style="solid", color="burlywood", weight=9]; 7563 -> 2969[label="",style="solid", color="burlywood", weight=3]; 2874[label="FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2874 -> 2970[label="",style="solid", color="black", weight=3]; 2875[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2876[label="FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2876 -> 2971[label="",style="solid", color="black", weight=3]; 2877 -> 5602[label="",style="dashed", color="red", weight=0]; 2877[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2877 -> 5603[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5604[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5605[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5606[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5607[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5608[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5609[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5610[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5611[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5612[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5613[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5614[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5615[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5616[label="",style="dashed", color="magenta", weight=3]; 2877 -> 5617[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5704[label="",style="dashed", color="red", weight=0]; 2878[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2878 -> 5705[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5706[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5707[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5708[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5709[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5710[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5711[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5712[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5713[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5714[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5715[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5716[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5717[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5718[label="",style="dashed", color="magenta", weight=3]; 2878 -> 5719[label="",style="dashed", color="magenta", weight=3]; 2879[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="burlywood",shape="box"];7564[label="zwu94/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];2879 -> 7564[label="",style="solid", color="burlywood", weight=9]; 7564 -> 2976[label="",style="solid", color="burlywood", weight=3]; 7565[label="zwu94/FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944",fontsize=10,color="white",style="solid",shape="box"];2879 -> 7565[label="",style="solid", color="burlywood", weight=9]; 7565 -> 2977[label="",style="solid", color="burlywood", weight=3]; 2880[label="FiniteMap.glueBal2Mid_elt1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2880 -> 2978[label="",style="solid", color="black", weight=3]; 2881[label="FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84",fontsize=16,color="green",shape="box"];2882[label="FiniteMap.glueBal2Mid_key1 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94)",fontsize=16,color="black",shape="box"];2882 -> 2979[label="",style="solid", color="black", weight=3]; 2883 -> 5812[label="",style="dashed", color="red", weight=0]; 2883[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2883 -> 5813[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5814[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5815[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5816[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5817[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5818[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5819[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5820[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5821[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5822[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5823[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5824[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5825[label="",style="dashed", color="magenta", weight=3]; 2883 -> 5826[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5908[label="",style="dashed", color="red", weight=0]; 2884[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.findMin (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84))",fontsize=16,color="magenta"];2884 -> 5909[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5910[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5911[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5912[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5913[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5914[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5915[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5916[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5917[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5918[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5919[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5920[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5921[label="",style="dashed", color="magenta", weight=3]; 2884 -> 5922[label="",style="dashed", color="magenta", weight=3]; 4686 -> 1012[label="",style="dashed", color="red", weight=0]; 4686[label="zwu43000 * Pos zwu440010",fontsize=16,color="magenta"];4686 -> 4913[label="",style="dashed", color="magenta", weight=3]; 4686 -> 4914[label="",style="dashed", color="magenta", weight=3]; 4687 -> 1012[label="",style="dashed", color="red", weight=0]; 4687[label="Pos zwu430010 * zwu44000",fontsize=16,color="magenta"];4687 -> 4915[label="",style="dashed", color="magenta", weight=3]; 4687 -> 4916[label="",style="dashed", color="magenta", weight=3]; 4688 -> 1012[label="",style="dashed", color="red", weight=0]; 4688[label="zwu43000 * Pos zwu440010",fontsize=16,color="magenta"];4688 -> 4917[label="",style="dashed", color="magenta", weight=3]; 4688 -> 4918[label="",style="dashed", color="magenta", weight=3]; 4689 -> 1012[label="",style="dashed", color="red", weight=0]; 4689[label="Neg zwu430010 * zwu44000",fontsize=16,color="magenta"];4689 -> 4919[label="",style="dashed", color="magenta", weight=3]; 4689 -> 4920[label="",style="dashed", color="magenta", weight=3]; 4690 -> 1012[label="",style="dashed", color="red", weight=0]; 4690[label="zwu43000 * Neg zwu440010",fontsize=16,color="magenta"];4690 -> 4921[label="",style="dashed", color="magenta", weight=3]; 4690 -> 4922[label="",style="dashed", color="magenta", weight=3]; 4691 -> 1012[label="",style="dashed", color="red", weight=0]; 4691[label="Pos zwu430010 * zwu44000",fontsize=16,color="magenta"];4691 -> 4923[label="",style="dashed", color="magenta", weight=3]; 4691 -> 4924[label="",style="dashed", color="magenta", weight=3]; 4692 -> 1012[label="",style="dashed", color="red", weight=0]; 4692[label="zwu43000 * Neg zwu440010",fontsize=16,color="magenta"];4692 -> 4925[label="",style="dashed", color="magenta", weight=3]; 4692 -> 4926[label="",style="dashed", color="magenta", weight=3]; 4693 -> 1012[label="",style="dashed", color="red", weight=0]; 4693[label="Neg zwu430010 * zwu44000",fontsize=16,color="magenta"];4693 -> 4927[label="",style="dashed", color="magenta", weight=3]; 4693 -> 4928[label="",style="dashed", color="magenta", weight=3]; 4694[label="zwu44001",fontsize=16,color="green",shape="box"];4695[label="zwu43001",fontsize=16,color="green",shape="box"];4696[label="zwu44001",fontsize=16,color="green",shape="box"];4697[label="zwu43001",fontsize=16,color="green",shape="box"];4698[label="zwu44001",fontsize=16,color="green",shape="box"];4699[label="zwu43001",fontsize=16,color="green",shape="box"];4700[label="zwu44001",fontsize=16,color="green",shape="box"];4701[label="zwu43001",fontsize=16,color="green",shape="box"];4702[label="zwu44001",fontsize=16,color="green",shape="box"];4703[label="zwu43001",fontsize=16,color="green",shape="box"];4704[label="zwu44001",fontsize=16,color="green",shape="box"];4705[label="zwu43001",fontsize=16,color="green",shape="box"];4706[label="zwu44001",fontsize=16,color="green",shape="box"];4707[label="zwu43001",fontsize=16,color="green",shape="box"];4708[label="zwu44001",fontsize=16,color="green",shape="box"];4709[label="zwu43001",fontsize=16,color="green",shape="box"];4710[label="zwu44001",fontsize=16,color="green",shape="box"];4711[label="zwu43001",fontsize=16,color="green",shape="box"];4712[label="zwu44001",fontsize=16,color="green",shape="box"];4713[label="zwu43001",fontsize=16,color="green",shape="box"];4714[label="zwu44001",fontsize=16,color="green",shape="box"];4715[label="zwu43001",fontsize=16,color="green",shape="box"];4716[label="zwu44001",fontsize=16,color="green",shape="box"];4717[label="zwu43001",fontsize=16,color="green",shape="box"];4718[label="zwu44001",fontsize=16,color="green",shape="box"];4719[label="zwu43001",fontsize=16,color="green",shape="box"];4720[label="zwu44001",fontsize=16,color="green",shape="box"];4721[label="zwu43001",fontsize=16,color="green",shape="box"];4722[label="zwu44002",fontsize=16,color="green",shape="box"];4723[label="zwu43002",fontsize=16,color="green",shape="box"];4724[label="zwu44002",fontsize=16,color="green",shape="box"];4725[label="zwu43002",fontsize=16,color="green",shape="box"];4726[label="zwu44002",fontsize=16,color="green",shape="box"];4727[label="zwu43002",fontsize=16,color="green",shape="box"];4728[label="zwu44002",fontsize=16,color="green",shape="box"];4729[label="zwu43002",fontsize=16,color="green",shape="box"];4730[label="zwu44002",fontsize=16,color="green",shape="box"];4731[label="zwu43002",fontsize=16,color="green",shape="box"];4732[label="zwu44002",fontsize=16,color="green",shape="box"];4733[label="zwu43002",fontsize=16,color="green",shape="box"];4734[label="zwu44002",fontsize=16,color="green",shape="box"];4735[label="zwu43002",fontsize=16,color="green",shape="box"];4736[label="zwu44002",fontsize=16,color="green",shape="box"];4737[label="zwu43002",fontsize=16,color="green",shape="box"];4738[label="zwu44002",fontsize=16,color="green",shape="box"];4739[label="zwu43002",fontsize=16,color="green",shape="box"];4740[label="zwu44002",fontsize=16,color="green",shape="box"];4741[label="zwu43002",fontsize=16,color="green",shape="box"];4742[label="zwu44002",fontsize=16,color="green",shape="box"];4743[label="zwu43002",fontsize=16,color="green",shape="box"];4744[label="zwu44002",fontsize=16,color="green",shape="box"];4745[label="zwu43002",fontsize=16,color="green",shape="box"];4746[label="zwu44002",fontsize=16,color="green",shape="box"];4747[label="zwu43002",fontsize=16,color="green",shape="box"];4748[label="zwu44002",fontsize=16,color="green",shape="box"];4749[label="zwu43002",fontsize=16,color="green",shape="box"];4750 -> 4929[label="",style="dashed", color="red", weight=0]; 4750[label="compare2 zwu43000 zwu44000 (zwu43000 == zwu44000)",fontsize=16,color="magenta"];4750 -> 4930[label="",style="dashed", color="magenta", weight=3]; 4751 -> 4932[label="",style="dashed", color="red", weight=0]; 4751[label="compare2 zwu43000 zwu44000 (zwu43000 == zwu44000)",fontsize=16,color="magenta"];4751 -> 4933[label="",style="dashed", color="magenta", weight=3]; 4752 -> 4935[label="",style="dashed", color="red", weight=0]; 4752[label="compare2 zwu43000 zwu44000 (zwu43000 == zwu44000)",fontsize=16,color="magenta"];4752 -> 4936[label="",style="dashed", color="magenta", weight=3]; 4753 -> 4938[label="",style="dashed", color="red", weight=0]; 4753[label="compare2 zwu43000 zwu44000 (zwu43000 == zwu44000)",fontsize=16,color="magenta"];4753 -> 4939[label="",style="dashed", color="magenta", weight=3]; 4754 -> 2775[label="",style="dashed", color="red", weight=0]; 4754[label="compare2 zwu43000 zwu44000 (zwu43000 == zwu44000)",fontsize=16,color="magenta"];4754 -> 4941[label="",style="dashed", color="magenta", weight=3]; 4754 -> 4942[label="",style="dashed", color="magenta", weight=3]; 4754 -> 4943[label="",style="dashed", color="magenta", weight=3]; 2501[label="zwu430",fontsize=16,color="green",shape="box"];2502[label="zwu440",fontsize=16,color="green",shape="box"];4755 -> 4944[label="",style="dashed", color="red", weight=0]; 4755[label="compare2 zwu43000 zwu44000 (zwu43000 == zwu44000)",fontsize=16,color="magenta"];4755 -> 4945[label="",style="dashed", color="magenta", weight=3]; 4756 -> 4434[label="",style="dashed", color="red", weight=0]; 4756[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4756 -> 4948[label="",style="dashed", color="magenta", weight=3]; 4756 -> 4949[label="",style="dashed", color="magenta", weight=3]; 4757 -> 4436[label="",style="dashed", color="red", weight=0]; 4757[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4757 -> 4950[label="",style="dashed", color="magenta", weight=3]; 4757 -> 4951[label="",style="dashed", color="magenta", weight=3]; 4758 -> 3885[label="",style="dashed", color="red", weight=0]; 4758[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4758 -> 4952[label="",style="dashed", color="magenta", weight=3]; 4758 -> 4953[label="",style="dashed", color="magenta", weight=3]; 4759 -> 4440[label="",style="dashed", color="red", weight=0]; 4759[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4759 -> 4954[label="",style="dashed", color="magenta", weight=3]; 4759 -> 4955[label="",style="dashed", color="magenta", weight=3]; 4760 -> 4442[label="",style="dashed", color="red", weight=0]; 4760[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4760 -> 4956[label="",style="dashed", color="magenta", weight=3]; 4760 -> 4957[label="",style="dashed", color="magenta", weight=3]; 4761 -> 3886[label="",style="dashed", color="red", weight=0]; 4761[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4761 -> 4958[label="",style="dashed", color="magenta", weight=3]; 4761 -> 4959[label="",style="dashed", color="magenta", weight=3]; 4762 -> 3887[label="",style="dashed", color="red", weight=0]; 4762[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4762 -> 4960[label="",style="dashed", color="magenta", weight=3]; 4762 -> 4961[label="",style="dashed", color="magenta", weight=3]; 4763 -> 4448[label="",style="dashed", color="red", weight=0]; 4763[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4763 -> 4962[label="",style="dashed", color="magenta", weight=3]; 4763 -> 4963[label="",style="dashed", color="magenta", weight=3]; 4764 -> 1707[label="",style="dashed", color="red", weight=0]; 4764[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4764 -> 4964[label="",style="dashed", color="magenta", weight=3]; 4764 -> 4965[label="",style="dashed", color="magenta", weight=3]; 4765 -> 3889[label="",style="dashed", color="red", weight=0]; 4765[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4765 -> 4966[label="",style="dashed", color="magenta", weight=3]; 4765 -> 4967[label="",style="dashed", color="magenta", weight=3]; 4766 -> 3890[label="",style="dashed", color="red", weight=0]; 4766[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4766 -> 4968[label="",style="dashed", color="magenta", weight=3]; 4766 -> 4969[label="",style="dashed", color="magenta", weight=3]; 4767 -> 3891[label="",style="dashed", color="red", weight=0]; 4767[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4767 -> 4970[label="",style="dashed", color="magenta", weight=3]; 4767 -> 4971[label="",style="dashed", color="magenta", weight=3]; 4768 -> 3892[label="",style="dashed", color="red", weight=0]; 4768[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4768 -> 4972[label="",style="dashed", color="magenta", weight=3]; 4768 -> 4973[label="",style="dashed", color="magenta", weight=3]; 4769 -> 4458[label="",style="dashed", color="red", weight=0]; 4769[label="compare zwu43000 zwu44000",fontsize=16,color="magenta"];4769 -> 4974[label="",style="dashed", color="magenta", weight=3]; 4769 -> 4975[label="",style="dashed", color="magenta", weight=3]; 4770[label="primCompAux0 zwu269 LT",fontsize=16,color="black",shape="box"];4770 -> 4976[label="",style="solid", color="black", weight=3]; 4771[label="primCompAux0 zwu269 EQ",fontsize=16,color="black",shape="box"];4771 -> 4977[label="",style="solid", color="black", weight=3]; 4772[label="primCompAux0 zwu269 GT",fontsize=16,color="black",shape="box"];4772 -> 4978[label="",style="solid", color="black", weight=3]; 2932[label="primCmpNat (Succ zwu4300) (Succ zwu4400)",fontsize=16,color="black",shape="box"];2932 -> 3060[label="",style="solid", color="black", weight=3]; 2933[label="primCmpNat (Succ zwu4300) Zero",fontsize=16,color="black",shape="box"];2933 -> 3061[label="",style="solid", color="black", weight=3]; 2934 -> 2711[label="",style="dashed", color="red", weight=0]; 2934[label="primCmpNat Zero (Succ zwu4400)",fontsize=16,color="magenta"];2934 -> 3062[label="",style="dashed", color="magenta", weight=3]; 2934 -> 3063[label="",style="dashed", color="magenta", weight=3]; 2935[label="EQ",fontsize=16,color="green",shape="box"];2936[label="GT",fontsize=16,color="green",shape="box"];2937[label="EQ",fontsize=16,color="green",shape="box"];2938[label="primCmpNat (Succ zwu4400) (Succ zwu4300)",fontsize=16,color="black",shape="box"];2938 -> 3064[label="",style="solid", color="black", weight=3]; 2939[label="primCmpNat Zero (Succ zwu4300)",fontsize=16,color="black",shape="box"];2939 -> 3065[label="",style="solid", color="black", weight=3]; 2940[label="LT",fontsize=16,color="green",shape="box"];2941[label="EQ",fontsize=16,color="green",shape="box"];2942 -> 2704[label="",style="dashed", color="red", weight=0]; 2942[label="primCmpNat (Succ zwu4400) Zero",fontsize=16,color="magenta"];2942 -> 3066[label="",style="dashed", color="magenta", weight=3]; 2942 -> 3067[label="",style="dashed", color="magenta", weight=3]; 2943[label="EQ",fontsize=16,color="green",shape="box"];4904[label="Integer zwu440000 * Integer zwu430010",fontsize=16,color="black",shape="box"];4904 -> 4979[label="",style="solid", color="black", weight=3]; 4905 -> 1012[label="",style="dashed", color="red", weight=0]; 4905[label="zwu43000 * Pos zwu440010",fontsize=16,color="magenta"];4905 -> 4980[label="",style="dashed", color="magenta", weight=3]; 4905 -> 4981[label="",style="dashed", color="magenta", weight=3]; 4906 -> 1012[label="",style="dashed", color="red", weight=0]; 4906[label="Pos zwu430010 * zwu44000",fontsize=16,color="magenta"];4906 -> 4982[label="",style="dashed", color="magenta", weight=3]; 4906 -> 4983[label="",style="dashed", color="magenta", weight=3]; 4907 -> 1012[label="",style="dashed", color="red", weight=0]; 4907[label="zwu43000 * Pos zwu440010",fontsize=16,color="magenta"];4907 -> 4984[label="",style="dashed", color="magenta", weight=3]; 4907 -> 4985[label="",style="dashed", color="magenta", weight=3]; 4908 -> 1012[label="",style="dashed", color="red", weight=0]; 4908[label="Neg zwu430010 * zwu44000",fontsize=16,color="magenta"];4908 -> 4986[label="",style="dashed", color="magenta", weight=3]; 4908 -> 4987[label="",style="dashed", color="magenta", weight=3]; 4909 -> 1012[label="",style="dashed", color="red", weight=0]; 4909[label="zwu43000 * Neg zwu440010",fontsize=16,color="magenta"];4909 -> 4988[label="",style="dashed", color="magenta", weight=3]; 4909 -> 4989[label="",style="dashed", color="magenta", weight=3]; 4910 -> 1012[label="",style="dashed", color="red", weight=0]; 4910[label="Pos zwu430010 * zwu44000",fontsize=16,color="magenta"];4910 -> 4990[label="",style="dashed", color="magenta", weight=3]; 4910 -> 4991[label="",style="dashed", color="magenta", weight=3]; 4911 -> 1012[label="",style="dashed", color="red", weight=0]; 4911[label="zwu43000 * Neg zwu440010",fontsize=16,color="magenta"];4911 -> 4992[label="",style="dashed", color="magenta", weight=3]; 4911 -> 4993[label="",style="dashed", color="magenta", weight=3]; 4912 -> 1012[label="",style="dashed", color="red", weight=0]; 4912[label="Neg zwu430010 * zwu44000",fontsize=16,color="magenta"];4912 -> 4994[label="",style="dashed", color="magenta", weight=3]; 4912 -> 4995[label="",style="dashed", color="magenta", weight=3]; 3544[label="primCmpNat (Succ zwu43000) (Succ zwu44000)",fontsize=16,color="black",shape="box"];3544 -> 3935[label="",style="solid", color="black", weight=3]; 3545[label="primCmpNat (Succ zwu43000) Zero",fontsize=16,color="black",shape="box"];3545 -> 3936[label="",style="solid", color="black", weight=3]; 3546[label="primCmpNat Zero (Succ zwu44000)",fontsize=16,color="black",shape="box"];3546 -> 3937[label="",style="solid", color="black", weight=3]; 3547[label="primCmpNat Zero Zero",fontsize=16,color="black",shape="box"];3547 -> 3938[label="",style="solid", color="black", weight=3]; 2749[label="Pos (primPlusNat zwu5120 zwu1890)",fontsize=16,color="green",shape="box"];2749 -> 2923[label="",style="dashed", color="green", weight=3]; 2750[label="primMinusNat zwu5120 zwu1890",fontsize=16,color="burlywood",shape="triangle"];7566[label="zwu5120/Succ zwu51200",fontsize=10,color="white",style="solid",shape="box"];2750 -> 7566[label="",style="solid", color="burlywood", weight=9]; 7566 -> 2924[label="",style="solid", color="burlywood", weight=3]; 7567[label="zwu5120/Zero",fontsize=10,color="white",style="solid",shape="box"];2750 -> 7567[label="",style="solid", color="burlywood", weight=9]; 7567 -> 2925[label="",style="solid", color="burlywood", weight=3]; 2751 -> 2750[label="",style="dashed", color="red", weight=0]; 2751[label="primMinusNat zwu1890 zwu5120",fontsize=16,color="magenta"];2751 -> 2926[label="",style="dashed", color="magenta", weight=3]; 2751 -> 2927[label="",style="dashed", color="magenta", weight=3]; 2752[label="Neg (primPlusNat zwu5120 zwu1890)",fontsize=16,color="green",shape="box"];2752 -> 2928[label="",style="dashed", color="green", weight=3]; 2886 -> 1855[label="",style="dashed", color="red", weight=0]; 2886[label="FiniteMap.sizeFM zwu514 < Pos (Succ (Succ Zero)) * FiniteMap.sizeFM zwu513",fontsize=16,color="magenta"];2886 -> 2984[label="",style="dashed", color="magenta", weight=3]; 2886 -> 2985[label="",style="dashed", color="magenta", weight=3]; 2885[label="FiniteMap.mkBalBranch6MkBalBranch11 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 zwu510 zwu511 zwu512 zwu513 zwu514 zwu201",fontsize=16,color="burlywood",shape="triangle"];7568[label="zwu201/False",fontsize=10,color="white",style="solid",shape="box"];2885 -> 7568[label="",style="solid", color="burlywood", weight=9]; 7568 -> 2986[label="",style="solid", color="burlywood", weight=3]; 7569[label="zwu201/True",fontsize=10,color="white",style="solid",shape="box"];2885 -> 7569[label="",style="solid", color="burlywood", weight=9]; 7569 -> 2987[label="",style="solid", color="burlywood", weight=3]; 2920[label="zwu644",fontsize=16,color="green",shape="box"];2921[label="FiniteMap.mkBalBranch6MkBalBranch00 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu640 zwu641 zwu642 zwu643 zwu644 True",fontsize=16,color="black",shape="box"];2921 -> 3046[label="",style="solid", color="black", weight=3]; 2922 -> 4807[label="",style="dashed", color="red", weight=0]; 2922[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ Zero)))) zwu640 zwu641 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) zwu60 zwu61 zwu51 zwu643) zwu644",fontsize=16,color="magenta"];2922 -> 4858[label="",style="dashed", color="magenta", weight=3]; 2922 -> 4859[label="",style="dashed", color="magenta", weight=3]; 2922 -> 4860[label="",style="dashed", color="magenta", weight=3]; 2922 -> 4861[label="",style="dashed", color="magenta", weight=3]; 2922 -> 4862[label="",style="dashed", color="magenta", weight=3]; 5149[label="Pos Zero",fontsize=16,color="green",shape="box"];5150[label="zwu2762",fontsize=16,color="green",shape="box"];5151 -> 5096[label="",style="dashed", color="red", weight=0]; 5151[label="FiniteMap.sizeFM zwu275",fontsize=16,color="magenta"];5151 -> 5154[label="",style="dashed", color="magenta", weight=3]; 2758 -> 2021[label="",style="dashed", color="red", weight=0]; 2758[label="primMulNat zwu400100 (Succ zwu600000)",fontsize=16,color="magenta"];2758 -> 2988[label="",style="dashed", color="magenta", weight=3]; 2758 -> 2989[label="",style="dashed", color="magenta", weight=3]; 2929[label="Succ (Succ (primPlusNat (primPlusNat (Succ (primPlusNat (Succ zwu72000) (Succ zwu72000))) (Succ zwu72000)) zwu72000))",fontsize=16,color="green",shape="box"];2929 -> 3056[label="",style="dashed", color="green", weight=3]; 2930[label="Succ (primPlusNat (Succ (primPlusNat Zero Zero)) Zero)",fontsize=16,color="green",shape="box"];2930 -> 3057[label="",style="dashed", color="green", weight=3]; 2931 -> 2923[label="",style="dashed", color="red", weight=0]; 2931[label="primPlusNat zwu1950 zwu600000",fontsize=16,color="magenta"];2931 -> 3058[label="",style="dashed", color="magenta", weight=3]; 2931 -> 3059[label="",style="dashed", color="magenta", weight=3]; 2948[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 FiniteMap.EmptyFM)",fontsize=16,color="black",shape="box"];2948 -> 3088[label="",style="solid", color="black", weight=3]; 2949[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="black",shape="box"];2949 -> 3089[label="",style="solid", color="black", weight=3]; 2950[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2950 -> 3090[label="",style="solid", color="black", weight=3]; 2951[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2951 -> 3091[label="",style="solid", color="black", weight=3]; 5189[label="zwu84",fontsize=16,color="green",shape="box"];5190[label="zwu83",fontsize=16,color="green",shape="box"];5191[label="zwu90",fontsize=16,color="green",shape="box"];5192[label="zwu81",fontsize=16,color="green",shape="box"];5193[label="zwu80",fontsize=16,color="green",shape="box"];5194[label="zwu9200",fontsize=16,color="green",shape="box"];5195[label="zwu82",fontsize=16,color="green",shape="box"];5196[label="zwu93",fontsize=16,color="green",shape="box"];5197[label="zwu94",fontsize=16,color="green",shape="box"];5198[label="zwu80",fontsize=16,color="green",shape="box"];5199[label="zwu91",fontsize=16,color="green",shape="box"];5200[label="zwu82",fontsize=16,color="green",shape="box"];5201[label="zwu83",fontsize=16,color="green",shape="box"];5202[label="zwu84",fontsize=16,color="green",shape="box"];5203[label="zwu81",fontsize=16,color="green",shape="box"];5188[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu288 zwu289 zwu290 zwu291 zwu292) (FiniteMap.Branch zwu293 zwu294 (Pos (Succ zwu295)) zwu296 zwu297) (FiniteMap.findMin (FiniteMap.Branch zwu298 zwu299 zwu300 zwu301 zwu302))",fontsize=16,color="burlywood",shape="triangle"];7570[label="zwu301/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5188 -> 7570[label="",style="solid", color="burlywood", weight=9]; 7570 -> 5279[label="",style="solid", color="burlywood", weight=3]; 7571[label="zwu301/FiniteMap.Branch zwu3010 zwu3011 zwu3012 zwu3013 zwu3014",fontsize=10,color="white",style="solid",shape="box"];5188 -> 7571[label="",style="solid", color="burlywood", weight=9]; 7571 -> 5280[label="",style="solid", color="burlywood", weight=3]; 2954 -> 2590[label="",style="dashed", color="red", weight=0]; 2954[label="FiniteMap.deleteMin (FiniteMap.Branch zwu830 zwu831 zwu832 zwu833 zwu834)",fontsize=16,color="magenta"];2954 -> 3094[label="",style="dashed", color="magenta", weight=3]; 2954 -> 3095[label="",style="dashed", color="magenta", weight=3]; 2954 -> 3096[label="",style="dashed", color="magenta", weight=3]; 2954 -> 3097[label="",style="dashed", color="magenta", weight=3]; 2954 -> 3098[label="",style="dashed", color="magenta", weight=3]; 2955[label="zwu81",fontsize=16,color="green",shape="box"];2956[label="zwu84",fontsize=16,color="green",shape="box"];2957[label="zwu80",fontsize=16,color="green",shape="box"];5293[label="zwu83",fontsize=16,color="green",shape="box"];5294[label="zwu84",fontsize=16,color="green",shape="box"];5295[label="zwu81",fontsize=16,color="green",shape="box"];5296[label="zwu82",fontsize=16,color="green",shape="box"];5297[label="zwu80",fontsize=16,color="green",shape="box"];5298[label="zwu84",fontsize=16,color="green",shape="box"];5299[label="zwu81",fontsize=16,color="green",shape="box"];5300[label="zwu80",fontsize=16,color="green",shape="box"];5301[label="zwu90",fontsize=16,color="green",shape="box"];5302[label="zwu93",fontsize=16,color="green",shape="box"];5303[label="zwu82",fontsize=16,color="green",shape="box"];5304[label="zwu83",fontsize=16,color="green",shape="box"];5305[label="zwu9200",fontsize=16,color="green",shape="box"];5306[label="zwu91",fontsize=16,color="green",shape="box"];5307[label="zwu94",fontsize=16,color="green",shape="box"];5292[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu304 zwu305 zwu306 zwu307 zwu308) (FiniteMap.Branch zwu309 zwu310 (Pos (Succ zwu311)) zwu312 zwu313) (FiniteMap.findMin (FiniteMap.Branch zwu314 zwu315 zwu316 zwu317 zwu318))",fontsize=16,color="burlywood",shape="triangle"];7572[label="zwu317/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5292 -> 7572[label="",style="solid", color="burlywood", weight=9]; 7572 -> 5383[label="",style="solid", color="burlywood", weight=3]; 7573[label="zwu317/FiniteMap.Branch zwu3170 zwu3171 zwu3172 zwu3173 zwu3174",fontsize=10,color="white",style="solid",shape="box"];5292 -> 7573[label="",style="solid", color="burlywood", weight=9]; 7573 -> 5384[label="",style="solid", color="burlywood", weight=3]; 2960[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 FiniteMap.EmptyFM)",fontsize=16,color="black",shape="box"];2960 -> 3101[label="",style="solid", color="black", weight=3]; 2961[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="black",shape="box"];2961 -> 3102[label="",style="solid", color="black", weight=3]; 2962[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2962 -> 3103[label="",style="solid", color="black", weight=3]; 2963[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2963 -> 3104[label="",style="solid", color="black", weight=3]; 5400[label="zwu80",fontsize=16,color="green",shape="box"];5401[label="zwu83",fontsize=16,color="green",shape="box"];5402[label="zwu82",fontsize=16,color="green",shape="box"];5403[label="zwu91",fontsize=16,color="green",shape="box"];5404[label="zwu83",fontsize=16,color="green",shape="box"];5405[label="zwu82",fontsize=16,color="green",shape="box"];5406[label="zwu81",fontsize=16,color="green",shape="box"];5407[label="zwu93",fontsize=16,color="green",shape="box"];5408[label="zwu84",fontsize=16,color="green",shape="box"];5409[label="zwu94",fontsize=16,color="green",shape="box"];5410[label="zwu80",fontsize=16,color="green",shape="box"];5411[label="zwu90",fontsize=16,color="green",shape="box"];5412[label="zwu81",fontsize=16,color="green",shape="box"];5413[label="zwu84",fontsize=16,color="green",shape="box"];5399[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu320 zwu321 zwu322 zwu323 zwu324) (FiniteMap.Branch zwu325 zwu326 (Pos Zero) zwu327 zwu328) (FiniteMap.findMin (FiniteMap.Branch zwu329 zwu330 zwu331 zwu332 zwu333))",fontsize=16,color="burlywood",shape="triangle"];7574[label="zwu332/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5399 -> 7574[label="",style="solid", color="burlywood", weight=9]; 7574 -> 5484[label="",style="solid", color="burlywood", weight=3]; 7575[label="zwu332/FiniteMap.Branch zwu3320 zwu3321 zwu3322 zwu3323 zwu3324",fontsize=10,color="white",style="solid",shape="box"];5399 -> 7575[label="",style="solid", color="burlywood", weight=9]; 7575 -> 5485[label="",style="solid", color="burlywood", weight=3]; 5501[label="zwu94",fontsize=16,color="green",shape="box"];5502[label="zwu81",fontsize=16,color="green",shape="box"];5503[label="zwu90",fontsize=16,color="green",shape="box"];5504[label="zwu83",fontsize=16,color="green",shape="box"];5505[label="zwu83",fontsize=16,color="green",shape="box"];5506[label="zwu80",fontsize=16,color="green",shape="box"];5507[label="zwu81",fontsize=16,color="green",shape="box"];5508[label="zwu84",fontsize=16,color="green",shape="box"];5509[label="zwu80",fontsize=16,color="green",shape="box"];5510[label="zwu91",fontsize=16,color="green",shape="box"];5511[label="zwu84",fontsize=16,color="green",shape="box"];5512[label="zwu82",fontsize=16,color="green",shape="box"];5513[label="zwu82",fontsize=16,color="green",shape="box"];5514[label="zwu93",fontsize=16,color="green",shape="box"];5500[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu335 zwu336 zwu337 zwu338 zwu339) (FiniteMap.Branch zwu340 zwu341 (Pos Zero) zwu342 zwu343) (FiniteMap.findMin (FiniteMap.Branch zwu344 zwu345 zwu346 zwu347 zwu348))",fontsize=16,color="burlywood",shape="triangle"];7576[label="zwu347/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5500 -> 7576[label="",style="solid", color="burlywood", weight=9]; 7576 -> 5585[label="",style="solid", color="burlywood", weight=3]; 7577[label="zwu347/FiniteMap.Branch zwu3470 zwu3471 zwu3472 zwu3473 zwu3474",fontsize=10,color="white",style="solid",shape="box"];5500 -> 7577[label="",style="solid", color="burlywood", weight=9]; 7577 -> 5586[label="",style="solid", color="burlywood", weight=3]; 2968[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 FiniteMap.EmptyFM)",fontsize=16,color="black",shape="box"];2968 -> 3109[label="",style="solid", color="black", weight=3]; 2969[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="black",shape="box"];2969 -> 3110[label="",style="solid", color="black", weight=3]; 2970[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2970 -> 3111[label="",style="solid", color="black", weight=3]; 2971[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2971 -> 3112[label="",style="solid", color="black", weight=3]; 5603[label="zwu84",fontsize=16,color="green",shape="box"];5604[label="zwu83",fontsize=16,color="green",shape="box"];5605[label="zwu83",fontsize=16,color="green",shape="box"];5606[label="zwu80",fontsize=16,color="green",shape="box"];5607[label="zwu81",fontsize=16,color="green",shape="box"];5608[label="zwu90",fontsize=16,color="green",shape="box"];5609[label="zwu9200",fontsize=16,color="green",shape="box"];5610[label="zwu82",fontsize=16,color="green",shape="box"];5611[label="zwu91",fontsize=16,color="green",shape="box"];5612[label="zwu93",fontsize=16,color="green",shape="box"];5613[label="zwu80",fontsize=16,color="green",shape="box"];5614[label="zwu84",fontsize=16,color="green",shape="box"];5615[label="zwu81",fontsize=16,color="green",shape="box"];5616[label="zwu82",fontsize=16,color="green",shape="box"];5617[label="zwu94",fontsize=16,color="green",shape="box"];5602[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu350 zwu351 zwu352 zwu353 zwu354) (FiniteMap.Branch zwu355 zwu356 (Neg (Succ zwu357)) zwu358 zwu359) (FiniteMap.findMin (FiniteMap.Branch zwu360 zwu361 zwu362 zwu363 zwu364))",fontsize=16,color="burlywood",shape="triangle"];7578[label="zwu363/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5602 -> 7578[label="",style="solid", color="burlywood", weight=9]; 7578 -> 5693[label="",style="solid", color="burlywood", weight=3]; 7579[label="zwu363/FiniteMap.Branch zwu3630 zwu3631 zwu3632 zwu3633 zwu3634",fontsize=10,color="white",style="solid",shape="box"];5602 -> 7579[label="",style="solid", color="burlywood", weight=9]; 7579 -> 5694[label="",style="solid", color="burlywood", weight=3]; 5705[label="zwu81",fontsize=16,color="green",shape="box"];5706[label="zwu82",fontsize=16,color="green",shape="box"];5707[label="zwu80",fontsize=16,color="green",shape="box"];5708[label="zwu9200",fontsize=16,color="green",shape="box"];5709[label="zwu84",fontsize=16,color="green",shape="box"];5710[label="zwu91",fontsize=16,color="green",shape="box"];5711[label="zwu83",fontsize=16,color="green",shape="box"];5712[label="zwu93",fontsize=16,color="green",shape="box"];5713[label="zwu82",fontsize=16,color="green",shape="box"];5714[label="zwu83",fontsize=16,color="green",shape="box"];5715[label="zwu84",fontsize=16,color="green",shape="box"];5716[label="zwu80",fontsize=16,color="green",shape="box"];5717[label="zwu81",fontsize=16,color="green",shape="box"];5718[label="zwu90",fontsize=16,color="green",shape="box"];5719[label="zwu94",fontsize=16,color="green",shape="box"];5704[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu366 zwu367 zwu368 zwu369 zwu370) (FiniteMap.Branch zwu371 zwu372 (Neg (Succ zwu373)) zwu374 zwu375) (FiniteMap.findMin (FiniteMap.Branch zwu376 zwu377 zwu378 zwu379 zwu380))",fontsize=16,color="burlywood",shape="triangle"];7580[label="zwu379/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5704 -> 7580[label="",style="solid", color="burlywood", weight=9]; 7580 -> 5795[label="",style="solid", color="burlywood", weight=3]; 7581[label="zwu379/FiniteMap.Branch zwu3790 zwu3791 zwu3792 zwu3793 zwu3794",fontsize=10,color="white",style="solid",shape="box"];5704 -> 7581[label="",style="solid", color="burlywood", weight=9]; 7581 -> 5796[label="",style="solid", color="burlywood", weight=3]; 2976[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 FiniteMap.EmptyFM)",fontsize=16,color="black",shape="box"];2976 -> 3117[label="",style="solid", color="black", weight=3]; 2977[label="FiniteMap.deleteMax (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="black",shape="box"];2977 -> 3118[label="",style="solid", color="black", weight=3]; 2978[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2978 -> 3119[label="",style="solid", color="black", weight=3]; 2979[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.glueBal2Vv2 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="black",shape="box"];2979 -> 3120[label="",style="solid", color="black", weight=3]; 5813[label="zwu94",fontsize=16,color="green",shape="box"];5814[label="zwu83",fontsize=16,color="green",shape="box"];5815[label="zwu83",fontsize=16,color="green",shape="box"];5816[label="zwu84",fontsize=16,color="green",shape="box"];5817[label="zwu80",fontsize=16,color="green",shape="box"];5818[label="zwu91",fontsize=16,color="green",shape="box"];5819[label="zwu82",fontsize=16,color="green",shape="box"];5820[label="zwu90",fontsize=16,color="green",shape="box"];5821[label="zwu80",fontsize=16,color="green",shape="box"];5822[label="zwu84",fontsize=16,color="green",shape="box"];5823[label="zwu81",fontsize=16,color="green",shape="box"];5824[label="zwu81",fontsize=16,color="green",shape="box"];5825[label="zwu93",fontsize=16,color="green",shape="box"];5826[label="zwu82",fontsize=16,color="green",shape="box"];5812[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu382 zwu383 zwu384 zwu385 zwu386) (FiniteMap.Branch zwu387 zwu388 (Neg Zero) zwu389 zwu390) (FiniteMap.findMin (FiniteMap.Branch zwu391 zwu392 zwu393 zwu394 zwu395))",fontsize=16,color="burlywood",shape="triangle"];7582[label="zwu394/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5812 -> 7582[label="",style="solid", color="burlywood", weight=9]; 7582 -> 5897[label="",style="solid", color="burlywood", weight=3]; 7583[label="zwu394/FiniteMap.Branch zwu3940 zwu3941 zwu3942 zwu3943 zwu3944",fontsize=10,color="white",style="solid",shape="box"];5812 -> 7583[label="",style="solid", color="burlywood", weight=9]; 7583 -> 5898[label="",style="solid", color="burlywood", weight=3]; 5909[label="zwu91",fontsize=16,color="green",shape="box"];5910[label="zwu80",fontsize=16,color="green",shape="box"];5911[label="zwu82",fontsize=16,color="green",shape="box"];5912[label="zwu83",fontsize=16,color="green",shape="box"];5913[label="zwu90",fontsize=16,color="green",shape="box"];5914[label="zwu81",fontsize=16,color="green",shape="box"];5915[label="zwu94",fontsize=16,color="green",shape="box"];5916[label="zwu82",fontsize=16,color="green",shape="box"];5917[label="zwu80",fontsize=16,color="green",shape="box"];5918[label="zwu81",fontsize=16,color="green",shape="box"];5919[label="zwu84",fontsize=16,color="green",shape="box"];5920[label="zwu84",fontsize=16,color="green",shape="box"];5921[label="zwu93",fontsize=16,color="green",shape="box"];5922[label="zwu83",fontsize=16,color="green",shape="box"];5908[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu397 zwu398 zwu399 zwu400 zwu401) (FiniteMap.Branch zwu402 zwu403 (Neg Zero) zwu404 zwu405) (FiniteMap.findMin (FiniteMap.Branch zwu406 zwu407 zwu408 zwu409 zwu410))",fontsize=16,color="burlywood",shape="triangle"];7584[label="zwu409/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];5908 -> 7584[label="",style="solid", color="burlywood", weight=9]; 7584 -> 5993[label="",style="solid", color="burlywood", weight=3]; 7585[label="zwu409/FiniteMap.Branch zwu4090 zwu4091 zwu4092 zwu4093 zwu4094",fontsize=10,color="white",style="solid",shape="box"];5908 -> 7585[label="",style="solid", color="burlywood", weight=9]; 7585 -> 5994[label="",style="solid", color="burlywood", weight=3]; 4913[label="Pos zwu440010",fontsize=16,color="green",shape="box"];4914[label="zwu43000",fontsize=16,color="green",shape="box"];4915[label="zwu44000",fontsize=16,color="green",shape="box"];4916[label="Pos zwu430010",fontsize=16,color="green",shape="box"];4917[label="Pos zwu440010",fontsize=16,color="green",shape="box"];4918[label="zwu43000",fontsize=16,color="green",shape="box"];4919[label="zwu44000",fontsize=16,color="green",shape="box"];4920[label="Neg zwu430010",fontsize=16,color="green",shape="box"];4921[label="Neg zwu440010",fontsize=16,color="green",shape="box"];4922[label="zwu43000",fontsize=16,color="green",shape="box"];4923[label="zwu44000",fontsize=16,color="green",shape="box"];4924[label="Pos zwu430010",fontsize=16,color="green",shape="box"];4925[label="Neg zwu440010",fontsize=16,color="green",shape="box"];4926[label="zwu43000",fontsize=16,color="green",shape="box"];4927[label="zwu44000",fontsize=16,color="green",shape="box"];4928[label="Neg zwu430010",fontsize=16,color="green",shape="box"];4930 -> 135[label="",style="dashed", color="red", weight=0]; 4930[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4930 -> 4996[label="",style="dashed", color="magenta", weight=3]; 4930 -> 4997[label="",style="dashed", color="magenta", weight=3]; 4929[label="compare2 zwu43000 zwu44000 zwu277",fontsize=16,color="burlywood",shape="triangle"];7586[label="zwu277/False",fontsize=10,color="white",style="solid",shape="box"];4929 -> 7586[label="",style="solid", color="burlywood", weight=9]; 7586 -> 4998[label="",style="solid", color="burlywood", weight=3]; 7587[label="zwu277/True",fontsize=10,color="white",style="solid",shape="box"];4929 -> 7587[label="",style="solid", color="burlywood", weight=9]; 7587 -> 4999[label="",style="solid", color="burlywood", weight=3]; 4933 -> 2818[label="",style="dashed", color="red", weight=0]; 4933[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4933 -> 5000[label="",style="dashed", color="magenta", weight=3]; 4933 -> 5001[label="",style="dashed", color="magenta", weight=3]; 4932[label="compare2 zwu43000 zwu44000 zwu278",fontsize=16,color="burlywood",shape="triangle"];7588[label="zwu278/False",fontsize=10,color="white",style="solid",shape="box"];4932 -> 7588[label="",style="solid", color="burlywood", weight=9]; 7588 -> 5002[label="",style="solid", color="burlywood", weight=3]; 7589[label="zwu278/True",fontsize=10,color="white",style="solid",shape="box"];4932 -> 7589[label="",style="solid", color="burlywood", weight=9]; 7589 -> 5003[label="",style="solid", color="burlywood", weight=3]; 4936 -> 2814[label="",style="dashed", color="red", weight=0]; 4936[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4936 -> 5004[label="",style="dashed", color="magenta", weight=3]; 4936 -> 5005[label="",style="dashed", color="magenta", weight=3]; 4935[label="compare2 zwu43000 zwu44000 zwu279",fontsize=16,color="burlywood",shape="triangle"];7590[label="zwu279/False",fontsize=10,color="white",style="solid",shape="box"];4935 -> 7590[label="",style="solid", color="burlywood", weight=9]; 7590 -> 5006[label="",style="solid", color="burlywood", weight=3]; 7591[label="zwu279/True",fontsize=10,color="white",style="solid",shape="box"];4935 -> 7591[label="",style="solid", color="burlywood", weight=9]; 7591 -> 5007[label="",style="solid", color="burlywood", weight=3]; 4939 -> 2824[label="",style="dashed", color="red", weight=0]; 4939[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4939 -> 5008[label="",style="dashed", color="magenta", weight=3]; 4939 -> 5009[label="",style="dashed", color="magenta", weight=3]; 4938[label="compare2 zwu43000 zwu44000 zwu280",fontsize=16,color="burlywood",shape="triangle"];7592[label="zwu280/False",fontsize=10,color="white",style="solid",shape="box"];4938 -> 7592[label="",style="solid", color="burlywood", weight=9]; 7592 -> 5010[label="",style="solid", color="burlywood", weight=3]; 7593[label="zwu280/True",fontsize=10,color="white",style="solid",shape="box"];4938 -> 7593[label="",style="solid", color="burlywood", weight=9]; 7593 -> 5011[label="",style="solid", color="burlywood", weight=3]; 4941[label="zwu43000",fontsize=16,color="green",shape="box"];4942[label="zwu44000",fontsize=16,color="green",shape="box"];4943 -> 2812[label="",style="dashed", color="red", weight=0]; 4943[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4943 -> 5012[label="",style="dashed", color="magenta", weight=3]; 4943 -> 5013[label="",style="dashed", color="magenta", weight=3]; 4945 -> 2815[label="",style="dashed", color="red", weight=0]; 4945[label="zwu43000 == zwu44000",fontsize=16,color="magenta"];4945 -> 5014[label="",style="dashed", color="magenta", weight=3]; 4945 -> 5015[label="",style="dashed", color="magenta", weight=3]; 4944[label="compare2 zwu43000 zwu44000 zwu281",fontsize=16,color="burlywood",shape="triangle"];7594[label="zwu281/False",fontsize=10,color="white",style="solid",shape="box"];4944 -> 7594[label="",style="solid", color="burlywood", weight=9]; 7594 -> 5016[label="",style="solid", color="burlywood", weight=3]; 7595[label="zwu281/True",fontsize=10,color="white",style="solid",shape="box"];4944 -> 7595[label="",style="solid", color="burlywood", weight=9]; 7595 -> 5017[label="",style="solid", color="burlywood", weight=3]; 4948[label="zwu43000",fontsize=16,color="green",shape="box"];4949[label="zwu44000",fontsize=16,color="green",shape="box"];4950[label="zwu43000",fontsize=16,color="green",shape="box"];4951[label="zwu44000",fontsize=16,color="green",shape="box"];4952[label="zwu44000",fontsize=16,color="green",shape="box"];4953[label="zwu43000",fontsize=16,color="green",shape="box"];4954[label="zwu43000",fontsize=16,color="green",shape="box"];4955[label="zwu44000",fontsize=16,color="green",shape="box"];4956[label="zwu43000",fontsize=16,color="green",shape="box"];4957[label="zwu44000",fontsize=16,color="green",shape="box"];4958[label="zwu44000",fontsize=16,color="green",shape="box"];4959[label="zwu43000",fontsize=16,color="green",shape="box"];4960[label="zwu44000",fontsize=16,color="green",shape="box"];4961[label="zwu43000",fontsize=16,color="green",shape="box"];4962[label="zwu43000",fontsize=16,color="green",shape="box"];4963[label="zwu44000",fontsize=16,color="green",shape="box"];4964[label="zwu43000",fontsize=16,color="green",shape="box"];4965[label="zwu44000",fontsize=16,color="green",shape="box"];4966[label="zwu44000",fontsize=16,color="green",shape="box"];4967[label="zwu43000",fontsize=16,color="green",shape="box"];4968[label="zwu44000",fontsize=16,color="green",shape="box"];4969[label="zwu43000",fontsize=16,color="green",shape="box"];4970[label="zwu44000",fontsize=16,color="green",shape="box"];4971[label="zwu43000",fontsize=16,color="green",shape="box"];4972[label="zwu44000",fontsize=16,color="green",shape="box"];4973[label="zwu43000",fontsize=16,color="green",shape="box"];4974[label="zwu43000",fontsize=16,color="green",shape="box"];4975[label="zwu44000",fontsize=16,color="green",shape="box"];4976[label="LT",fontsize=16,color="green",shape="box"];4977[label="zwu269",fontsize=16,color="green",shape="box"];4978[label="GT",fontsize=16,color="green",shape="box"];3061[label="GT",fontsize=16,color="green",shape="box"];3062[label="Zero",fontsize=16,color="green",shape="box"];3063[label="zwu4400",fontsize=16,color="green",shape="box"];3064 -> 3060[label="",style="dashed", color="red", weight=0]; 3064[label="primCmpNat zwu4400 zwu4300",fontsize=16,color="magenta"];3064 -> 3182[label="",style="dashed", color="magenta", weight=3]; 3064 -> 3183[label="",style="dashed", color="magenta", weight=3]; 3065[label="LT",fontsize=16,color="green",shape="box"];3066[label="Zero",fontsize=16,color="green",shape="box"];3067[label="zwu4400",fontsize=16,color="green",shape="box"];4979[label="Integer (primMulInt zwu440000 zwu430010)",fontsize=16,color="green",shape="box"];4979 -> 5098[label="",style="dashed", color="green", weight=3]; 4980[label="Pos zwu440010",fontsize=16,color="green",shape="box"];4981[label="zwu43000",fontsize=16,color="green",shape="box"];4982[label="zwu44000",fontsize=16,color="green",shape="box"];4983[label="Pos zwu430010",fontsize=16,color="green",shape="box"];4984[label="Pos zwu440010",fontsize=16,color="green",shape="box"];4985[label="zwu43000",fontsize=16,color="green",shape="box"];4986[label="zwu44000",fontsize=16,color="green",shape="box"];4987[label="Neg zwu430010",fontsize=16,color="green",shape="box"];4988[label="Neg zwu440010",fontsize=16,color="green",shape="box"];4989[label="zwu43000",fontsize=16,color="green",shape="box"];4990[label="zwu44000",fontsize=16,color="green",shape="box"];4991[label="Pos zwu430010",fontsize=16,color="green",shape="box"];4992[label="Neg zwu440010",fontsize=16,color="green",shape="box"];4993[label="zwu43000",fontsize=16,color="green",shape="box"];4994[label="zwu44000",fontsize=16,color="green",shape="box"];4995[label="Neg zwu430010",fontsize=16,color="green",shape="box"];3935 -> 3060[label="",style="dashed", color="red", weight=0]; 3935[label="primCmpNat zwu43000 zwu44000",fontsize=16,color="magenta"];3935 -> 4241[label="",style="dashed", color="magenta", weight=3]; 3935 -> 4242[label="",style="dashed", color="magenta", weight=3]; 3936[label="GT",fontsize=16,color="green",shape="box"];3937[label="LT",fontsize=16,color="green",shape="box"];3938[label="EQ",fontsize=16,color="green",shape="box"];2923[label="primPlusNat zwu5120 zwu1890",fontsize=16,color="burlywood",shape="triangle"];7596[label="zwu5120/Succ zwu51200",fontsize=10,color="white",style="solid",shape="box"];2923 -> 7596[label="",style="solid", color="burlywood", weight=9]; 7596 -> 3048[label="",style="solid", color="burlywood", weight=3]; 7597[label="zwu5120/Zero",fontsize=10,color="white",style="solid",shape="box"];2923 -> 7597[label="",style="solid", color="burlywood", weight=9]; 7597 -> 3049[label="",style="solid", color="burlywood", weight=3]; 2924[label="primMinusNat (Succ zwu51200) zwu1890",fontsize=16,color="burlywood",shape="box"];7598[label="zwu1890/Succ zwu18900",fontsize=10,color="white",style="solid",shape="box"];2924 -> 7598[label="",style="solid", color="burlywood", weight=9]; 7598 -> 3050[label="",style="solid", color="burlywood", weight=3]; 7599[label="zwu1890/Zero",fontsize=10,color="white",style="solid",shape="box"];2924 -> 7599[label="",style="solid", color="burlywood", weight=9]; 7599 -> 3051[label="",style="solid", color="burlywood", weight=3]; 2925[label="primMinusNat Zero zwu1890",fontsize=16,color="burlywood",shape="box"];7600[label="zwu1890/Succ zwu18900",fontsize=10,color="white",style="solid",shape="box"];2925 -> 7600[label="",style="solid", color="burlywood", weight=9]; 7600 -> 3052[label="",style="solid", color="burlywood", weight=3]; 7601[label="zwu1890/Zero",fontsize=10,color="white",style="solid",shape="box"];2925 -> 7601[label="",style="solid", color="burlywood", weight=9]; 7601 -> 3053[label="",style="solid", color="burlywood", weight=3]; 2926[label="zwu5120",fontsize=16,color="green",shape="box"];2927[label="zwu1890",fontsize=16,color="green",shape="box"];2928 -> 2923[label="",style="dashed", color="red", weight=0]; 2928[label="primPlusNat zwu5120 zwu1890",fontsize=16,color="magenta"];2928 -> 3054[label="",style="dashed", color="magenta", weight=3]; 2928 -> 3055[label="",style="dashed", color="magenta", weight=3]; 2984 -> 1820[label="",style="dashed", color="red", weight=0]; 2984[label="FiniteMap.sizeFM zwu514",fontsize=16,color="magenta"];2984 -> 3125[label="",style="dashed", color="magenta", weight=3]; 2985 -> 1012[label="",style="dashed", color="red", weight=0]; 2985[label="Pos (Succ (Succ Zero)) * FiniteMap.sizeFM zwu513",fontsize=16,color="magenta"];2985 -> 3126[label="",style="dashed", color="magenta", weight=3]; 2985 -> 3127[label="",style="dashed", color="magenta", weight=3]; 2986[label="FiniteMap.mkBalBranch6MkBalBranch11 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 zwu510 zwu511 zwu512 zwu513 zwu514 False",fontsize=16,color="black",shape="box"];2986 -> 3128[label="",style="solid", color="black", weight=3]; 2987[label="FiniteMap.mkBalBranch6MkBalBranch11 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 zwu510 zwu511 zwu512 zwu513 zwu514 True",fontsize=16,color="black",shape="box"];2987 -> 3129[label="",style="solid", color="black", weight=3]; 3046[label="FiniteMap.mkBalBranch6Double_L (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 zwu643 zwu644)",fontsize=16,color="burlywood",shape="box"];7602[label="zwu643/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3046 -> 7602[label="",style="solid", color="burlywood", weight=9]; 7602 -> 3162[label="",style="solid", color="burlywood", weight=3]; 7603[label="zwu643/FiniteMap.Branch zwu6430 zwu6431 zwu6432 zwu6433 zwu6434",fontsize=10,color="white",style="solid",shape="box"];3046 -> 7603[label="",style="solid", color="burlywood", weight=9]; 7603 -> 3163[label="",style="solid", color="burlywood", weight=3]; 4858[label="Succ (Succ Zero)",fontsize=16,color="green",shape="box"];4859[label="zwu641",fontsize=16,color="green",shape="box"];4860[label="zwu640",fontsize=16,color="green",shape="box"];4861[label="zwu644",fontsize=16,color="green",shape="box"];4862 -> 4807[label="",style="dashed", color="red", weight=0]; 4862[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) zwu60 zwu61 zwu51 zwu643",fontsize=16,color="magenta"];4862 -> 5018[label="",style="dashed", color="magenta", weight=3]; 4862 -> 5019[label="",style="dashed", color="magenta", weight=3]; 4862 -> 5020[label="",style="dashed", color="magenta", weight=3]; 4862 -> 5021[label="",style="dashed", color="magenta", weight=3]; 4862 -> 5022[label="",style="dashed", color="magenta", weight=3]; 5154[label="zwu275",fontsize=16,color="green",shape="box"];2988[label="zwu400100",fontsize=16,color="green",shape="box"];2989[label="Succ zwu600000",fontsize=16,color="green",shape="box"];3056 -> 2923[label="",style="dashed", color="red", weight=0]; 3056[label="primPlusNat (primPlusNat (Succ (primPlusNat (Succ zwu72000) (Succ zwu72000))) (Succ zwu72000)) zwu72000",fontsize=16,color="magenta"];3056 -> 3176[label="",style="dashed", color="magenta", weight=3]; 3056 -> 3177[label="",style="dashed", color="magenta", weight=3]; 3057 -> 2923[label="",style="dashed", color="red", weight=0]; 3057[label="primPlusNat (Succ (primPlusNat Zero Zero)) Zero",fontsize=16,color="magenta"];3057 -> 3178[label="",style="dashed", color="magenta", weight=3]; 3057 -> 3179[label="",style="dashed", color="magenta", weight=3]; 3058[label="zwu600000",fontsize=16,color="green",shape="box"];3059[label="zwu1950",fontsize=16,color="green",shape="box"];3088[label="zwu93",fontsize=16,color="green",shape="box"];3089 -> 414[label="",style="dashed", color="red", weight=0]; 3089[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="magenta"];3089 -> 3184[label="",style="dashed", color="magenta", weight=3]; 3089 -> 3185[label="",style="dashed", color="magenta", weight=3]; 3089 -> 3186[label="",style="dashed", color="magenta", weight=3]; 3089 -> 3187[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6028[label="",style="dashed", color="red", weight=0]; 3090[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];3090 -> 6029[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6030[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6031[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6032[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6033[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6034[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6035[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6036[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6037[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6038[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6039[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6040[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6041[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6042[label="",style="dashed", color="magenta", weight=3]; 3090 -> 6043[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6128[label="",style="dashed", color="red", weight=0]; 3091[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Pos (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];3091 -> 6129[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6130[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6131[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6132[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6133[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6134[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6135[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6136[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6137[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6138[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6139[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6140[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6141[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6142[label="",style="dashed", color="magenta", weight=3]; 3091 -> 6143[label="",style="dashed", color="magenta", weight=3]; 5279[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu288 zwu289 zwu290 zwu291 zwu292) (FiniteMap.Branch zwu293 zwu294 (Pos (Succ zwu295)) zwu296 zwu297) (FiniteMap.findMin (FiniteMap.Branch zwu298 zwu299 zwu300 FiniteMap.EmptyFM zwu302))",fontsize=16,color="black",shape="box"];5279 -> 5385[label="",style="solid", color="black", weight=3]; 5280[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu288 zwu289 zwu290 zwu291 zwu292) (FiniteMap.Branch zwu293 zwu294 (Pos (Succ zwu295)) zwu296 zwu297) (FiniteMap.findMin (FiniteMap.Branch zwu298 zwu299 zwu300 (FiniteMap.Branch zwu3010 zwu3011 zwu3012 zwu3013 zwu3014) zwu302))",fontsize=16,color="black",shape="box"];5280 -> 5386[label="",style="solid", color="black", weight=3]; 3094[label="zwu832",fontsize=16,color="green",shape="box"];3095[label="zwu831",fontsize=16,color="green",shape="box"];3096[label="zwu833",fontsize=16,color="green",shape="box"];3097[label="zwu830",fontsize=16,color="green",shape="box"];3098[label="zwu834",fontsize=16,color="green",shape="box"];5383[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu304 zwu305 zwu306 zwu307 zwu308) (FiniteMap.Branch zwu309 zwu310 (Pos (Succ zwu311)) zwu312 zwu313) (FiniteMap.findMin (FiniteMap.Branch zwu314 zwu315 zwu316 FiniteMap.EmptyFM zwu318))",fontsize=16,color="black",shape="box"];5383 -> 5486[label="",style="solid", color="black", weight=3]; 5384[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu304 zwu305 zwu306 zwu307 zwu308) (FiniteMap.Branch zwu309 zwu310 (Pos (Succ zwu311)) zwu312 zwu313) (FiniteMap.findMin (FiniteMap.Branch zwu314 zwu315 zwu316 (FiniteMap.Branch zwu3170 zwu3171 zwu3172 zwu3173 zwu3174) zwu318))",fontsize=16,color="black",shape="box"];5384 -> 5487[label="",style="solid", color="black", weight=3]; 3101[label="zwu93",fontsize=16,color="green",shape="box"];3102 -> 414[label="",style="dashed", color="red", weight=0]; 3102[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="magenta"];3102 -> 3198[label="",style="dashed", color="magenta", weight=3]; 3102 -> 3199[label="",style="dashed", color="magenta", weight=3]; 3102 -> 3200[label="",style="dashed", color="magenta", weight=3]; 3102 -> 3201[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6224[label="",style="dashed", color="red", weight=0]; 3103[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="magenta"];3103 -> 6225[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6226[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6227[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6228[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6229[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6230[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6231[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6232[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6233[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6234[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6235[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6236[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6237[label="",style="dashed", color="magenta", weight=3]; 3103 -> 6238[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6320[label="",style="dashed", color="red", weight=0]; 3104[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Pos Zero) zwu93 zwu94))",fontsize=16,color="magenta"];3104 -> 6321[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6322[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6323[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6324[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6325[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6326[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6327[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6328[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6329[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6330[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6331[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6332[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6333[label="",style="dashed", color="magenta", weight=3]; 3104 -> 6334[label="",style="dashed", color="magenta", weight=3]; 5484[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu320 zwu321 zwu322 zwu323 zwu324) (FiniteMap.Branch zwu325 zwu326 (Pos Zero) zwu327 zwu328) (FiniteMap.findMin (FiniteMap.Branch zwu329 zwu330 zwu331 FiniteMap.EmptyFM zwu333))",fontsize=16,color="black",shape="box"];5484 -> 5587[label="",style="solid", color="black", weight=3]; 5485[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu320 zwu321 zwu322 zwu323 zwu324) (FiniteMap.Branch zwu325 zwu326 (Pos Zero) zwu327 zwu328) (FiniteMap.findMin (FiniteMap.Branch zwu329 zwu330 zwu331 (FiniteMap.Branch zwu3320 zwu3321 zwu3322 zwu3323 zwu3324) zwu333))",fontsize=16,color="black",shape="box"];5485 -> 5588[label="",style="solid", color="black", weight=3]; 5585[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu335 zwu336 zwu337 zwu338 zwu339) (FiniteMap.Branch zwu340 zwu341 (Pos Zero) zwu342 zwu343) (FiniteMap.findMin (FiniteMap.Branch zwu344 zwu345 zwu346 FiniteMap.EmptyFM zwu348))",fontsize=16,color="black",shape="box"];5585 -> 5695[label="",style="solid", color="black", weight=3]; 5586[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu335 zwu336 zwu337 zwu338 zwu339) (FiniteMap.Branch zwu340 zwu341 (Pos Zero) zwu342 zwu343) (FiniteMap.findMin (FiniteMap.Branch zwu344 zwu345 zwu346 (FiniteMap.Branch zwu3470 zwu3471 zwu3472 zwu3473 zwu3474) zwu348))",fontsize=16,color="black",shape="box"];5586 -> 5696[label="",style="solid", color="black", weight=3]; 3109[label="zwu93",fontsize=16,color="green",shape="box"];3110 -> 414[label="",style="dashed", color="red", weight=0]; 3110[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="magenta"];3110 -> 3212[label="",style="dashed", color="magenta", weight=3]; 3110 -> 3213[label="",style="dashed", color="magenta", weight=3]; 3110 -> 3214[label="",style="dashed", color="magenta", weight=3]; 3110 -> 3215[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6416[label="",style="dashed", color="red", weight=0]; 3111[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];3111 -> 6417[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6418[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6419[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6420[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6421[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6422[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6423[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6424[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6425[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6426[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6427[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6428[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6429[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6430[label="",style="dashed", color="magenta", weight=3]; 3111 -> 6431[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6518[label="",style="dashed", color="red", weight=0]; 3112[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Neg (Succ zwu9200)) zwu93 zwu94))",fontsize=16,color="magenta"];3112 -> 6519[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6520[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6521[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6522[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6523[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6524[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6525[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6526[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6527[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6528[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6529[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6530[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6531[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6532[label="",style="dashed", color="magenta", weight=3]; 3112 -> 6533[label="",style="dashed", color="magenta", weight=3]; 5693[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu350 zwu351 zwu352 zwu353 zwu354) (FiniteMap.Branch zwu355 zwu356 (Neg (Succ zwu357)) zwu358 zwu359) (FiniteMap.findMin (FiniteMap.Branch zwu360 zwu361 zwu362 FiniteMap.EmptyFM zwu364))",fontsize=16,color="black",shape="box"];5693 -> 5797[label="",style="solid", color="black", weight=3]; 5694[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu350 zwu351 zwu352 zwu353 zwu354) (FiniteMap.Branch zwu355 zwu356 (Neg (Succ zwu357)) zwu358 zwu359) (FiniteMap.findMin (FiniteMap.Branch zwu360 zwu361 zwu362 (FiniteMap.Branch zwu3630 zwu3631 zwu3632 zwu3633 zwu3634) zwu364))",fontsize=16,color="black",shape="box"];5694 -> 5798[label="",style="solid", color="black", weight=3]; 5795[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu366 zwu367 zwu368 zwu369 zwu370) (FiniteMap.Branch zwu371 zwu372 (Neg (Succ zwu373)) zwu374 zwu375) (FiniteMap.findMin (FiniteMap.Branch zwu376 zwu377 zwu378 FiniteMap.EmptyFM zwu380))",fontsize=16,color="black",shape="box"];5795 -> 5899[label="",style="solid", color="black", weight=3]; 5796[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu366 zwu367 zwu368 zwu369 zwu370) (FiniteMap.Branch zwu371 zwu372 (Neg (Succ zwu373)) zwu374 zwu375) (FiniteMap.findMin (FiniteMap.Branch zwu376 zwu377 zwu378 (FiniteMap.Branch zwu3790 zwu3791 zwu3792 zwu3793 zwu3794) zwu380))",fontsize=16,color="black",shape="box"];5796 -> 5900[label="",style="solid", color="black", weight=3]; 3117[label="zwu93",fontsize=16,color="green",shape="box"];3118 -> 414[label="",style="dashed", color="red", weight=0]; 3118[label="FiniteMap.mkBalBranch zwu90 zwu91 zwu93 (FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944))",fontsize=16,color="magenta"];3118 -> 3226[label="",style="dashed", color="magenta", weight=3]; 3118 -> 3227[label="",style="dashed", color="magenta", weight=3]; 3118 -> 3228[label="",style="dashed", color="magenta", weight=3]; 3118 -> 3229[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6620[label="",style="dashed", color="red", weight=0]; 3119[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="magenta"];3119 -> 6621[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6622[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6623[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6624[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6625[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6626[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6627[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6628[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6629[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6630[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6631[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6632[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6633[label="",style="dashed", color="magenta", weight=3]; 3119 -> 6634[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6716[label="",style="dashed", color="red", weight=0]; 3120[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu80 zwu81 zwu82 zwu83 zwu84) (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94) (FiniteMap.findMax (FiniteMap.Branch zwu90 zwu91 (Neg Zero) zwu93 zwu94))",fontsize=16,color="magenta"];3120 -> 6717[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6718[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6719[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6720[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6721[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6722[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6723[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6724[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6725[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6726[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6727[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6728[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6729[label="",style="dashed", color="magenta", weight=3]; 3120 -> 6730[label="",style="dashed", color="magenta", weight=3]; 5897[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu382 zwu383 zwu384 zwu385 zwu386) (FiniteMap.Branch zwu387 zwu388 (Neg Zero) zwu389 zwu390) (FiniteMap.findMin (FiniteMap.Branch zwu391 zwu392 zwu393 FiniteMap.EmptyFM zwu395))",fontsize=16,color="black",shape="box"];5897 -> 5995[label="",style="solid", color="black", weight=3]; 5898[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu382 zwu383 zwu384 zwu385 zwu386) (FiniteMap.Branch zwu387 zwu388 (Neg Zero) zwu389 zwu390) (FiniteMap.findMin (FiniteMap.Branch zwu391 zwu392 zwu393 (FiniteMap.Branch zwu3940 zwu3941 zwu3942 zwu3943 zwu3944) zwu395))",fontsize=16,color="black",shape="box"];5898 -> 5996[label="",style="solid", color="black", weight=3]; 5993[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu397 zwu398 zwu399 zwu400 zwu401) (FiniteMap.Branch zwu402 zwu403 (Neg Zero) zwu404 zwu405) (FiniteMap.findMin (FiniteMap.Branch zwu406 zwu407 zwu408 FiniteMap.EmptyFM zwu410))",fontsize=16,color="black",shape="box"];5993 -> 6019[label="",style="solid", color="black", weight=3]; 5994[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu397 zwu398 zwu399 zwu400 zwu401) (FiniteMap.Branch zwu402 zwu403 (Neg Zero) zwu404 zwu405) (FiniteMap.findMin (FiniteMap.Branch zwu406 zwu407 zwu408 (FiniteMap.Branch zwu4090 zwu4091 zwu4092 zwu4093 zwu4094) zwu410))",fontsize=16,color="black",shape="box"];5994 -> 6020[label="",style="solid", color="black", weight=3]; 4996[label="zwu44000",fontsize=16,color="green",shape="box"];4997[label="zwu43000",fontsize=16,color="green",shape="box"];4998[label="compare2 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];4998 -> 5099[label="",style="solid", color="black", weight=3]; 4999[label="compare2 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];4999 -> 5100[label="",style="solid", color="black", weight=3]; 5000[label="zwu44000",fontsize=16,color="green",shape="box"];5001[label="zwu43000",fontsize=16,color="green",shape="box"];5002[label="compare2 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5002 -> 5101[label="",style="solid", color="black", weight=3]; 5003[label="compare2 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5003 -> 5102[label="",style="solid", color="black", weight=3]; 5004[label="zwu44000",fontsize=16,color="green",shape="box"];5005[label="zwu43000",fontsize=16,color="green",shape="box"];5006[label="compare2 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5006 -> 5103[label="",style="solid", color="black", weight=3]; 5007[label="compare2 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5007 -> 5104[label="",style="solid", color="black", weight=3]; 5008[label="zwu44000",fontsize=16,color="green",shape="box"];5009[label="zwu43000",fontsize=16,color="green",shape="box"];5010[label="compare2 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5010 -> 5105[label="",style="solid", color="black", weight=3]; 5011[label="compare2 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5011 -> 5106[label="",style="solid", color="black", weight=3]; 5012[label="zwu44000",fontsize=16,color="green",shape="box"];5013[label="zwu43000",fontsize=16,color="green",shape="box"];5014[label="zwu44000",fontsize=16,color="green",shape="box"];5015[label="zwu43000",fontsize=16,color="green",shape="box"];5016[label="compare2 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5016 -> 5107[label="",style="solid", color="black", weight=3]; 5017[label="compare2 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5017 -> 5108[label="",style="solid", color="black", weight=3]; 3182[label="zwu4300",fontsize=16,color="green",shape="box"];3183[label="zwu4400",fontsize=16,color="green",shape="box"];5098 -> 1229[label="",style="dashed", color="red", weight=0]; 5098[label="primMulInt zwu440000 zwu430010",fontsize=16,color="magenta"];5098 -> 5145[label="",style="dashed", color="magenta", weight=3]; 5098 -> 5146[label="",style="dashed", color="magenta", weight=3]; 4241[label="zwu44000",fontsize=16,color="green",shape="box"];4242[label="zwu43000",fontsize=16,color="green",shape="box"];3048[label="primPlusNat (Succ zwu51200) zwu1890",fontsize=16,color="burlywood",shape="box"];7604[label="zwu1890/Succ zwu18900",fontsize=10,color="white",style="solid",shape="box"];3048 -> 7604[label="",style="solid", color="burlywood", weight=9]; 7604 -> 3168[label="",style="solid", color="burlywood", weight=3]; 7605[label="zwu1890/Zero",fontsize=10,color="white",style="solid",shape="box"];3048 -> 7605[label="",style="solid", color="burlywood", weight=9]; 7605 -> 3169[label="",style="solid", color="burlywood", weight=3]; 3049[label="primPlusNat Zero zwu1890",fontsize=16,color="burlywood",shape="box"];7606[label="zwu1890/Succ zwu18900",fontsize=10,color="white",style="solid",shape="box"];3049 -> 7606[label="",style="solid", color="burlywood", weight=9]; 7606 -> 3170[label="",style="solid", color="burlywood", weight=3]; 7607[label="zwu1890/Zero",fontsize=10,color="white",style="solid",shape="box"];3049 -> 7607[label="",style="solid", color="burlywood", weight=9]; 7607 -> 3171[label="",style="solid", color="burlywood", weight=3]; 3050[label="primMinusNat (Succ zwu51200) (Succ zwu18900)",fontsize=16,color="black",shape="box"];3050 -> 3172[label="",style="solid", color="black", weight=3]; 3051[label="primMinusNat (Succ zwu51200) Zero",fontsize=16,color="black",shape="box"];3051 -> 3173[label="",style="solid", color="black", weight=3]; 3052[label="primMinusNat Zero (Succ zwu18900)",fontsize=16,color="black",shape="box"];3052 -> 3174[label="",style="solid", color="black", weight=3]; 3053[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];3053 -> 3175[label="",style="solid", color="black", weight=3]; 3054[label="zwu1890",fontsize=16,color="green",shape="box"];3055[label="zwu5120",fontsize=16,color="green",shape="box"];3125[label="zwu514",fontsize=16,color="green",shape="box"];3126 -> 1820[label="",style="dashed", color="red", weight=0]; 3126[label="FiniteMap.sizeFM zwu513",fontsize=16,color="magenta"];3126 -> 3240[label="",style="dashed", color="magenta", weight=3]; 3127[label="Pos (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];3128[label="FiniteMap.mkBalBranch6MkBalBranch10 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 zwu510 zwu511 zwu512 zwu513 zwu514 otherwise",fontsize=16,color="black",shape="box"];3128 -> 3241[label="",style="solid", color="black", weight=3]; 3129[label="FiniteMap.mkBalBranch6Single_R zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64",fontsize=16,color="black",shape="box"];3129 -> 3242[label="",style="solid", color="black", weight=3]; 3162[label="FiniteMap.mkBalBranch6Double_L (FiniteMap.Branch zwu640 zwu641 zwu642 FiniteMap.EmptyFM zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 FiniteMap.EmptyFM zwu644)",fontsize=16,color="black",shape="box"];3162 -> 3532[label="",style="solid", color="black", weight=3]; 3163[label="FiniteMap.mkBalBranch6Double_L (FiniteMap.Branch zwu640 zwu641 zwu642 (FiniteMap.Branch zwu6430 zwu6431 zwu6432 zwu6433 zwu6434) zwu644) zwu60 zwu61 zwu51 zwu51 (FiniteMap.Branch zwu640 zwu641 zwu642 (FiniteMap.Branch zwu6430 zwu6431 zwu6432 zwu6433 zwu6434) zwu644)",fontsize=16,color="black",shape="box"];3163 -> 3533[label="",style="solid", color="black", weight=3]; 5018[label="Succ (Succ (Succ Zero))",fontsize=16,color="green",shape="box"];5019[label="zwu61",fontsize=16,color="green",shape="box"];5020[label="zwu60",fontsize=16,color="green",shape="box"];5021[label="zwu643",fontsize=16,color="green",shape="box"];5022[label="zwu51",fontsize=16,color="green",shape="box"];3176[label="zwu72000",fontsize=16,color="green",shape="box"];3177 -> 2923[label="",style="dashed", color="red", weight=0]; 3177[label="primPlusNat (Succ (primPlusNat (Succ zwu72000) (Succ zwu72000))) (Succ zwu72000)",fontsize=16,color="magenta"];3177 -> 3541[label="",style="dashed", color="magenta", weight=3]; 3177 -> 3542[label="",style="dashed", color="magenta", weight=3]; 3178[label="Zero",fontsize=16,color="green",shape="box"];3179[label="Succ (primPlusNat Zero Zero)",fontsize=16,color="green",shape="box"];3179 -> 3543[label="",style="dashed", color="green", weight=3]; 3184[label="zwu93",fontsize=16,color="green",shape="box"];3185[label="zwu91",fontsize=16,color="green",shape="box"];3186[label="FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944)",fontsize=16,color="burlywood",shape="triangle"];7608[label="zwu944/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3186 -> 7608[label="",style="solid", color="burlywood", weight=9]; 7608 -> 3548[label="",style="solid", color="burlywood", weight=3]; 7609[label="zwu944/FiniteMap.Branch zwu9440 zwu9441 zwu9442 zwu9443 zwu9444",fontsize=10,color="white",style="solid",shape="box"];3186 -> 7609[label="",style="solid", color="burlywood", weight=9]; 7609 -> 3549[label="",style="solid", color="burlywood", weight=3]; 3187[label="zwu90",fontsize=16,color="green",shape="box"];6029[label="zwu90",fontsize=16,color="green",shape="box"];6030[label="zwu94",fontsize=16,color="green",shape="box"];6031[label="zwu84",fontsize=16,color="green",shape="box"];6032[label="zwu81",fontsize=16,color="green",shape="box"];6033[label="zwu94",fontsize=16,color="green",shape="box"];6034[label="zwu9200",fontsize=16,color="green",shape="box"];6035[label="zwu80",fontsize=16,color="green",shape="box"];6036[label="zwu91",fontsize=16,color="green",shape="box"];6037[label="Pos (Succ zwu9200)",fontsize=16,color="green",shape="box"];6038[label="zwu93",fontsize=16,color="green",shape="box"];6039[label="zwu91",fontsize=16,color="green",shape="box"];6040[label="zwu90",fontsize=16,color="green",shape="box"];6041[label="zwu93",fontsize=16,color="green",shape="box"];6042[label="zwu82",fontsize=16,color="green",shape="box"];6043[label="zwu83",fontsize=16,color="green",shape="box"];6028[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu412 zwu413 zwu414 zwu415 zwu416) (FiniteMap.Branch zwu417 zwu418 (Pos (Succ zwu419)) zwu420 zwu421) (FiniteMap.findMax (FiniteMap.Branch zwu422 zwu423 zwu424 zwu425 zwu426))",fontsize=16,color="burlywood",shape="triangle"];7610[label="zwu426/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6028 -> 7610[label="",style="solid", color="burlywood", weight=9]; 7610 -> 6119[label="",style="solid", color="burlywood", weight=3]; 7611[label="zwu426/FiniteMap.Branch zwu4260 zwu4261 zwu4262 zwu4263 zwu4264",fontsize=10,color="white",style="solid",shape="box"];6028 -> 7611[label="",style="solid", color="burlywood", weight=9]; 7611 -> 6120[label="",style="solid", color="burlywood", weight=3]; 6129[label="zwu93",fontsize=16,color="green",shape="box"];6130[label="zwu91",fontsize=16,color="green",shape="box"];6131[label="zwu94",fontsize=16,color="green",shape="box"];6132[label="zwu90",fontsize=16,color="green",shape="box"];6133[label="zwu9200",fontsize=16,color="green",shape="box"];6134[label="Pos (Succ zwu9200)",fontsize=16,color="green",shape="box"];6135[label="zwu81",fontsize=16,color="green",shape="box"];6136[label="zwu90",fontsize=16,color="green",shape="box"];6137[label="zwu82",fontsize=16,color="green",shape="box"];6138[label="zwu80",fontsize=16,color="green",shape="box"];6139[label="zwu94",fontsize=16,color="green",shape="box"];6140[label="zwu83",fontsize=16,color="green",shape="box"];6141[label="zwu93",fontsize=16,color="green",shape="box"];6142[label="zwu84",fontsize=16,color="green",shape="box"];6143[label="zwu91",fontsize=16,color="green",shape="box"];6128[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu428 zwu429 zwu430 zwu431 zwu432) (FiniteMap.Branch zwu433 zwu434 (Pos (Succ zwu435)) zwu436 zwu437) (FiniteMap.findMax (FiniteMap.Branch zwu438 zwu439 zwu440 zwu441 zwu442))",fontsize=16,color="burlywood",shape="triangle"];7612[label="zwu442/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6128 -> 7612[label="",style="solid", color="burlywood", weight=9]; 7612 -> 6219[label="",style="solid", color="burlywood", weight=3]; 7613[label="zwu442/FiniteMap.Branch zwu4420 zwu4421 zwu4422 zwu4423 zwu4424",fontsize=10,color="white",style="solid",shape="box"];6128 -> 7613[label="",style="solid", color="burlywood", weight=9]; 7613 -> 6220[label="",style="solid", color="burlywood", weight=3]; 5385[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu288 zwu289 zwu290 zwu291 zwu292) (FiniteMap.Branch zwu293 zwu294 (Pos (Succ zwu295)) zwu296 zwu297) (zwu298,zwu299)",fontsize=16,color="black",shape="box"];5385 -> 5488[label="",style="solid", color="black", weight=3]; 5386 -> 5188[label="",style="dashed", color="red", weight=0]; 5386[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu288 zwu289 zwu290 zwu291 zwu292) (FiniteMap.Branch zwu293 zwu294 (Pos (Succ zwu295)) zwu296 zwu297) (FiniteMap.findMin (FiniteMap.Branch zwu3010 zwu3011 zwu3012 zwu3013 zwu3014))",fontsize=16,color="magenta"];5386 -> 5489[label="",style="dashed", color="magenta", weight=3]; 5386 -> 5490[label="",style="dashed", color="magenta", weight=3]; 5386 -> 5491[label="",style="dashed", color="magenta", weight=3]; 5386 -> 5492[label="",style="dashed", color="magenta", weight=3]; 5386 -> 5493[label="",style="dashed", color="magenta", weight=3]; 5486[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu304 zwu305 zwu306 zwu307 zwu308) (FiniteMap.Branch zwu309 zwu310 (Pos (Succ zwu311)) zwu312 zwu313) (zwu314,zwu315)",fontsize=16,color="black",shape="box"];5486 -> 5589[label="",style="solid", color="black", weight=3]; 5487 -> 5292[label="",style="dashed", color="red", weight=0]; 5487[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu304 zwu305 zwu306 zwu307 zwu308) (FiniteMap.Branch zwu309 zwu310 (Pos (Succ zwu311)) zwu312 zwu313) (FiniteMap.findMin (FiniteMap.Branch zwu3170 zwu3171 zwu3172 zwu3173 zwu3174))",fontsize=16,color="magenta"];5487 -> 5590[label="",style="dashed", color="magenta", weight=3]; 5487 -> 5591[label="",style="dashed", color="magenta", weight=3]; 5487 -> 5592[label="",style="dashed", color="magenta", weight=3]; 5487 -> 5593[label="",style="dashed", color="magenta", weight=3]; 5487 -> 5594[label="",style="dashed", color="magenta", weight=3]; 3198[label="zwu93",fontsize=16,color="green",shape="box"];3199[label="zwu91",fontsize=16,color="green",shape="box"];3200 -> 3186[label="",style="dashed", color="red", weight=0]; 3200[label="FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944)",fontsize=16,color="magenta"];3201[label="zwu90",fontsize=16,color="green",shape="box"];6225[label="zwu94",fontsize=16,color="green",shape="box"];6226[label="zwu84",fontsize=16,color="green",shape="box"];6227[label="Pos Zero",fontsize=16,color="green",shape="box"];6228[label="zwu90",fontsize=16,color="green",shape="box"];6229[label="zwu93",fontsize=16,color="green",shape="box"];6230[label="zwu93",fontsize=16,color="green",shape="box"];6231[label="zwu80",fontsize=16,color="green",shape="box"];6232[label="zwu91",fontsize=16,color="green",shape="box"];6233[label="zwu91",fontsize=16,color="green",shape="box"];6234[label="zwu82",fontsize=16,color="green",shape="box"];6235[label="zwu94",fontsize=16,color="green",shape="box"];6236[label="zwu83",fontsize=16,color="green",shape="box"];6237[label="zwu90",fontsize=16,color="green",shape="box"];6238[label="zwu81",fontsize=16,color="green",shape="box"];6224[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu444 zwu445 zwu446 zwu447 zwu448) (FiniteMap.Branch zwu449 zwu450 (Pos Zero) zwu451 zwu452) (FiniteMap.findMax (FiniteMap.Branch zwu453 zwu454 zwu455 zwu456 zwu457))",fontsize=16,color="burlywood",shape="triangle"];7614[label="zwu457/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6224 -> 7614[label="",style="solid", color="burlywood", weight=9]; 7614 -> 6309[label="",style="solid", color="burlywood", weight=3]; 7615[label="zwu457/FiniteMap.Branch zwu4570 zwu4571 zwu4572 zwu4573 zwu4574",fontsize=10,color="white",style="solid",shape="box"];6224 -> 7615[label="",style="solid", color="burlywood", weight=9]; 7615 -> 6310[label="",style="solid", color="burlywood", weight=3]; 6321[label="Pos Zero",fontsize=16,color="green",shape="box"];6322[label="zwu91",fontsize=16,color="green",shape="box"];6323[label="zwu93",fontsize=16,color="green",shape="box"];6324[label="zwu83",fontsize=16,color="green",shape="box"];6325[label="zwu90",fontsize=16,color="green",shape="box"];6326[label="zwu93",fontsize=16,color="green",shape="box"];6327[label="zwu84",fontsize=16,color="green",shape="box"];6328[label="zwu90",fontsize=16,color="green",shape="box"];6329[label="zwu91",fontsize=16,color="green",shape="box"];6330[label="zwu94",fontsize=16,color="green",shape="box"];6331[label="zwu80",fontsize=16,color="green",shape="box"];6332[label="zwu81",fontsize=16,color="green",shape="box"];6333[label="zwu82",fontsize=16,color="green",shape="box"];6334[label="zwu94",fontsize=16,color="green",shape="box"];6320[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu459 zwu460 zwu461 zwu462 zwu463) (FiniteMap.Branch zwu464 zwu465 (Pos Zero) zwu466 zwu467) (FiniteMap.findMax (FiniteMap.Branch zwu468 zwu469 zwu470 zwu471 zwu472))",fontsize=16,color="burlywood",shape="triangle"];7616[label="zwu472/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6320 -> 7616[label="",style="solid", color="burlywood", weight=9]; 7616 -> 6405[label="",style="solid", color="burlywood", weight=3]; 7617[label="zwu472/FiniteMap.Branch zwu4720 zwu4721 zwu4722 zwu4723 zwu4724",fontsize=10,color="white",style="solid",shape="box"];6320 -> 7617[label="",style="solid", color="burlywood", weight=9]; 7617 -> 6406[label="",style="solid", color="burlywood", weight=3]; 5587[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu320 zwu321 zwu322 zwu323 zwu324) (FiniteMap.Branch zwu325 zwu326 (Pos Zero) zwu327 zwu328) (zwu329,zwu330)",fontsize=16,color="black",shape="box"];5587 -> 5697[label="",style="solid", color="black", weight=3]; 5588 -> 5399[label="",style="dashed", color="red", weight=0]; 5588[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu320 zwu321 zwu322 zwu323 zwu324) (FiniteMap.Branch zwu325 zwu326 (Pos Zero) zwu327 zwu328) (FiniteMap.findMin (FiniteMap.Branch zwu3320 zwu3321 zwu3322 zwu3323 zwu3324))",fontsize=16,color="magenta"];5588 -> 5698[label="",style="dashed", color="magenta", weight=3]; 5588 -> 5699[label="",style="dashed", color="magenta", weight=3]; 5588 -> 5700[label="",style="dashed", color="magenta", weight=3]; 5588 -> 5701[label="",style="dashed", color="magenta", weight=3]; 5588 -> 5702[label="",style="dashed", color="magenta", weight=3]; 5695[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu335 zwu336 zwu337 zwu338 zwu339) (FiniteMap.Branch zwu340 zwu341 (Pos Zero) zwu342 zwu343) (zwu344,zwu345)",fontsize=16,color="black",shape="box"];5695 -> 5799[label="",style="solid", color="black", weight=3]; 5696 -> 5500[label="",style="dashed", color="red", weight=0]; 5696[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu335 zwu336 zwu337 zwu338 zwu339) (FiniteMap.Branch zwu340 zwu341 (Pos Zero) zwu342 zwu343) (FiniteMap.findMin (FiniteMap.Branch zwu3470 zwu3471 zwu3472 zwu3473 zwu3474))",fontsize=16,color="magenta"];5696 -> 5800[label="",style="dashed", color="magenta", weight=3]; 5696 -> 5801[label="",style="dashed", color="magenta", weight=3]; 5696 -> 5802[label="",style="dashed", color="magenta", weight=3]; 5696 -> 5803[label="",style="dashed", color="magenta", weight=3]; 5696 -> 5804[label="",style="dashed", color="magenta", weight=3]; 3212[label="zwu93",fontsize=16,color="green",shape="box"];3213[label="zwu91",fontsize=16,color="green",shape="box"];3214 -> 3186[label="",style="dashed", color="red", weight=0]; 3214[label="FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944)",fontsize=16,color="magenta"];3215[label="zwu90",fontsize=16,color="green",shape="box"];6417[label="zwu93",fontsize=16,color="green",shape="box"];6418[label="zwu9200",fontsize=16,color="green",shape="box"];6419[label="zwu84",fontsize=16,color="green",shape="box"];6420[label="zwu91",fontsize=16,color="green",shape="box"];6421[label="zwu94",fontsize=16,color="green",shape="box"];6422[label="zwu94",fontsize=16,color="green",shape="box"];6423[label="zwu93",fontsize=16,color="green",shape="box"];6424[label="zwu82",fontsize=16,color="green",shape="box"];6425[label="Neg (Succ zwu9200)",fontsize=16,color="green",shape="box"];6426[label="zwu90",fontsize=16,color="green",shape="box"];6427[label="zwu81",fontsize=16,color="green",shape="box"];6428[label="zwu91",fontsize=16,color="green",shape="box"];6429[label="zwu90",fontsize=16,color="green",shape="box"];6430[label="zwu80",fontsize=16,color="green",shape="box"];6431[label="zwu83",fontsize=16,color="green",shape="box"];6416[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu474 zwu475 zwu476 zwu477 zwu478) (FiniteMap.Branch zwu479 zwu480 (Neg (Succ zwu481)) zwu482 zwu483) (FiniteMap.findMax (FiniteMap.Branch zwu484 zwu485 zwu486 zwu487 zwu488))",fontsize=16,color="burlywood",shape="triangle"];7618[label="zwu488/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6416 -> 7618[label="",style="solid", color="burlywood", weight=9]; 7618 -> 6507[label="",style="solid", color="burlywood", weight=3]; 7619[label="zwu488/FiniteMap.Branch zwu4880 zwu4881 zwu4882 zwu4883 zwu4884",fontsize=10,color="white",style="solid",shape="box"];6416 -> 7619[label="",style="solid", color="burlywood", weight=9]; 7619 -> 6508[label="",style="solid", color="burlywood", weight=3]; 6519[label="zwu83",fontsize=16,color="green",shape="box"];6520[label="zwu9200",fontsize=16,color="green",shape="box"];6521[label="zwu93",fontsize=16,color="green",shape="box"];6522[label="zwu80",fontsize=16,color="green",shape="box"];6523[label="zwu90",fontsize=16,color="green",shape="box"];6524[label="zwu91",fontsize=16,color="green",shape="box"];6525[label="Neg (Succ zwu9200)",fontsize=16,color="green",shape="box"];6526[label="zwu93",fontsize=16,color="green",shape="box"];6527[label="zwu94",fontsize=16,color="green",shape="box"];6528[label="zwu82",fontsize=16,color="green",shape="box"];6529[label="zwu84",fontsize=16,color="green",shape="box"];6530[label="zwu94",fontsize=16,color="green",shape="box"];6531[label="zwu81",fontsize=16,color="green",shape="box"];6532[label="zwu90",fontsize=16,color="green",shape="box"];6533[label="zwu91",fontsize=16,color="green",shape="box"];6518[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu490 zwu491 zwu492 zwu493 zwu494) (FiniteMap.Branch zwu495 zwu496 (Neg (Succ zwu497)) zwu498 zwu499) (FiniteMap.findMax (FiniteMap.Branch zwu500 zwu501 zwu502 zwu503 zwu504))",fontsize=16,color="burlywood",shape="triangle"];7620[label="zwu504/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6518 -> 7620[label="",style="solid", color="burlywood", weight=9]; 7620 -> 6609[label="",style="solid", color="burlywood", weight=3]; 7621[label="zwu504/FiniteMap.Branch zwu5040 zwu5041 zwu5042 zwu5043 zwu5044",fontsize=10,color="white",style="solid",shape="box"];6518 -> 7621[label="",style="solid", color="burlywood", weight=9]; 7621 -> 6610[label="",style="solid", color="burlywood", weight=3]; 5797[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu350 zwu351 zwu352 zwu353 zwu354) (FiniteMap.Branch zwu355 zwu356 (Neg (Succ zwu357)) zwu358 zwu359) (zwu360,zwu361)",fontsize=16,color="black",shape="box"];5797 -> 5901[label="",style="solid", color="black", weight=3]; 5798 -> 5602[label="",style="dashed", color="red", weight=0]; 5798[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu350 zwu351 zwu352 zwu353 zwu354) (FiniteMap.Branch zwu355 zwu356 (Neg (Succ zwu357)) zwu358 zwu359) (FiniteMap.findMin (FiniteMap.Branch zwu3630 zwu3631 zwu3632 zwu3633 zwu3634))",fontsize=16,color="magenta"];5798 -> 5902[label="",style="dashed", color="magenta", weight=3]; 5798 -> 5903[label="",style="dashed", color="magenta", weight=3]; 5798 -> 5904[label="",style="dashed", color="magenta", weight=3]; 5798 -> 5905[label="",style="dashed", color="magenta", weight=3]; 5798 -> 5906[label="",style="dashed", color="magenta", weight=3]; 5899[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu366 zwu367 zwu368 zwu369 zwu370) (FiniteMap.Branch zwu371 zwu372 (Neg (Succ zwu373)) zwu374 zwu375) (zwu376,zwu377)",fontsize=16,color="black",shape="box"];5899 -> 5997[label="",style="solid", color="black", weight=3]; 5900 -> 5704[label="",style="dashed", color="red", weight=0]; 5900[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu366 zwu367 zwu368 zwu369 zwu370) (FiniteMap.Branch zwu371 zwu372 (Neg (Succ zwu373)) zwu374 zwu375) (FiniteMap.findMin (FiniteMap.Branch zwu3790 zwu3791 zwu3792 zwu3793 zwu3794))",fontsize=16,color="magenta"];5900 -> 5998[label="",style="dashed", color="magenta", weight=3]; 5900 -> 5999[label="",style="dashed", color="magenta", weight=3]; 5900 -> 6000[label="",style="dashed", color="magenta", weight=3]; 5900 -> 6001[label="",style="dashed", color="magenta", weight=3]; 5900 -> 6002[label="",style="dashed", color="magenta", weight=3]; 3226[label="zwu93",fontsize=16,color="green",shape="box"];3227[label="zwu91",fontsize=16,color="green",shape="box"];3228 -> 3186[label="",style="dashed", color="red", weight=0]; 3228[label="FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 zwu944)",fontsize=16,color="magenta"];3229[label="zwu90",fontsize=16,color="green",shape="box"];6621[label="zwu81",fontsize=16,color="green",shape="box"];6622[label="zwu84",fontsize=16,color="green",shape="box"];6623[label="zwu93",fontsize=16,color="green",shape="box"];6624[label="zwu94",fontsize=16,color="green",shape="box"];6625[label="Neg Zero",fontsize=16,color="green",shape="box"];6626[label="zwu91",fontsize=16,color="green",shape="box"];6627[label="zwu83",fontsize=16,color="green",shape="box"];6628[label="zwu80",fontsize=16,color="green",shape="box"];6629[label="zwu94",fontsize=16,color="green",shape="box"];6630[label="zwu90",fontsize=16,color="green",shape="box"];6631[label="zwu93",fontsize=16,color="green",shape="box"];6632[label="zwu90",fontsize=16,color="green",shape="box"];6633[label="zwu91",fontsize=16,color="green",shape="box"];6634[label="zwu82",fontsize=16,color="green",shape="box"];6620[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu506 zwu507 zwu508 zwu509 zwu510) (FiniteMap.Branch zwu511 zwu512 (Neg Zero) zwu513 zwu514) (FiniteMap.findMax (FiniteMap.Branch zwu515 zwu516 zwu517 zwu518 zwu519))",fontsize=16,color="burlywood",shape="triangle"];7622[label="zwu519/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6620 -> 7622[label="",style="solid", color="burlywood", weight=9]; 7622 -> 6705[label="",style="solid", color="burlywood", weight=3]; 7623[label="zwu519/FiniteMap.Branch zwu5190 zwu5191 zwu5192 zwu5193 zwu5194",fontsize=10,color="white",style="solid",shape="box"];6620 -> 7623[label="",style="solid", color="burlywood", weight=9]; 7623 -> 6706[label="",style="solid", color="burlywood", weight=3]; 6717[label="zwu91",fontsize=16,color="green",shape="box"];6718[label="zwu82",fontsize=16,color="green",shape="box"];6719[label="zwu84",fontsize=16,color="green",shape="box"];6720[label="zwu83",fontsize=16,color="green",shape="box"];6721[label="zwu90",fontsize=16,color="green",shape="box"];6722[label="zwu93",fontsize=16,color="green",shape="box"];6723[label="Neg Zero",fontsize=16,color="green",shape="box"];6724[label="zwu93",fontsize=16,color="green",shape="box"];6725[label="zwu80",fontsize=16,color="green",shape="box"];6726[label="zwu94",fontsize=16,color="green",shape="box"];6727[label="zwu91",fontsize=16,color="green",shape="box"];6728[label="zwu90",fontsize=16,color="green",shape="box"];6729[label="zwu94",fontsize=16,color="green",shape="box"];6730[label="zwu81",fontsize=16,color="green",shape="box"];6716[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu521 zwu522 zwu523 zwu524 zwu525) (FiniteMap.Branch zwu526 zwu527 (Neg Zero) zwu528 zwu529) (FiniteMap.findMax (FiniteMap.Branch zwu530 zwu531 zwu532 zwu533 zwu534))",fontsize=16,color="burlywood",shape="triangle"];7624[label="zwu534/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6716 -> 7624[label="",style="solid", color="burlywood", weight=9]; 7624 -> 6801[label="",style="solid", color="burlywood", weight=3]; 7625[label="zwu534/FiniteMap.Branch zwu5340 zwu5341 zwu5342 zwu5343 zwu5344",fontsize=10,color="white",style="solid",shape="box"];6716 -> 7625[label="",style="solid", color="burlywood", weight=9]; 7625 -> 6802[label="",style="solid", color="burlywood", weight=3]; 5995[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu382 zwu383 zwu384 zwu385 zwu386) (FiniteMap.Branch zwu387 zwu388 (Neg Zero) zwu389 zwu390) (zwu391,zwu392)",fontsize=16,color="black",shape="box"];5995 -> 6021[label="",style="solid", color="black", weight=3]; 5996 -> 5812[label="",style="dashed", color="red", weight=0]; 5996[label="FiniteMap.glueBal2Mid_elt20 (FiniteMap.Branch zwu382 zwu383 zwu384 zwu385 zwu386) (FiniteMap.Branch zwu387 zwu388 (Neg Zero) zwu389 zwu390) (FiniteMap.findMin (FiniteMap.Branch zwu3940 zwu3941 zwu3942 zwu3943 zwu3944))",fontsize=16,color="magenta"];5996 -> 6022[label="",style="dashed", color="magenta", weight=3]; 5996 -> 6023[label="",style="dashed", color="magenta", weight=3]; 5996 -> 6024[label="",style="dashed", color="magenta", weight=3]; 5996 -> 6025[label="",style="dashed", color="magenta", weight=3]; 5996 -> 6026[label="",style="dashed", color="magenta", weight=3]; 6019[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu397 zwu398 zwu399 zwu400 zwu401) (FiniteMap.Branch zwu402 zwu403 (Neg Zero) zwu404 zwu405) (zwu406,zwu407)",fontsize=16,color="black",shape="box"];6019 -> 6121[label="",style="solid", color="black", weight=3]; 6020 -> 5908[label="",style="dashed", color="red", weight=0]; 6020[label="FiniteMap.glueBal2Mid_key20 (FiniteMap.Branch zwu397 zwu398 zwu399 zwu400 zwu401) (FiniteMap.Branch zwu402 zwu403 (Neg Zero) zwu404 zwu405) (FiniteMap.findMin (FiniteMap.Branch zwu4090 zwu4091 zwu4092 zwu4093 zwu4094))",fontsize=16,color="magenta"];6020 -> 6122[label="",style="dashed", color="magenta", weight=3]; 6020 -> 6123[label="",style="dashed", color="magenta", weight=3]; 6020 -> 6124[label="",style="dashed", color="magenta", weight=3]; 6020 -> 6125[label="",style="dashed", color="magenta", weight=3]; 6020 -> 6126[label="",style="dashed", color="magenta", weight=3]; 5099 -> 5147[label="",style="dashed", color="red", weight=0]; 5099[label="compare1 zwu43000 zwu44000 (zwu43000 <= zwu44000)",fontsize=16,color="magenta"];5099 -> 5148[label="",style="dashed", color="magenta", weight=3]; 5100[label="EQ",fontsize=16,color="green",shape="box"];5101 -> 5152[label="",style="dashed", color="red", weight=0]; 5101[label="compare1 zwu43000 zwu44000 (zwu43000 <= zwu44000)",fontsize=16,color="magenta"];5101 -> 5153[label="",style="dashed", color="magenta", weight=3]; 5102[label="EQ",fontsize=16,color="green",shape="box"];5103 -> 5155[label="",style="dashed", color="red", weight=0]; 5103[label="compare1 zwu43000 zwu44000 (zwu43000 <= zwu44000)",fontsize=16,color="magenta"];5103 -> 5156[label="",style="dashed", color="magenta", weight=3]; 5104[label="EQ",fontsize=16,color="green",shape="box"];5105 -> 5157[label="",style="dashed", color="red", weight=0]; 5105[label="compare1 zwu43000 zwu44000 (zwu43000 <= zwu44000)",fontsize=16,color="magenta"];5105 -> 5158[label="",style="dashed", color="magenta", weight=3]; 5106[label="EQ",fontsize=16,color="green",shape="box"];5107 -> 5159[label="",style="dashed", color="red", weight=0]; 5107[label="compare1 zwu43000 zwu44000 (zwu43000 <= zwu44000)",fontsize=16,color="magenta"];5107 -> 5160[label="",style="dashed", color="magenta", weight=3]; 5108[label="EQ",fontsize=16,color="green",shape="box"];5145[label="zwu430010",fontsize=16,color="green",shape="box"];5146[label="zwu440000",fontsize=16,color="green",shape="box"];3168[label="primPlusNat (Succ zwu51200) (Succ zwu18900)",fontsize=16,color="black",shape="box"];3168 -> 3535[label="",style="solid", color="black", weight=3]; 3169[label="primPlusNat (Succ zwu51200) Zero",fontsize=16,color="black",shape="box"];3169 -> 3536[label="",style="solid", color="black", weight=3]; 3170[label="primPlusNat Zero (Succ zwu18900)",fontsize=16,color="black",shape="box"];3170 -> 3537[label="",style="solid", color="black", weight=3]; 3171[label="primPlusNat Zero Zero",fontsize=16,color="black",shape="box"];3171 -> 3538[label="",style="solid", color="black", weight=3]; 3172 -> 2750[label="",style="dashed", color="red", weight=0]; 3172[label="primMinusNat zwu51200 zwu18900",fontsize=16,color="magenta"];3172 -> 3539[label="",style="dashed", color="magenta", weight=3]; 3172 -> 3540[label="",style="dashed", color="magenta", weight=3]; 3173[label="Pos (Succ zwu51200)",fontsize=16,color="green",shape="box"];3174[label="Neg (Succ zwu18900)",fontsize=16,color="green",shape="box"];3175[label="Pos Zero",fontsize=16,color="green",shape="box"];3240[label="zwu513",fontsize=16,color="green",shape="box"];3241[label="FiniteMap.mkBalBranch6MkBalBranch10 zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64 zwu510 zwu511 zwu512 zwu513 zwu514 True",fontsize=16,color="black",shape="box"];3241 -> 3582[label="",style="solid", color="black", weight=3]; 3242 -> 4807[label="",style="dashed", color="red", weight=0]; 3242[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) zwu510 zwu511 zwu513 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) zwu60 zwu61 zwu514 zwu64)",fontsize=16,color="magenta"];3242 -> 4868[label="",style="dashed", color="magenta", weight=3]; 3242 -> 4869[label="",style="dashed", color="magenta", weight=3]; 3242 -> 4870[label="",style="dashed", color="magenta", weight=3]; 3242 -> 4871[label="",style="dashed", color="magenta", weight=3]; 3242 -> 4872[label="",style="dashed", color="magenta", weight=3]; 3532[label="error []",fontsize=16,color="red",shape="box"];3533 -> 4807[label="",style="dashed", color="red", weight=0]; 3533[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) zwu6430 zwu6431 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) zwu60 zwu61 zwu51 zwu6433) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) zwu640 zwu641 zwu6434 zwu644)",fontsize=16,color="magenta"];3533 -> 4873[label="",style="dashed", color="magenta", weight=3]; 3533 -> 4874[label="",style="dashed", color="magenta", weight=3]; 3533 -> 4875[label="",style="dashed", color="magenta", weight=3]; 3533 -> 4876[label="",style="dashed", color="magenta", weight=3]; 3533 -> 4877[label="",style="dashed", color="magenta", weight=3]; 3541[label="Succ zwu72000",fontsize=16,color="green",shape="box"];3542[label="Succ (primPlusNat (Succ zwu72000) (Succ zwu72000))",fontsize=16,color="green",shape="box"];3542 -> 3932[label="",style="dashed", color="green", weight=3]; 3543 -> 2923[label="",style="dashed", color="red", weight=0]; 3543[label="primPlusNat Zero Zero",fontsize=16,color="magenta"];3543 -> 3933[label="",style="dashed", color="magenta", weight=3]; 3543 -> 3934[label="",style="dashed", color="magenta", weight=3]; 3548[label="FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 FiniteMap.EmptyFM)",fontsize=16,color="black",shape="box"];3548 -> 3939[label="",style="solid", color="black", weight=3]; 3549[label="FiniteMap.deleteMax (FiniteMap.Branch zwu940 zwu941 zwu942 zwu943 (FiniteMap.Branch zwu9440 zwu9441 zwu9442 zwu9443 zwu9444))",fontsize=16,color="black",shape="box"];3549 -> 3940[label="",style="solid", color="black", weight=3]; 6119[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu412 zwu413 zwu414 zwu415 zwu416) (FiniteMap.Branch zwu417 zwu418 (Pos (Succ zwu419)) zwu420 zwu421) (FiniteMap.findMax (FiniteMap.Branch zwu422 zwu423 zwu424 zwu425 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6119 -> 6221[label="",style="solid", color="black", weight=3]; 6120[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu412 zwu413 zwu414 zwu415 zwu416) (FiniteMap.Branch zwu417 zwu418 (Pos (Succ zwu419)) zwu420 zwu421) (FiniteMap.findMax (FiniteMap.Branch zwu422 zwu423 zwu424 zwu425 (FiniteMap.Branch zwu4260 zwu4261 zwu4262 zwu4263 zwu4264)))",fontsize=16,color="black",shape="box"];6120 -> 6222[label="",style="solid", color="black", weight=3]; 6219[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu428 zwu429 zwu430 zwu431 zwu432) (FiniteMap.Branch zwu433 zwu434 (Pos (Succ zwu435)) zwu436 zwu437) (FiniteMap.findMax (FiniteMap.Branch zwu438 zwu439 zwu440 zwu441 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6219 -> 6311[label="",style="solid", color="black", weight=3]; 6220[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu428 zwu429 zwu430 zwu431 zwu432) (FiniteMap.Branch zwu433 zwu434 (Pos (Succ zwu435)) zwu436 zwu437) (FiniteMap.findMax (FiniteMap.Branch zwu438 zwu439 zwu440 zwu441 (FiniteMap.Branch zwu4420 zwu4421 zwu4422 zwu4423 zwu4424)))",fontsize=16,color="black",shape="box"];6220 -> 6312[label="",style="solid", color="black", weight=3]; 5488[label="zwu299",fontsize=16,color="green",shape="box"];5489[label="zwu3014",fontsize=16,color="green",shape="box"];5490[label="zwu3013",fontsize=16,color="green",shape="box"];5491[label="zwu3010",fontsize=16,color="green",shape="box"];5492[label="zwu3012",fontsize=16,color="green",shape="box"];5493[label="zwu3011",fontsize=16,color="green",shape="box"];5589[label="zwu314",fontsize=16,color="green",shape="box"];5590[label="zwu3173",fontsize=16,color="green",shape="box"];5591[label="zwu3171",fontsize=16,color="green",shape="box"];5592[label="zwu3174",fontsize=16,color="green",shape="box"];5593[label="zwu3170",fontsize=16,color="green",shape="box"];5594[label="zwu3172",fontsize=16,color="green",shape="box"];6309[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu444 zwu445 zwu446 zwu447 zwu448) (FiniteMap.Branch zwu449 zwu450 (Pos Zero) zwu451 zwu452) (FiniteMap.findMax (FiniteMap.Branch zwu453 zwu454 zwu455 zwu456 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6309 -> 6407[label="",style="solid", color="black", weight=3]; 6310[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu444 zwu445 zwu446 zwu447 zwu448) (FiniteMap.Branch zwu449 zwu450 (Pos Zero) zwu451 zwu452) (FiniteMap.findMax (FiniteMap.Branch zwu453 zwu454 zwu455 zwu456 (FiniteMap.Branch zwu4570 zwu4571 zwu4572 zwu4573 zwu4574)))",fontsize=16,color="black",shape="box"];6310 -> 6408[label="",style="solid", color="black", weight=3]; 6405[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu459 zwu460 zwu461 zwu462 zwu463) (FiniteMap.Branch zwu464 zwu465 (Pos Zero) zwu466 zwu467) (FiniteMap.findMax (FiniteMap.Branch zwu468 zwu469 zwu470 zwu471 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6405 -> 6509[label="",style="solid", color="black", weight=3]; 6406[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu459 zwu460 zwu461 zwu462 zwu463) (FiniteMap.Branch zwu464 zwu465 (Pos Zero) zwu466 zwu467) (FiniteMap.findMax (FiniteMap.Branch zwu468 zwu469 zwu470 zwu471 (FiniteMap.Branch zwu4720 zwu4721 zwu4722 zwu4723 zwu4724)))",fontsize=16,color="black",shape="box"];6406 -> 6510[label="",style="solid", color="black", weight=3]; 5697[label="zwu330",fontsize=16,color="green",shape="box"];5698[label="zwu3322",fontsize=16,color="green",shape="box"];5699[label="zwu3323",fontsize=16,color="green",shape="box"];5700[label="zwu3320",fontsize=16,color="green",shape="box"];5701[label="zwu3321",fontsize=16,color="green",shape="box"];5702[label="zwu3324",fontsize=16,color="green",shape="box"];5799[label="zwu344",fontsize=16,color="green",shape="box"];5800[label="zwu3473",fontsize=16,color="green",shape="box"];5801[label="zwu3470",fontsize=16,color="green",shape="box"];5802[label="zwu3471",fontsize=16,color="green",shape="box"];5803[label="zwu3474",fontsize=16,color="green",shape="box"];5804[label="zwu3472",fontsize=16,color="green",shape="box"];6507[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu474 zwu475 zwu476 zwu477 zwu478) (FiniteMap.Branch zwu479 zwu480 (Neg (Succ zwu481)) zwu482 zwu483) (FiniteMap.findMax (FiniteMap.Branch zwu484 zwu485 zwu486 zwu487 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6507 -> 6611[label="",style="solid", color="black", weight=3]; 6508[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu474 zwu475 zwu476 zwu477 zwu478) (FiniteMap.Branch zwu479 zwu480 (Neg (Succ zwu481)) zwu482 zwu483) (FiniteMap.findMax (FiniteMap.Branch zwu484 zwu485 zwu486 zwu487 (FiniteMap.Branch zwu4880 zwu4881 zwu4882 zwu4883 zwu4884)))",fontsize=16,color="black",shape="box"];6508 -> 6612[label="",style="solid", color="black", weight=3]; 6609[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu490 zwu491 zwu492 zwu493 zwu494) (FiniteMap.Branch zwu495 zwu496 (Neg (Succ zwu497)) zwu498 zwu499) (FiniteMap.findMax (FiniteMap.Branch zwu500 zwu501 zwu502 zwu503 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6609 -> 6707[label="",style="solid", color="black", weight=3]; 6610[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu490 zwu491 zwu492 zwu493 zwu494) (FiniteMap.Branch zwu495 zwu496 (Neg (Succ zwu497)) zwu498 zwu499) (FiniteMap.findMax (FiniteMap.Branch zwu500 zwu501 zwu502 zwu503 (FiniteMap.Branch zwu5040 zwu5041 zwu5042 zwu5043 zwu5044)))",fontsize=16,color="black",shape="box"];6610 -> 6708[label="",style="solid", color="black", weight=3]; 5901[label="zwu361",fontsize=16,color="green",shape="box"];5902[label="zwu3633",fontsize=16,color="green",shape="box"];5903[label="zwu3630",fontsize=16,color="green",shape="box"];5904[label="zwu3631",fontsize=16,color="green",shape="box"];5905[label="zwu3634",fontsize=16,color="green",shape="box"];5906[label="zwu3632",fontsize=16,color="green",shape="box"];5997[label="zwu376",fontsize=16,color="green",shape="box"];5998[label="zwu3792",fontsize=16,color="green",shape="box"];5999[label="zwu3790",fontsize=16,color="green",shape="box"];6000[label="zwu3794",fontsize=16,color="green",shape="box"];6001[label="zwu3793",fontsize=16,color="green",shape="box"];6002[label="zwu3791",fontsize=16,color="green",shape="box"];6705[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu506 zwu507 zwu508 zwu509 zwu510) (FiniteMap.Branch zwu511 zwu512 (Neg Zero) zwu513 zwu514) (FiniteMap.findMax (FiniteMap.Branch zwu515 zwu516 zwu517 zwu518 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6705 -> 6803[label="",style="solid", color="black", weight=3]; 6706[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu506 zwu507 zwu508 zwu509 zwu510) (FiniteMap.Branch zwu511 zwu512 (Neg Zero) zwu513 zwu514) (FiniteMap.findMax (FiniteMap.Branch zwu515 zwu516 zwu517 zwu518 (FiniteMap.Branch zwu5190 zwu5191 zwu5192 zwu5193 zwu5194)))",fontsize=16,color="black",shape="box"];6706 -> 6804[label="",style="solid", color="black", weight=3]; 6801[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu521 zwu522 zwu523 zwu524 zwu525) (FiniteMap.Branch zwu526 zwu527 (Neg Zero) zwu528 zwu529) (FiniteMap.findMax (FiniteMap.Branch zwu530 zwu531 zwu532 zwu533 FiniteMap.EmptyFM))",fontsize=16,color="black",shape="box"];6801 -> 6811[label="",style="solid", color="black", weight=3]; 6802[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu521 zwu522 zwu523 zwu524 zwu525) (FiniteMap.Branch zwu526 zwu527 (Neg Zero) zwu528 zwu529) (FiniteMap.findMax (FiniteMap.Branch zwu530 zwu531 zwu532 zwu533 (FiniteMap.Branch zwu5340 zwu5341 zwu5342 zwu5343 zwu5344)))",fontsize=16,color="black",shape="box"];6802 -> 6812[label="",style="solid", color="black", weight=3]; 6021[label="zwu392",fontsize=16,color="green",shape="box"];6022[label="zwu3943",fontsize=16,color="green",shape="box"];6023[label="zwu3944",fontsize=16,color="green",shape="box"];6024[label="zwu3942",fontsize=16,color="green",shape="box"];6025[label="zwu3940",fontsize=16,color="green",shape="box"];6026[label="zwu3941",fontsize=16,color="green",shape="box"];6121[label="zwu406",fontsize=16,color="green",shape="box"];6122[label="zwu4092",fontsize=16,color="green",shape="box"];6123[label="zwu4093",fontsize=16,color="green",shape="box"];6124[label="zwu4090",fontsize=16,color="green",shape="box"];6125[label="zwu4091",fontsize=16,color="green",shape="box"];6126[label="zwu4094",fontsize=16,color="green",shape="box"];5148 -> 3516[label="",style="dashed", color="red", weight=0]; 5148[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];5148 -> 5161[label="",style="dashed", color="magenta", weight=3]; 5148 -> 5162[label="",style="dashed", color="magenta", weight=3]; 5147[label="compare1 zwu43000 zwu44000 zwu282",fontsize=16,color="burlywood",shape="triangle"];7626[label="zwu282/False",fontsize=10,color="white",style="solid",shape="box"];5147 -> 7626[label="",style="solid", color="burlywood", weight=9]; 7626 -> 5163[label="",style="solid", color="burlywood", weight=3]; 7627[label="zwu282/True",fontsize=10,color="white",style="solid",shape="box"];5147 -> 7627[label="",style="solid", color="burlywood", weight=9]; 7627 -> 5164[label="",style="solid", color="burlywood", weight=3]; 5153 -> 3517[label="",style="dashed", color="red", weight=0]; 5153[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];5153 -> 5165[label="",style="dashed", color="magenta", weight=3]; 5153 -> 5166[label="",style="dashed", color="magenta", weight=3]; 5152[label="compare1 zwu43000 zwu44000 zwu283",fontsize=16,color="burlywood",shape="triangle"];7628[label="zwu283/False",fontsize=10,color="white",style="solid",shape="box"];5152 -> 7628[label="",style="solid", color="burlywood", weight=9]; 7628 -> 5167[label="",style="solid", color="burlywood", weight=3]; 7629[label="zwu283/True",fontsize=10,color="white",style="solid",shape="box"];5152 -> 7629[label="",style="solid", color="burlywood", weight=9]; 7629 -> 5168[label="",style="solid", color="burlywood", weight=3]; 5156 -> 3519[label="",style="dashed", color="red", weight=0]; 5156[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];5156 -> 5169[label="",style="dashed", color="magenta", weight=3]; 5156 -> 5170[label="",style="dashed", color="magenta", weight=3]; 5155[label="compare1 zwu43000 zwu44000 zwu284",fontsize=16,color="burlywood",shape="triangle"];7630[label="zwu284/False",fontsize=10,color="white",style="solid",shape="box"];5155 -> 7630[label="",style="solid", color="burlywood", weight=9]; 7630 -> 5171[label="",style="solid", color="burlywood", weight=3]; 7631[label="zwu284/True",fontsize=10,color="white",style="solid",shape="box"];5155 -> 7631[label="",style="solid", color="burlywood", weight=9]; 7631 -> 5172[label="",style="solid", color="burlywood", weight=3]; 5158 -> 3520[label="",style="dashed", color="red", weight=0]; 5158[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];5158 -> 5173[label="",style="dashed", color="magenta", weight=3]; 5158 -> 5174[label="",style="dashed", color="magenta", weight=3]; 5157[label="compare1 zwu43000 zwu44000 zwu285",fontsize=16,color="burlywood",shape="triangle"];7632[label="zwu285/False",fontsize=10,color="white",style="solid",shape="box"];5157 -> 7632[label="",style="solid", color="burlywood", weight=9]; 7632 -> 5175[label="",style="solid", color="burlywood", weight=3]; 7633[label="zwu285/True",fontsize=10,color="white",style="solid",shape="box"];5157 -> 7633[label="",style="solid", color="burlywood", weight=9]; 7633 -> 5176[label="",style="solid", color="burlywood", weight=3]; 5160 -> 3529[label="",style="dashed", color="red", weight=0]; 5160[label="zwu43000 <= zwu44000",fontsize=16,color="magenta"];5160 -> 5177[label="",style="dashed", color="magenta", weight=3]; 5160 -> 5178[label="",style="dashed", color="magenta", weight=3]; 5159[label="compare1 zwu43000 zwu44000 zwu286",fontsize=16,color="burlywood",shape="triangle"];7634[label="zwu286/False",fontsize=10,color="white",style="solid",shape="box"];5159 -> 7634[label="",style="solid", color="burlywood", weight=9]; 7634 -> 5179[label="",style="solid", color="burlywood", weight=3]; 7635[label="zwu286/True",fontsize=10,color="white",style="solid",shape="box"];5159 -> 7635[label="",style="solid", color="burlywood", weight=9]; 7635 -> 5180[label="",style="solid", color="burlywood", weight=3]; 3535[label="Succ (Succ (primPlusNat zwu51200 zwu18900))",fontsize=16,color="green",shape="box"];3535 -> 3931[label="",style="dashed", color="green", weight=3]; 3536[label="Succ zwu51200",fontsize=16,color="green",shape="box"];3537[label="Succ zwu18900",fontsize=16,color="green",shape="box"];3538[label="Zero",fontsize=16,color="green",shape="box"];3539[label="zwu18900",fontsize=16,color="green",shape="box"];3540[label="zwu51200",fontsize=16,color="green",shape="box"];3582[label="FiniteMap.mkBalBranch6Double_R zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 zwu514) zwu64",fontsize=16,color="burlywood",shape="box"];7636[label="zwu514/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];3582 -> 7636[label="",style="solid", color="burlywood", weight=9]; 7636 -> 3989[label="",style="solid", color="burlywood", weight=3]; 7637[label="zwu514/FiniteMap.Branch zwu5140 zwu5141 zwu5142 zwu5143 zwu5144",fontsize=10,color="white",style="solid",shape="box"];3582 -> 7637[label="",style="solid", color="burlywood", weight=9]; 7637 -> 3990[label="",style="solid", color="burlywood", weight=3]; 4868[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))",fontsize=16,color="green",shape="box"];4869[label="zwu511",fontsize=16,color="green",shape="box"];4870[label="zwu510",fontsize=16,color="green",shape="box"];4871 -> 4807[label="",style="dashed", color="red", weight=0]; 4871[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) zwu60 zwu61 zwu514 zwu64",fontsize=16,color="magenta"];4871 -> 5023[label="",style="dashed", color="magenta", weight=3]; 4871 -> 5024[label="",style="dashed", color="magenta", weight=3]; 4871 -> 5025[label="",style="dashed", color="magenta", weight=3]; 4871 -> 5026[label="",style="dashed", color="magenta", weight=3]; 4871 -> 5027[label="",style="dashed", color="magenta", weight=3]; 4872[label="zwu513",fontsize=16,color="green",shape="box"];4873[label="Succ (Succ (Succ (Succ Zero)))",fontsize=16,color="green",shape="box"];4874[label="zwu6431",fontsize=16,color="green",shape="box"];4875[label="zwu6430",fontsize=16,color="green",shape="box"];4876 -> 4807[label="",style="dashed", color="red", weight=0]; 4876[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) zwu640 zwu641 zwu6434 zwu644",fontsize=16,color="magenta"];4876 -> 5028[label="",style="dashed", color="magenta", weight=3]; 4876 -> 5029[label="",style="dashed", color="magenta", weight=3]; 4876 -> 5030[label="",style="dashed", color="magenta", weight=3]; 4876 -> 5031[label="",style="dashed", color="magenta", weight=3]; 4876 -> 5032[label="",style="dashed", color="magenta", weight=3]; 4877 -> 4807[label="",style="dashed", color="red", weight=0]; 4877[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) zwu60 zwu61 zwu51 zwu6433",fontsize=16,color="magenta"];4877 -> 5033[label="",style="dashed", color="magenta", weight=3]; 4877 -> 5034[label="",style="dashed", color="magenta", weight=3]; 4877 -> 5035[label="",style="dashed", color="magenta", weight=3]; 4877 -> 5036[label="",style="dashed", color="magenta", weight=3]; 4877 -> 5037[label="",style="dashed", color="magenta", weight=3]; 3932 -> 2923[label="",style="dashed", color="red", weight=0]; 3932[label="primPlusNat (Succ zwu72000) (Succ zwu72000)",fontsize=16,color="magenta"];3932 -> 4247[label="",style="dashed", color="magenta", weight=3]; 3932 -> 4248[label="",style="dashed", color="magenta", weight=3]; 3933[label="Zero",fontsize=16,color="green",shape="box"];3934[label="Zero",fontsize=16,color="green",shape="box"];3939[label="zwu943",fontsize=16,color="green",shape="box"];3940 -> 414[label="",style="dashed", color="red", weight=0]; 3940[label="FiniteMap.mkBalBranch zwu940 zwu941 zwu943 (FiniteMap.deleteMax (FiniteMap.Branch zwu9440 zwu9441 zwu9442 zwu9443 zwu9444))",fontsize=16,color="magenta"];3940 -> 4249[label="",style="dashed", color="magenta", weight=3]; 3940 -> 4250[label="",style="dashed", color="magenta", weight=3]; 3940 -> 4251[label="",style="dashed", color="magenta", weight=3]; 3940 -> 4252[label="",style="dashed", color="magenta", weight=3]; 6221[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu412 zwu413 zwu414 zwu415 zwu416) (FiniteMap.Branch zwu417 zwu418 (Pos (Succ zwu419)) zwu420 zwu421) (zwu422,zwu423)",fontsize=16,color="black",shape="box"];6221 -> 6313[label="",style="solid", color="black", weight=3]; 6222 -> 6028[label="",style="dashed", color="red", weight=0]; 6222[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu412 zwu413 zwu414 zwu415 zwu416) (FiniteMap.Branch zwu417 zwu418 (Pos (Succ zwu419)) zwu420 zwu421) (FiniteMap.findMax (FiniteMap.Branch zwu4260 zwu4261 zwu4262 zwu4263 zwu4264))",fontsize=16,color="magenta"];6222 -> 6314[label="",style="dashed", color="magenta", weight=3]; 6222 -> 6315[label="",style="dashed", color="magenta", weight=3]; 6222 -> 6316[label="",style="dashed", color="magenta", weight=3]; 6222 -> 6317[label="",style="dashed", color="magenta", weight=3]; 6222 -> 6318[label="",style="dashed", color="magenta", weight=3]; 6311[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu428 zwu429 zwu430 zwu431 zwu432) (FiniteMap.Branch zwu433 zwu434 (Pos (Succ zwu435)) zwu436 zwu437) (zwu438,zwu439)",fontsize=16,color="black",shape="box"];6311 -> 6409[label="",style="solid", color="black", weight=3]; 6312 -> 6128[label="",style="dashed", color="red", weight=0]; 6312[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu428 zwu429 zwu430 zwu431 zwu432) (FiniteMap.Branch zwu433 zwu434 (Pos (Succ zwu435)) zwu436 zwu437) (FiniteMap.findMax (FiniteMap.Branch zwu4420 zwu4421 zwu4422 zwu4423 zwu4424))",fontsize=16,color="magenta"];6312 -> 6410[label="",style="dashed", color="magenta", weight=3]; 6312 -> 6411[label="",style="dashed", color="magenta", weight=3]; 6312 -> 6412[label="",style="dashed", color="magenta", weight=3]; 6312 -> 6413[label="",style="dashed", color="magenta", weight=3]; 6312 -> 6414[label="",style="dashed", color="magenta", weight=3]; 6407[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu444 zwu445 zwu446 zwu447 zwu448) (FiniteMap.Branch zwu449 zwu450 (Pos Zero) zwu451 zwu452) (zwu453,zwu454)",fontsize=16,color="black",shape="box"];6407 -> 6511[label="",style="solid", color="black", weight=3]; 6408 -> 6224[label="",style="dashed", color="red", weight=0]; 6408[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu444 zwu445 zwu446 zwu447 zwu448) (FiniteMap.Branch zwu449 zwu450 (Pos Zero) zwu451 zwu452) (FiniteMap.findMax (FiniteMap.Branch zwu4570 zwu4571 zwu4572 zwu4573 zwu4574))",fontsize=16,color="magenta"];6408 -> 6512[label="",style="dashed", color="magenta", weight=3]; 6408 -> 6513[label="",style="dashed", color="magenta", weight=3]; 6408 -> 6514[label="",style="dashed", color="magenta", weight=3]; 6408 -> 6515[label="",style="dashed", color="magenta", weight=3]; 6408 -> 6516[label="",style="dashed", color="magenta", weight=3]; 6509[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu459 zwu460 zwu461 zwu462 zwu463) (FiniteMap.Branch zwu464 zwu465 (Pos Zero) zwu466 zwu467) (zwu468,zwu469)",fontsize=16,color="black",shape="box"];6509 -> 6613[label="",style="solid", color="black", weight=3]; 6510 -> 6320[label="",style="dashed", color="red", weight=0]; 6510[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu459 zwu460 zwu461 zwu462 zwu463) (FiniteMap.Branch zwu464 zwu465 (Pos Zero) zwu466 zwu467) (FiniteMap.findMax (FiniteMap.Branch zwu4720 zwu4721 zwu4722 zwu4723 zwu4724))",fontsize=16,color="magenta"];6510 -> 6614[label="",style="dashed", color="magenta", weight=3]; 6510 -> 6615[label="",style="dashed", color="magenta", weight=3]; 6510 -> 6616[label="",style="dashed", color="magenta", weight=3]; 6510 -> 6617[label="",style="dashed", color="magenta", weight=3]; 6510 -> 6618[label="",style="dashed", color="magenta", weight=3]; 6611[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu474 zwu475 zwu476 zwu477 zwu478) (FiniteMap.Branch zwu479 zwu480 (Neg (Succ zwu481)) zwu482 zwu483) (zwu484,zwu485)",fontsize=16,color="black",shape="box"];6611 -> 6709[label="",style="solid", color="black", weight=3]; 6612 -> 6416[label="",style="dashed", color="red", weight=0]; 6612[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu474 zwu475 zwu476 zwu477 zwu478) (FiniteMap.Branch zwu479 zwu480 (Neg (Succ zwu481)) zwu482 zwu483) (FiniteMap.findMax (FiniteMap.Branch zwu4880 zwu4881 zwu4882 zwu4883 zwu4884))",fontsize=16,color="magenta"];6612 -> 6710[label="",style="dashed", color="magenta", weight=3]; 6612 -> 6711[label="",style="dashed", color="magenta", weight=3]; 6612 -> 6712[label="",style="dashed", color="magenta", weight=3]; 6612 -> 6713[label="",style="dashed", color="magenta", weight=3]; 6612 -> 6714[label="",style="dashed", color="magenta", weight=3]; 6707[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu490 zwu491 zwu492 zwu493 zwu494) (FiniteMap.Branch zwu495 zwu496 (Neg (Succ zwu497)) zwu498 zwu499) (zwu500,zwu501)",fontsize=16,color="black",shape="box"];6707 -> 6805[label="",style="solid", color="black", weight=3]; 6708 -> 6518[label="",style="dashed", color="red", weight=0]; 6708[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu490 zwu491 zwu492 zwu493 zwu494) (FiniteMap.Branch zwu495 zwu496 (Neg (Succ zwu497)) zwu498 zwu499) (FiniteMap.findMax (FiniteMap.Branch zwu5040 zwu5041 zwu5042 zwu5043 zwu5044))",fontsize=16,color="magenta"];6708 -> 6806[label="",style="dashed", color="magenta", weight=3]; 6708 -> 6807[label="",style="dashed", color="magenta", weight=3]; 6708 -> 6808[label="",style="dashed", color="magenta", weight=3]; 6708 -> 6809[label="",style="dashed", color="magenta", weight=3]; 6708 -> 6810[label="",style="dashed", color="magenta", weight=3]; 6803[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu506 zwu507 zwu508 zwu509 zwu510) (FiniteMap.Branch zwu511 zwu512 (Neg Zero) zwu513 zwu514) (zwu515,zwu516)",fontsize=16,color="black",shape="box"];6803 -> 6813[label="",style="solid", color="black", weight=3]; 6804 -> 6620[label="",style="dashed", color="red", weight=0]; 6804[label="FiniteMap.glueBal2Mid_elt10 (FiniteMap.Branch zwu506 zwu507 zwu508 zwu509 zwu510) (FiniteMap.Branch zwu511 zwu512 (Neg Zero) zwu513 zwu514) (FiniteMap.findMax (FiniteMap.Branch zwu5190 zwu5191 zwu5192 zwu5193 zwu5194))",fontsize=16,color="magenta"];6804 -> 6814[label="",style="dashed", color="magenta", weight=3]; 6804 -> 6815[label="",style="dashed", color="magenta", weight=3]; 6804 -> 6816[label="",style="dashed", color="magenta", weight=3]; 6804 -> 6817[label="",style="dashed", color="magenta", weight=3]; 6804 -> 6818[label="",style="dashed", color="magenta", weight=3]; 6811[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu521 zwu522 zwu523 zwu524 zwu525) (FiniteMap.Branch zwu526 zwu527 (Neg Zero) zwu528 zwu529) (zwu530,zwu531)",fontsize=16,color="black",shape="box"];6811 -> 6819[label="",style="solid", color="black", weight=3]; 6812 -> 6716[label="",style="dashed", color="red", weight=0]; 6812[label="FiniteMap.glueBal2Mid_key10 (FiniteMap.Branch zwu521 zwu522 zwu523 zwu524 zwu525) (FiniteMap.Branch zwu526 zwu527 (Neg Zero) zwu528 zwu529) (FiniteMap.findMax (FiniteMap.Branch zwu5340 zwu5341 zwu5342 zwu5343 zwu5344))",fontsize=16,color="magenta"];6812 -> 6820[label="",style="dashed", color="magenta", weight=3]; 6812 -> 6821[label="",style="dashed", color="magenta", weight=3]; 6812 -> 6822[label="",style="dashed", color="magenta", weight=3]; 6812 -> 6823[label="",style="dashed", color="magenta", weight=3]; 6812 -> 6824[label="",style="dashed", color="magenta", weight=3]; 5161[label="zwu44000",fontsize=16,color="green",shape="box"];5162[label="zwu43000",fontsize=16,color="green",shape="box"];5163[label="compare1 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5163 -> 5281[label="",style="solid", color="black", weight=3]; 5164[label="compare1 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5164 -> 5282[label="",style="solid", color="black", weight=3]; 5165[label="zwu44000",fontsize=16,color="green",shape="box"];5166[label="zwu43000",fontsize=16,color="green",shape="box"];5167[label="compare1 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5167 -> 5283[label="",style="solid", color="black", weight=3]; 5168[label="compare1 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5168 -> 5284[label="",style="solid", color="black", weight=3]; 5169[label="zwu44000",fontsize=16,color="green",shape="box"];5170[label="zwu43000",fontsize=16,color="green",shape="box"];5171[label="compare1 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5171 -> 5285[label="",style="solid", color="black", weight=3]; 5172[label="compare1 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5172 -> 5286[label="",style="solid", color="black", weight=3]; 5173[label="zwu44000",fontsize=16,color="green",shape="box"];5174[label="zwu43000",fontsize=16,color="green",shape="box"];5175[label="compare1 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5175 -> 5287[label="",style="solid", color="black", weight=3]; 5176[label="compare1 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5176 -> 5288[label="",style="solid", color="black", weight=3]; 5177[label="zwu44000",fontsize=16,color="green",shape="box"];5178[label="zwu43000",fontsize=16,color="green",shape="box"];5179[label="compare1 zwu43000 zwu44000 False",fontsize=16,color="black",shape="box"];5179 -> 5289[label="",style="solid", color="black", weight=3]; 5180[label="compare1 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5180 -> 5290[label="",style="solid", color="black", weight=3]; 3931 -> 2923[label="",style="dashed", color="red", weight=0]; 3931[label="primPlusNat zwu51200 zwu18900",fontsize=16,color="magenta"];3931 -> 4245[label="",style="dashed", color="magenta", weight=3]; 3931 -> 4246[label="",style="dashed", color="magenta", weight=3]; 3989[label="FiniteMap.mkBalBranch6Double_R zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 FiniteMap.EmptyFM) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 FiniteMap.EmptyFM) zwu64",fontsize=16,color="black",shape="box"];3989 -> 4285[label="",style="solid", color="black", weight=3]; 3990[label="FiniteMap.mkBalBranch6Double_R zwu64 zwu60 zwu61 (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 (FiniteMap.Branch zwu5140 zwu5141 zwu5142 zwu5143 zwu5144)) (FiniteMap.Branch zwu510 zwu511 zwu512 zwu513 (FiniteMap.Branch zwu5140 zwu5141 zwu5142 zwu5143 zwu5144)) zwu64",fontsize=16,color="black",shape="box"];3990 -> 4286[label="",style="solid", color="black", weight=3]; 5023[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))",fontsize=16,color="green",shape="box"];5024[label="zwu61",fontsize=16,color="green",shape="box"];5025[label="zwu60",fontsize=16,color="green",shape="box"];5026[label="zwu64",fontsize=16,color="green",shape="box"];5027[label="zwu514",fontsize=16,color="green",shape="box"];5028[label="Succ (Succ (Succ (Succ (Succ (Succ Zero)))))",fontsize=16,color="green",shape="box"];5029[label="zwu641",fontsize=16,color="green",shape="box"];5030[label="zwu640",fontsize=16,color="green",shape="box"];5031[label="zwu644",fontsize=16,color="green",shape="box"];5032[label="zwu6434",fontsize=16,color="green",shape="box"];5033[label="Succ (Succ (Succ (Succ (Succ Zero))))",fontsize=16,color="green",shape="box"];5034[label="zwu61",fontsize=16,color="green",shape="box"];5035[label="zwu60",fontsize=16,color="green",shape="box"];5036[label="zwu6433",fontsize=16,color="green",shape="box"];5037[label="zwu51",fontsize=16,color="green",shape="box"];4247[label="Succ zwu72000",fontsize=16,color="green",shape="box"];4248[label="Succ zwu72000",fontsize=16,color="green",shape="box"];4249[label="zwu943",fontsize=16,color="green",shape="box"];4250[label="zwu941",fontsize=16,color="green",shape="box"];4251 -> 3186[label="",style="dashed", color="red", weight=0]; 4251[label="FiniteMap.deleteMax (FiniteMap.Branch zwu9440 zwu9441 zwu9442 zwu9443 zwu9444)",fontsize=16,color="magenta"];4251 -> 4520[label="",style="dashed", color="magenta", weight=3]; 4251 -> 4521[label="",style="dashed", color="magenta", weight=3]; 4251 -> 4522[label="",style="dashed", color="magenta", weight=3]; 4251 -> 4523[label="",style="dashed", color="magenta", weight=3]; 4251 -> 4524[label="",style="dashed", color="magenta", weight=3]; 4252[label="zwu940",fontsize=16,color="green",shape="box"];6313[label="zwu423",fontsize=16,color="green",shape="box"];6314[label="zwu4264",fontsize=16,color="green",shape="box"];6315[label="zwu4262",fontsize=16,color="green",shape="box"];6316[label="zwu4261",fontsize=16,color="green",shape="box"];6317[label="zwu4260",fontsize=16,color="green",shape="box"];6318[label="zwu4263",fontsize=16,color="green",shape="box"];6409[label="zwu438",fontsize=16,color="green",shape="box"];6410[label="zwu4423",fontsize=16,color="green",shape="box"];6411[label="zwu4420",fontsize=16,color="green",shape="box"];6412[label="zwu4422",fontsize=16,color="green",shape="box"];6413[label="zwu4424",fontsize=16,color="green",shape="box"];6414[label="zwu4421",fontsize=16,color="green",shape="box"];6511[label="zwu454",fontsize=16,color="green",shape="box"];6512[label="zwu4572",fontsize=16,color="green",shape="box"];6513[label="zwu4573",fontsize=16,color="green",shape="box"];6514[label="zwu4571",fontsize=16,color="green",shape="box"];6515[label="zwu4574",fontsize=16,color="green",shape="box"];6516[label="zwu4570",fontsize=16,color="green",shape="box"];6613[label="zwu468",fontsize=16,color="green",shape="box"];6614[label="zwu4722",fontsize=16,color="green",shape="box"];6615[label="zwu4723",fontsize=16,color="green",shape="box"];6616[label="zwu4720",fontsize=16,color="green",shape="box"];6617[label="zwu4721",fontsize=16,color="green",shape="box"];6618[label="zwu4724",fontsize=16,color="green",shape="box"];6709[label="zwu485",fontsize=16,color="green",shape="box"];6710[label="zwu4883",fontsize=16,color="green",shape="box"];6711[label="zwu4881",fontsize=16,color="green",shape="box"];6712[label="zwu4884",fontsize=16,color="green",shape="box"];6713[label="zwu4882",fontsize=16,color="green",shape="box"];6714[label="zwu4880",fontsize=16,color="green",shape="box"];6805[label="zwu500",fontsize=16,color="green",shape="box"];6806[label="zwu5040",fontsize=16,color="green",shape="box"];6807[label="zwu5041",fontsize=16,color="green",shape="box"];6808[label="zwu5042",fontsize=16,color="green",shape="box"];6809[label="zwu5043",fontsize=16,color="green",shape="box"];6810[label="zwu5044",fontsize=16,color="green",shape="box"];6813[label="zwu516",fontsize=16,color="green",shape="box"];6814[label="zwu5193",fontsize=16,color="green",shape="box"];6815[label="zwu5192",fontsize=16,color="green",shape="box"];6816[label="zwu5191",fontsize=16,color="green",shape="box"];6817[label="zwu5194",fontsize=16,color="green",shape="box"];6818[label="zwu5190",fontsize=16,color="green",shape="box"];6819[label="zwu530",fontsize=16,color="green",shape="box"];6820[label="zwu5341",fontsize=16,color="green",shape="box"];6821[label="zwu5343",fontsize=16,color="green",shape="box"];6822[label="zwu5342",fontsize=16,color="green",shape="box"];6823[label="zwu5340",fontsize=16,color="green",shape="box"];6824[label="zwu5344",fontsize=16,color="green",shape="box"];5281[label="compare0 zwu43000 zwu44000 otherwise",fontsize=16,color="black",shape="box"];5281 -> 5387[label="",style="solid", color="black", weight=3]; 5282[label="LT",fontsize=16,color="green",shape="box"];5283[label="compare0 zwu43000 zwu44000 otherwise",fontsize=16,color="black",shape="box"];5283 -> 5388[label="",style="solid", color="black", weight=3]; 5284[label="LT",fontsize=16,color="green",shape="box"];5285[label="compare0 zwu43000 zwu44000 otherwise",fontsize=16,color="black",shape="box"];5285 -> 5389[label="",style="solid", color="black", weight=3]; 5286[label="LT",fontsize=16,color="green",shape="box"];5287[label="compare0 zwu43000 zwu44000 otherwise",fontsize=16,color="black",shape="box"];5287 -> 5390[label="",style="solid", color="black", weight=3]; 5288[label="LT",fontsize=16,color="green",shape="box"];5289[label="compare0 zwu43000 zwu44000 otherwise",fontsize=16,color="black",shape="box"];5289 -> 5391[label="",style="solid", color="black", weight=3]; 5290[label="LT",fontsize=16,color="green",shape="box"];4245[label="zwu18900",fontsize=16,color="green",shape="box"];4246[label="zwu51200",fontsize=16,color="green",shape="box"];4285[label="error []",fontsize=16,color="red",shape="box"];4286 -> 4807[label="",style="dashed", color="red", weight=0]; 4286[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) zwu5140 zwu5141 (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) zwu510 zwu511 zwu513 zwu5143) (FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) zwu60 zwu61 zwu5144 zwu64)",fontsize=16,color="magenta"];4286 -> 4888[label="",style="dashed", color="magenta", weight=3]; 4286 -> 4889[label="",style="dashed", color="magenta", weight=3]; 4286 -> 4890[label="",style="dashed", color="magenta", weight=3]; 4286 -> 4891[label="",style="dashed", color="magenta", weight=3]; 4286 -> 4892[label="",style="dashed", color="magenta", weight=3]; 4520[label="zwu9441",fontsize=16,color="green",shape="box"];4521[label="zwu9443",fontsize=16,color="green",shape="box"];4522[label="zwu9440",fontsize=16,color="green",shape="box"];4523[label="zwu9442",fontsize=16,color="green",shape="box"];4524[label="zwu9444",fontsize=16,color="green",shape="box"];5387[label="compare0 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5387 -> 5494[label="",style="solid", color="black", weight=3]; 5388[label="compare0 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5388 -> 5495[label="",style="solid", color="black", weight=3]; 5389[label="compare0 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5389 -> 5496[label="",style="solid", color="black", weight=3]; 5390[label="compare0 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5390 -> 5497[label="",style="solid", color="black", weight=3]; 5391[label="compare0 zwu43000 zwu44000 True",fontsize=16,color="black",shape="box"];5391 -> 5498[label="",style="solid", color="black", weight=3]; 4888[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))",fontsize=16,color="green",shape="box"];4889[label="zwu5141",fontsize=16,color="green",shape="box"];4890[label="zwu5140",fontsize=16,color="green",shape="box"];4891 -> 4807[label="",style="dashed", color="red", weight=0]; 4891[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) zwu60 zwu61 zwu5144 zwu64",fontsize=16,color="magenta"];4891 -> 5038[label="",style="dashed", color="magenta", weight=3]; 4891 -> 5039[label="",style="dashed", color="magenta", weight=3]; 4891 -> 5040[label="",style="dashed", color="magenta", weight=3]; 4891 -> 5041[label="",style="dashed", color="magenta", weight=3]; 4891 -> 5042[label="",style="dashed", color="magenta", weight=3]; 4892 -> 4807[label="",style="dashed", color="red", weight=0]; 4892[label="FiniteMap.mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) zwu510 zwu511 zwu513 zwu5143",fontsize=16,color="magenta"];4892 -> 5043[label="",style="dashed", color="magenta", weight=3]; 4892 -> 5044[label="",style="dashed", color="magenta", weight=3]; 4892 -> 5045[label="",style="dashed", color="magenta", weight=3]; 4892 -> 5046[label="",style="dashed", color="magenta", weight=3]; 4892 -> 5047[label="",style="dashed", color="magenta", weight=3]; 5494[label="GT",fontsize=16,color="green",shape="box"];5495[label="GT",fontsize=16,color="green",shape="box"];5496[label="GT",fontsize=16,color="green",shape="box"];5497[label="GT",fontsize=16,color="green",shape="box"];5498[label="GT",fontsize=16,color="green",shape="box"];5038[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))",fontsize=16,color="green",shape="box"];5039[label="zwu61",fontsize=16,color="green",shape="box"];5040[label="zwu60",fontsize=16,color="green",shape="box"];5041[label="zwu64",fontsize=16,color="green",shape="box"];5042[label="zwu5144",fontsize=16,color="green",shape="box"];5043[label="Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))",fontsize=16,color="green",shape="box"];5044[label="zwu511",fontsize=16,color="green",shape="box"];5045[label="zwu510",fontsize=16,color="green",shape="box"];5046[label="zwu5143",fontsize=16,color="green",shape="box"];5047[label="zwu513",fontsize=16,color="green",shape="box"];} ---------------------------------------- (16) Complex Obligation (AND) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt200(zwu350, zwu351, zwu352, zwu353, zwu354, zwu355, zwu356, zwu357, zwu358, zwu359, zwu360, zwu361, zwu362, Branch(zwu3630, zwu3631, zwu3632, zwu3633, zwu3634), zwu364, h, ba) -> new_glueBal2Mid_elt200(zwu350, zwu351, zwu352, zwu353, zwu354, zwu355, zwu356, zwu357, zwu358, zwu359, zwu3630, zwu3631, zwu3632, zwu3633, zwu3634, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt200(zwu350, zwu351, zwu352, zwu353, zwu354, zwu355, zwu356, zwu357, zwu358, zwu359, zwu360, zwu361, zwu362, Branch(zwu3630, zwu3631, zwu3632, zwu3633, zwu3634), zwu364, h, ba) -> new_glueBal2Mid_elt200(zwu350, zwu351, zwu352, zwu353, zwu354, zwu355, zwu356, zwu357, zwu358, zwu359, zwu3630, zwu3631, zwu3632, zwu3633, zwu3634, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 14 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueVBal3GlueVBal22(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal12(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt7(new_sr(new_sIZE_RATIO, new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal12(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal3GlueVBal2(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal1(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt0(new_sr(new_sIZE_RATIO, new_glueVBal3Size_r(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal1(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal22(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt4(new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) new_glueVBal3GlueVBal20(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), zwu83, h, ba) new_glueVBal3GlueVBal10(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal3GlueVBal21(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), zwu83, h, ba) new_glueVBal3GlueVBal2(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), zwu83, h, ba) new_glueVBal(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal21(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt3(zwu9200, new_glueVBal3Size_r0(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) new_glueVBal3GlueVBal20(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal10(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt5(new_sr(new_sIZE_RATIO, new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal21(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal11(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt6(new_sr(new_sIZE_RATIO, new_glueVBal3Size_r0(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal11(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal3GlueVBal22(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), zwu83, h, ba) new_glueVBal(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal2(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt1(zwu9200, new_glueVBal3Size_r(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) new_glueVBal(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal20(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt2(new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) The TRS R consists of the following rules: new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primCmpInt7(Pos(Succ(zwu14200)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu14200)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_primCmpInt0(Pos(Succ(zwu13900)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu13900)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primCmpInt7(Neg(Succ(zwu14200)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu14200)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primCmpInt2(Pos(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpInt5(Neg(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_glueVBal3Size_r(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt6(Pos(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt7(Neg(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_primCmpInt0(Neg(Succ(zwu13900)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu13900)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primCmpNat0(zwu4300, Zero) -> GT new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpInt7(Pos(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt5(Pos(Succ(zwu14000)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu14000)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_primCmpInt6(Neg(Succ(zwu14100)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu14100)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt0(Neg(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_primCmpInt0(Pos(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt5(Pos(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_primCmpInt2(Neg(Zero)) -> EQ new_esEs8(GT, GT) -> True new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt6(Pos(Succ(zwu14100)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu14100)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs8(EQ, EQ) -> True new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_primCmpInt6(Neg(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt5(Neg(Succ(zwu14000)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu14000)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_glueVBal3Size_r0(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_sizeFM0(EmptyFM, x0, x1) new_glueVBal3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_primPlusNat2(Zero) new_primCmpInt7(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat1(Zero, x0) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_sr(x0, x1) new_primCmpInt0(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt6(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt0(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt1(x0, x1) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpInt5(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_glueVBal3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt7(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt6(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt0(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_primCmpInt7(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primPlusNat0(Succ(x0), Succ(x1)) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt0(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt7(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_primCmpInt5(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt5(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt6(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt5(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt6(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_glueVBal(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal22(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt4(new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) new_glueVBal(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal21(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt3(zwu9200, new_glueVBal3Size_r0(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) new_glueVBal(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal2(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt1(zwu9200, new_glueVBal3Size_r(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) new_glueVBal(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) -> new_glueVBal3GlueVBal20(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt2(new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), LT), h, ba) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(Branch(x_1, x_2, x_3, x_4, x_5)) = 1 + x_1 + x_2 + x_4 + x_5 POL(EQ) = 0 POL(False) = 1 POL(GT) = 0 POL(LT) = 0 POL(Neg(x_1)) = 0 POL(Pos(x_1)) = 0 POL(Succ(x_1)) = 0 POL(True) = 1 POL(Zero) = 0 POL(new_esEs8(x_1, x_2)) = 1 POL(new_glueVBal(x_1, x_2, x_3, x_4)) = 1 + x_1 + x_2 + x_3 + x_4 POL(new_glueVBal3GlueVBal1(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = 1 + x_1 + x_10 + x_11 + x_12 + x_13 + x_2 + x_4 + x_5 + x_6 + x_7 + x_9 POL(new_glueVBal3GlueVBal10(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = 1 + x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_8 + x_9 POL(new_glueVBal3GlueVBal11(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = 1 + x_1 + x_10 + x_11 + x_12 + x_13 + x_2 + x_4 + x_5 + x_6 + x_7 + x_9 POL(new_glueVBal3GlueVBal12(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = 1 + x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_8 + x_9 POL(new_glueVBal3GlueVBal2(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = 1 + x_1 + x_10 + x_11 + x_12 + x_13 + x_2 + x_4 + x_5 + x_6 + x_7 + x_9 POL(new_glueVBal3GlueVBal20(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = 1 + x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_8 + x_9 POL(new_glueVBal3GlueVBal21(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = 1 + x_1 + x_10 + x_11 + x_12 + x_13 + x_2 + x_4 + x_5 + x_6 + x_7 + x_9 POL(new_glueVBal3GlueVBal22(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = 1 + x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_8 + x_9 POL(new_glueVBal3Size_r(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = 1 + x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_glueVBal3Size_r0(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = x_1 + x_10 + x_11 + x_12 + x_2 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt(x_1, x_2)) = 0 POL(new_primCmpInt0(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = x_10 + x_11 + x_12 + x_13 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt1(x_1, x_2)) = 1 + x_1 POL(new_primCmpInt2(x_1)) = 0 POL(new_primCmpInt3(x_1, x_2)) = 1 + x_1 POL(new_primCmpInt4(x_1)) = 0 POL(new_primCmpInt5(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt6(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = x_10 + x_11 + x_12 + x_13 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt7(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpNat0(x_1, x_2)) = x_1 POL(new_primCmpNat1(x_1, x_2)) = x_2 POL(new_primCmpNat2(x_1, x_2)) = 1 POL(new_primMulInt(x_1, x_2)) = 0 POL(new_primMulNat0(x_1, x_2)) = 0 POL(new_primPlusNat0(x_1, x_2)) = 0 POL(new_primPlusNat1(x_1, x_2)) = 0 POL(new_primPlusNat2(x_1)) = 0 POL(new_sIZE_RATIO) = 0 POL(new_sizeFM(x_1, x_2, x_3, x_4, x_5, x_6, x_7)) = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 POL(new_sizeFM0(x_1, x_2, x_3)) = x_2 + x_3 POL(new_sr(x_1, x_2)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: new_esEs8(LT, LT) -> True new_esEs8(EQ, LT) -> False new_esEs8(GT, LT) -> False ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueVBal3GlueVBal22(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal12(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt7(new_sr(new_sIZE_RATIO, new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal12(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal3GlueVBal2(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal1(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt0(new_sr(new_sIZE_RATIO, new_glueVBal3Size_r(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal1(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal3GlueVBal20(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), zwu83, h, ba) new_glueVBal3GlueVBal10(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal3GlueVBal21(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), zwu83, h, ba) new_glueVBal3GlueVBal2(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), zwu83, h, ba) new_glueVBal3GlueVBal20(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal10(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt5(new_sr(new_sIZE_RATIO, new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal21(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, False, h, ba) -> new_glueVBal3GlueVBal11(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, new_esEs8(new_primCmpInt6(new_sr(new_sIZE_RATIO, new_glueVBal3Size_r0(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba), LT), h, ba) new_glueVBal3GlueVBal11(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(zwu94, Branch(zwu80, zwu81, zwu82, zwu83, zwu84), h, ba) new_glueVBal3GlueVBal22(zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, True, h, ba) -> new_glueVBal(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), zwu83, h, ba) The TRS R consists of the following rules: new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primCmpInt7(Pos(Succ(zwu14200)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu14200)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_primCmpInt0(Pos(Succ(zwu13900)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu13900)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primCmpInt7(Neg(Succ(zwu14200)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu14200)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primCmpInt2(Pos(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpInt5(Neg(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_glueVBal3Size_r(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt6(Pos(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt7(Neg(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_primCmpInt0(Neg(Succ(zwu13900)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu13900)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primCmpNat0(zwu4300, Zero) -> GT new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpInt7(Pos(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Zero), zwu93, zwu94), h, ba)) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt5(Pos(Succ(zwu14000)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu14000)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_primCmpInt6(Neg(Succ(zwu14100)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu14100)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt0(Neg(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_primCmpInt0(Pos(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt5(Pos(Zero), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Zero), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_primCmpInt2(Neg(Zero)) -> EQ new_esEs8(GT, GT) -> True new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt6(Pos(Succ(zwu14100)), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Pos(Succ(zwu14100)), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs8(EQ, EQ) -> True new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_primCmpInt6(Neg(Zero), zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Zero), new_sizeFM0(Branch(zwu90, zwu91, Neg(Succ(zwu9200)), zwu93, zwu94), h, ba)) new_primCmpInt5(Neg(Succ(zwu14000)), zwu90, zwu91, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_primCmpInt(Neg(Succ(zwu14000)), new_sizeFM0(Branch(zwu90, zwu91, Pos(Zero), zwu93, zwu94), h, ba)) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_glueVBal3Size_r0(zwu90, zwu91, zwu9200, zwu93, zwu94, zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_sizeFM0(EmptyFM, x0, x1) new_glueVBal3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_primPlusNat2(Zero) new_primCmpInt7(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat1(Zero, x0) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_sr(x0, x1) new_primCmpInt0(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt6(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt0(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt1(x0, x1) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpInt5(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_glueVBal3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt7(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt6(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt0(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_primCmpInt7(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primPlusNat0(Succ(x0), Succ(x1)) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt0(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt7(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_primCmpInt5(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt5(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt6(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt5(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt6(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 12 less nodes. ---------------------------------------- (24) TRUE ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt201(zwu320, zwu321, zwu322, zwu323, zwu324, zwu325, zwu326, zwu327, zwu328, zwu329, zwu330, zwu331, Branch(zwu3320, zwu3321, zwu3322, zwu3323, zwu3324), zwu333, h, ba) -> new_glueBal2Mid_elt201(zwu320, zwu321, zwu322, zwu323, zwu324, zwu325, zwu326, zwu327, zwu328, zwu3320, zwu3321, zwu3322, zwu3323, zwu3324, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt201(zwu320, zwu321, zwu322, zwu323, zwu324, zwu325, zwu326, zwu327, zwu328, zwu329, zwu330, zwu331, Branch(zwu3320, zwu3321, zwu3322, zwu3323, zwu3324), zwu333, h, ba) -> new_glueBal2Mid_elt201(zwu320, zwu321, zwu322, zwu323, zwu324, zwu325, zwu326, zwu327, zwu328, zwu3320, zwu3321, zwu3322, zwu3323, zwu3324, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 13 > 10, 13 > 11, 13 > 12, 13 > 13, 13 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt101(zwu444, zwu445, zwu446, zwu447, zwu448, zwu449, zwu450, zwu451, zwu452, zwu453, zwu454, zwu455, zwu456, Branch(zwu4570, zwu4571, zwu4572, zwu4573, zwu4574), h, ba) -> new_glueBal2Mid_elt101(zwu444, zwu445, zwu446, zwu447, zwu448, zwu449, zwu450, zwu451, zwu452, zwu4570, zwu4571, zwu4572, zwu4573, zwu4574, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt101(zwu444, zwu445, zwu446, zwu447, zwu448, zwu449, zwu450, zwu451, zwu452, zwu453, zwu454, zwu455, zwu456, Branch(zwu4570, zwu4571, zwu4572, zwu4573, zwu4574), h, ba) -> new_glueBal2Mid_elt101(zwu444, zwu445, zwu446, zwu447, zwu448, zwu449, zwu450, zwu451, zwu452, zwu4570, zwu4571, zwu4572, zwu4573, zwu4574, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 14 > 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (30) YES ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: new_esEs(Just(zwu4000), Just(zwu6000), app(app(ty_@2, bf), bg)) -> new_esEs2(zwu4000, zwu6000, bf, bg) new_esEs1(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gf), gg), gb) -> new_esEs1(zwu4000, zwu6000, gf, gg) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(ty_Maybe, eg)) -> new_esEs(zwu4002, zwu6002, eg) new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(app(ty_Either, bde), bdf)) -> new_esEs1(zwu4000, zwu6000, bde, bdf) new_esEs1(Left(zwu4000), Left(zwu6000), app(ty_[], hb), gb) -> new_esEs3(zwu4000, zwu6000, hb) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(app(app(ty_@3, dg), dh), ea), cc) -> new_esEs0(zwu4001, zwu6001, dg, dh, ea) new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(ty_Maybe, bda)) -> new_esEs(zwu4000, zwu6000, bda) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(app(ty_@2, bcf), bcg)) -> new_esEs2(zwu4001, zwu6001, bcf, bcg) new_esEs(Just(zwu4000), Just(zwu6000), app(ty_[], bh)) -> new_esEs3(zwu4000, zwu6000, bh) new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(ty_[], bea)) -> new_esEs3(zwu4000, zwu6000, bea) new_esEs(Just(zwu4000), Just(zwu6000), app(ty_Maybe, h)) -> new_esEs(zwu4000, zwu6000, h) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(app(ty_Either, cg), da), cb, cc) -> new_esEs1(zwu4000, zwu6000, cg, da) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(app(ty_@2, ff), fg)) -> new_esEs2(zwu4002, zwu6002, ff, fg) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(app(ty_@2, ed), ee), cc) -> new_esEs2(zwu4001, zwu6001, ed, ee) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(ty_Maybe, bbh)) -> new_esEs(zwu4001, zwu6001, bbh) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(ty_[], fh)) -> new_esEs3(zwu4002, zwu6002, fh) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(app(ty_@2, bbd), bbe), baf) -> new_esEs2(zwu4000, zwu6000, bbd, bbe) new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(app(ty_@2, bab), bac)) -> new_esEs2(zwu4000, zwu6000, bab, bac) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(ty_Maybe, bae), baf) -> new_esEs(zwu4000, zwu6000, bae) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(app(app(ty_@3, eh), fa), fb)) -> new_esEs0(zwu4002, zwu6002, eh, fa, fb) new_esEs1(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, gc), gd), ge), gb) -> new_esEs0(zwu4000, zwu6000, gc, gd, ge) new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(ty_Maybe, hd)) -> new_esEs(zwu4000, zwu6000, hd) new_esEs(Just(zwu4000), Just(zwu6000), app(app(ty_Either, bd), be)) -> new_esEs1(zwu4000, zwu6000, bd, be) new_esEs1(Left(zwu4000), Left(zwu6000), app(ty_Maybe, ga), gb) -> new_esEs(zwu4000, zwu6000, ga) new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), beb) -> new_esEs3(zwu4001, zwu6001, beb) new_esEs(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, ba), bb), bc)) -> new_esEs0(zwu4000, zwu6000, ba, bb, bc) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(ty_[], ef), cc) -> new_esEs3(zwu4001, zwu6001, ef) new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(app(app(ty_@3, bdb), bdc), bdd)) -> new_esEs0(zwu4000, zwu6000, bdb, bdc, bdd) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(app(ty_Either, eb), ec), cc) -> new_esEs1(zwu4001, zwu6001, eb, ec) new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(app(ty_@2, bdg), bdh)) -> new_esEs2(zwu4000, zwu6000, bdg, bdh) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(ty_[], dd), cb, cc) -> new_esEs3(zwu4000, zwu6000, dd) new_esEs1(Left(zwu4000), Left(zwu6000), app(app(ty_@2, gh), ha), gb) -> new_esEs2(zwu4000, zwu6000, gh, ha) new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(app(app(ty_@3, he), hf), hg)) -> new_esEs0(zwu4000, zwu6000, he, hf, hg) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(app(ty_@2, db), dc), cb, cc) -> new_esEs2(zwu4000, zwu6000, db, dc) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(ty_[], bch)) -> new_esEs3(zwu4001, zwu6001, bch) new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(ty_[], bad)) -> new_esEs3(zwu4000, zwu6000, bad) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(app(app(ty_@3, bag), bah), bba), baf) -> new_esEs0(zwu4000, zwu6000, bag, bah, bba) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(ty_[], bbf), baf) -> new_esEs3(zwu4000, zwu6000, bbf) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(app(ty_Either, bbb), bbc), baf) -> new_esEs1(zwu4000, zwu6000, bbb, bbc) new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(app(ty_Either, hh), baa)) -> new_esEs1(zwu4000, zwu6000, hh, baa) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(app(ty_Either, bcd), bce)) -> new_esEs1(zwu4001, zwu6001, bcd, bce) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(ty_Maybe, ca), cb, cc) -> new_esEs(zwu4000, zwu6000, ca) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(app(app(ty_@3, cd), ce), cf), cb, cc) -> new_esEs0(zwu4000, zwu6000, cd, ce, cf) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(app(ty_Either, fc), fd)) -> new_esEs1(zwu4002, zwu6002, fc, fd) new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(ty_Maybe, df), cc) -> new_esEs(zwu4001, zwu6001, df) new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(app(app(ty_@3, bca), bcb), bcc)) -> new_esEs0(zwu4001, zwu6001, bca, bcb, bcc) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_esEs(Just(zwu4000), Just(zwu6000), app(ty_Maybe, h)) -> new_esEs(zwu4000, zwu6000, h) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs(Just(zwu4000), Just(zwu6000), app(app(ty_Either, bd), be)) -> new_esEs1(zwu4000, zwu6000, bd, be) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, ba), bb), bc)) -> new_esEs0(zwu4000, zwu6000, ba, bb, bc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs(Just(zwu4000), Just(zwu6000), app(ty_[], bh)) -> new_esEs3(zwu4000, zwu6000, bh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs(Just(zwu4000), Just(zwu6000), app(app(ty_@2, bf), bg)) -> new_esEs2(zwu4000, zwu6000, bf, bg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(ty_Maybe, bda)) -> new_esEs(zwu4000, zwu6000, bda) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(app(ty_Either, bde), bdf)) -> new_esEs1(zwu4000, zwu6000, bde, bdf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(app(app(ty_@3, bdb), bdc), bdd)) -> new_esEs0(zwu4000, zwu6000, bdb, bdc, bdd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(app(ty_@2, bdg), bdh)) -> new_esEs2(zwu4000, zwu6000, bdg, bdh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(ty_Maybe, bbh)) -> new_esEs(zwu4001, zwu6001, bbh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(ty_Maybe, bae), baf) -> new_esEs(zwu4000, zwu6000, bae) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(app(ty_Either, bbb), bbc), baf) -> new_esEs1(zwu4000, zwu6000, bbb, bbc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(app(ty_Either, bcd), bce)) -> new_esEs1(zwu4001, zwu6001, bcd, bce) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(app(app(ty_@3, bag), bah), bba), baf) -> new_esEs0(zwu4000, zwu6000, bag, bah, bba) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(app(app(ty_@3, bca), bcb), bcc)) -> new_esEs0(zwu4001, zwu6001, bca, bcb, bcc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(ty_[], bch)) -> new_esEs3(zwu4001, zwu6001, bch) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(ty_[], bbf), baf) -> new_esEs3(zwu4000, zwu6000, bbf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), bbg, app(app(ty_@2, bcf), bcg)) -> new_esEs2(zwu4001, zwu6001, bcf, bcg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs2(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), app(app(ty_@2, bbd), bbe), baf) -> new_esEs2(zwu4000, zwu6000, bbd, bbe) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(ty_Maybe, hd)) -> new_esEs(zwu4000, zwu6000, hd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs1(Left(zwu4000), Left(zwu6000), app(ty_Maybe, ga), gb) -> new_esEs(zwu4000, zwu6000, ga) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(ty_Maybe, eg)) -> new_esEs(zwu4002, zwu6002, eg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(ty_Maybe, ca), cb, cc) -> new_esEs(zwu4000, zwu6000, ca) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(ty_Maybe, df), cc) -> new_esEs(zwu4001, zwu6001, df) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs1(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gf), gg), gb) -> new_esEs1(zwu4000, zwu6000, gf, gg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(app(ty_Either, hh), baa)) -> new_esEs1(zwu4000, zwu6000, hh, baa) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs1(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, gc), gd), ge), gb) -> new_esEs0(zwu4000, zwu6000, gc, gd, ge) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(app(app(ty_@3, he), hf), hg)) -> new_esEs0(zwu4000, zwu6000, he, hf, hg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs1(Left(zwu4000), Left(zwu6000), app(ty_[], hb), gb) -> new_esEs3(zwu4000, zwu6000, hb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(ty_[], bad)) -> new_esEs3(zwu4000, zwu6000, bad) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs1(Right(zwu4000), Right(zwu6000), hc, app(app(ty_@2, bab), bac)) -> new_esEs2(zwu4000, zwu6000, bab, bac) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs1(Left(zwu4000), Left(zwu6000), app(app(ty_@2, gh), ha), gb) -> new_esEs2(zwu4000, zwu6000, gh, ha) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(app(ty_Either, cg), da), cb, cc) -> new_esEs1(zwu4000, zwu6000, cg, da) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(app(ty_Either, eb), ec), cc) -> new_esEs1(zwu4001, zwu6001, eb, ec) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(app(ty_Either, fc), fd)) -> new_esEs1(zwu4002, zwu6002, fc, fd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(app(app(ty_@3, dg), dh), ea), cc) -> new_esEs0(zwu4001, zwu6001, dg, dh, ea) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(app(app(ty_@3, eh), fa), fb)) -> new_esEs0(zwu4002, zwu6002, eh, fa, fb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(app(app(ty_@3, cd), ce), cf), cb, cc) -> new_esEs0(zwu4000, zwu6000, cd, ce, cf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), app(ty_[], bea)) -> new_esEs3(zwu4000, zwu6000, bea) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs3(:(zwu4000, zwu4001), :(zwu6000, zwu6001), beb) -> new_esEs3(zwu4001, zwu6001, beb) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(ty_[], fh)) -> new_esEs3(zwu4002, zwu6002, fh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(ty_[], ef), cc) -> new_esEs3(zwu4001, zwu6001, ef) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(ty_[], dd), cb, cc) -> new_esEs3(zwu4000, zwu6000, dd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, cb, app(app(ty_@2, ff), fg)) -> new_esEs2(zwu4002, zwu6002, ff, fg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), de, app(app(ty_@2, ed), ee), cc) -> new_esEs2(zwu4001, zwu6001, ed, ee) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_esEs0(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), app(app(ty_@2, db), dc), cb, cc) -> new_esEs2(zwu4000, zwu6000, db, dc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 ---------------------------------------- (33) YES ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu63, Nothing, zwu41, h, ba) new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, False, h, ba) -> new_addToFM_C10(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Just(zwu600), False, h), GT), h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Nothing, zwu41, h, ba) -> new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Just(zwu600), False, h), LT), h, ba) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), LT), h, ba) new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Nothing, zwu41, h, ba) -> new_addToFM_C1(zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Nothing, True, h), GT), h, ba) new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), GT), h, ba) new_addToFM_C1(zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Nothing, zwu41, h, ba) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu63, Just(zwu400), zwu41, h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) new_addToFM_C10(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Nothing, zwu41, h, ba) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. ---------------------------------------- (36) Complex Obligation (AND) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), LT), h, ba) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), GT), h, ba) new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu63, Just(zwu400), zwu41, h, ba) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), LT), h, ba) at position [6,0] we obtained the following new rules [LPAR04]: (new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, LT), h, ba),new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, LT), h, ba)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), GT), h, ba) new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu63, Just(zwu400), zwu41, h, ba) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, LT), h, ba) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, LT), h, ba) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), GT), h, ba) new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, LT), h, ba) at position [6] we obtained the following new rules [LPAR04]: (new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba),new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba)) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), GT), h, ba) new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Nothing, False, h), GT), h, ba) at position [6,0] we obtained the following new rules [LPAR04]: (new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, GT), h, ba),new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, GT), h, ba)) ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, GT), h, ba) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(GT, GT), h, ba) at position [6] we obtained the following new rules [LPAR04]: (new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba),new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba)) ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu22, Just(zwu24), zwu25, bb, bc) The graph contains the following edges 4 >= 1, 7 >= 3, 9 >= 4, 10 >= 5 *new_addToFM_C21(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, False, bb, bc) -> new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, new_esEs8(new_compare27(Just(zwu24), Just(zwu19), new_esEs30(zwu24, zwu19, bb), bb), GT), bb, bc) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 9 >= 9, 10 >= 10 *new_addToFM_C12(zwu19, zwu20, zwu21, zwu22, zwu23, zwu24, zwu25, True, bb, bc) -> new_addToFM_C(zwu23, Just(zwu24), zwu25, bb, bc) The graph contains the following edges 5 >= 1, 7 >= 3, 9 >= 4, 10 >= 5 *new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Just(zwu400), zwu41, h, ba) The graph contains the following edges 4 >= 1, 6 >= 3, 8 >= 4, 9 >= 5 *new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C21(zwu600, zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, new_esEs8(new_compare27(Just(zwu400), Just(zwu600), new_esEs29(zwu400, zwu600, h), h), LT), h, ba) The graph contains the following edges 1 > 1, 1 > 2, 1 > 3, 1 > 4, 1 > 5, 2 > 6, 3 >= 7, 4 >= 9, 5 >= 10 *new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Just(zwu400), zwu41, h, ba) -> new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) The graph contains the following edges 1 > 1, 1 > 2, 1 > 3, 1 > 4, 2 > 5, 3 >= 6, 4 >= 8, 5 >= 9 *new_addToFM_C20(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, False, h, ba) -> new_addToFM_C11(zwu61, zwu62, zwu63, zwu64, zwu400, zwu41, True, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 8 >= 8, 9 >= 9 ---------------------------------------- (49) YES ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Nothing, zwu41, h, ba) -> new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Just(zwu600), False, h), LT), h, ba) new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu63, Nothing, zwu41, h, ba) new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Nothing, zwu41, h, ba) -> new_addToFM_C1(zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Nothing, True, h), GT), h, ba) new_addToFM_C1(zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Nothing, zwu41, h, ba) new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, False, h, ba) -> new_addToFM_C10(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Just(zwu600), False, h), GT), h, ba) new_addToFM_C10(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Nothing, zwu41, h, ba) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Ratio, hb)) -> new_esEs9(zwu4000, zwu6000, hb) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, bd, be, bf) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], bhg)) -> new_esEs17(zwu43001, zwu44001, bhg) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_esEs6(zwu43001, zwu44001, bhh) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, bh, ca) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Ordering) -> new_esEs8(zwu24, zwu19) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, bbc), bbd)) -> new_esEs7(zwu4000, zwu6000, bbc, bbd) new_lt7(zwu43000, zwu44000, fa, fb) -> new_esEs8(new_compare15(zwu43000, zwu44000, fa, fb), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, cff), cfg)) -> new_compare15(zwu43000, zwu44000, cff, cfg) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, fg), ff) -> new_esEs9(zwu4000, zwu6000, fg) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, bah), bba), bbb)) -> new_esEs4(zwu4000, zwu6000, bah, bba, bbb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, bdc)) -> new_esEs9(zwu4002, zwu6002, bdc) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_lt5(zwu43000, zwu44000, bg) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, cbb)) -> new_ltEs9(zwu43002, zwu44002, cbb) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, cec), ced)) -> new_esEs5(zwu4001, zwu6001, cec, ced) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(ty_Ratio, dh)) -> new_esEs9(zwu24, zwu19, dh) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(app(ty_@3, dch), dda), ddb)) -> new_ltEs4(zwu43000, zwu44000, dch, dda, ddb) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, dbb)) -> new_ltEs9(zwu43001, zwu44001, dbb) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, bea), beb)) -> new_esEs5(zwu4002, zwu6002, bea, beb) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, cg), da)) -> new_ltEs8(zwu43000, zwu44000, cg, da) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, bcg), bch)) -> new_esEs5(zwu4001, zwu6001, bcg, bch) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bgg) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_lt10(zwu43001, zwu44001, bhb, bhc, bhd) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, bga), bgb), bgc)) -> new_ltEs4(zwu4300, zwu4400, bga, bgb, bgc) new_compare28(zwu43000, zwu44000, False, fa, fb) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, fa, fb), fa, fb) new_esEs29(zwu400, zwu600, app(ty_Ratio, cbg)) -> new_esEs9(zwu400, zwu600, cbg) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, fc) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, bfh) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, bdg), bdh)) -> new_esEs7(zwu4002, zwu6002, bdg, bdh) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, bfh) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, ff) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bgf, bgg) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_lt7(zwu43000, zwu44000, dab, dac) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, ff) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, ccd), cce), ccf)) -> new_esEs4(zwu4000, zwu6000, ccd, cce, ccf) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, bhb), bhc), bhd)) -> new_esEs4(zwu43001, zwu44001, bhb, bhc, bhd) new_esEs30(zwu24, zwu19, app(app(app(ty_@3, ea), eb), ec)) -> new_esEs4(zwu24, zwu19, ea, eb, ec) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_Either, ddh), dea)) -> new_ltEs17(zwu43000, zwu44000, ddh, dea) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, dca), dcb), bgg) -> new_ltEs8(zwu43000, zwu44000, dca, dcb) new_compare110(zwu43000, zwu44000, True, fa, fb) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cbh, cca) -> new_asAs(new_esEs24(zwu4000, zwu6000, cbh), new_esEs25(zwu4001, zwu6001, cca)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bgg) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), bgd, bge) -> new_pePe(new_lt20(zwu43000, zwu44000, bgd), new_asAs(new_esEs26(zwu43000, zwu44000, bgd), new_ltEs20(zwu43001, zwu44001, bge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, cb) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, cb)) new_compare8(zwu43000, zwu44000, bd, be, bf) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, bfd), bfe)) -> new_esEs5(zwu4000, zwu6000, bfd, bfe) new_esEs29(zwu400, zwu600, app(app(app(ty_@3, bac), bad), bae)) -> new_esEs4(zwu400, zwu600, bac, bad, bae) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, ff) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, cfe)) -> new_compare7(zwu43000, zwu44000, cfe) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, bcb), bcc), bcd)) -> new_esEs4(zwu4001, zwu6001, bcb, bcc, bcd) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, cge), cgf)) -> new_esEs7(zwu4000, zwu6000, cge, cgf) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, bef)) -> new_esEs9(zwu4000, zwu6000, bef) new_compare25(zwu43000, zwu44000, True, bh, ca) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, bd, be, bf) -> new_esEs8(new_compare8(zwu43000, zwu44000, bd, be, bf), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs30(zwu24, zwu19, ty_@0) -> new_esEs13(zwu24, zwu19) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_esEs5(zwu43000, zwu44000, che, chf) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, dcd), bgg) -> new_ltEs9(zwu43000, zwu44000, dcd) new_esEs17([], [], bed) -> True new_esEs30(zwu24, zwu19, ty_Float) -> new_esEs11(zwu24, zwu19) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_esEs6(zwu43000, zwu44000, bgh) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, cbd), cbe)) -> new_ltEs17(zwu43002, zwu44002, cbd, cbe) new_esEs30(zwu24, zwu19, app(ty_[], eh)) -> new_esEs17(zwu24, zwu19, eh) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, cgb), cgc), cgd)) -> new_esEs4(zwu4000, zwu6000, cgb, cgc, cgd) new_esEs30(zwu24, zwu19, ty_Int) -> new_esEs10(zwu24, zwu19) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_esEs7(zwu43001, zwu44001, cab, cac) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), bga, bgb, bgc) -> new_pePe(new_lt13(zwu43000, zwu44000, bga), new_asAs(new_esEs22(zwu43000, zwu44000, bga), new_pePe(new_lt12(zwu43001, zwu44001, bgb), new_asAs(new_esEs23(zwu43001, zwu44001, bgb), new_ltEs19(zwu43002, zwu44002, bgc))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, dbd), dbe)) -> new_ltEs17(zwu43001, zwu44001, dbd, dbe) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], bbg)) -> new_esEs17(zwu4000, zwu6000, bbg) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, ff) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, gc), gd), ff) -> new_esEs7(zwu4000, zwu6000, gc, gd) new_esEs29(zwu400, zwu600, ty_Int) -> new_esEs10(zwu400, zwu600) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, ccb)) -> new_esEs6(zwu4000, zwu6000, ccb) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, dcf), dcg), bgg) -> new_ltEs17(zwu43000, zwu44000, dcf, dcg) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, cea), ceb)) -> new_esEs7(zwu4001, zwu6001, cea, ceb) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_esEs29(zwu400, zwu600, ty_@0) -> new_esEs13(zwu400, zwu600) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, bag)) -> new_esEs9(zwu4000, zwu6000, bag) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Ratio, ddg)) -> new_ltEs13(zwu43000, zwu44000, ddg) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, beg), beh), bfa)) -> new_esEs4(zwu4000, zwu6000, beg, beh, bfa) new_lt13(zwu43000, zwu44000, app(ty_[], bha)) -> new_lt16(zwu43000, zwu44000, bha) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_esEs30(zwu24, zwu19, ty_Char) -> new_esEs16(zwu24, zwu19) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_esEs29(zwu400, zwu600, ty_Float) -> new_esEs11(zwu400, zwu600) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, bdd), bde), bdf)) -> new_esEs4(zwu4002, zwu6002, bdd, bde, bdf) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_esEs29(zwu400, zwu600, app(ty_[], bed)) -> new_esEs17(zwu400, zwu600, bed) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, cag), cah)) -> new_ltEs8(zwu43002, zwu44002, cag, cah) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_esEs5(zwu43001, zwu44001, bhe, bhf) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, cc)) -> new_ltEs9(zwu4300, zwu4400, cc) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_lt11(zwu43000, zwu44000, chh) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bgg) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, dag), dah)) -> new_ltEs8(zwu43001, zwu44001, dag, dah) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_esEs29(zwu400, zwu600, ty_Double) -> new_esEs14(zwu400, zwu600) new_ltEs13(zwu4300, zwu4400, bfg) -> new_fsEs(new_compare7(zwu4300, zwu4400, bfg)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_lt5(zwu43000, zwu44000, daa) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, cfh)) -> new_esEs6(zwu4000, zwu6000, cfh) new_esEs6(Nothing, Just(zwu6000), cbf) -> False new_esEs6(Just(zwu4000), Nothing, cbf) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, bca)) -> new_esEs9(zwu4001, zwu6001, bca) new_esEs6(Nothing, Nothing, cbf) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cda), cdb)) -> new_esEs5(zwu4000, zwu6000, cda, cdb) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, ccg), cch)) -> new_esEs7(zwu4000, zwu6000, ccg, cch) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], db)) -> new_ltEs7(zwu43000, zwu44000, db) new_lt12(zwu43001, zwu44001, app(ty_[], bhg)) -> new_lt16(zwu43001, zwu44001, bhg) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, bfh) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, bfh), bfh) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bgg) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_lt10(zwu43000, zwu44000, chb, chc, chd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, chb), chc), chd)) -> new_esEs4(zwu43000, zwu44000, chb, chc, chd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_[], dde)) -> new_ltEs7(zwu43000, zwu44000, dde) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, dab), dac)) -> new_esEs7(zwu43000, zwu44000, dab, dac) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], dcc), bgg) -> new_ltEs7(zwu43000, zwu44000, dcc) new_compare31(zwu43000, zwu44000, app(ty_[], cfc)) -> new_compare0(zwu43000, zwu44000, cfc) new_compare10(zwu43000, zwu44000, False, bd, be, bf) -> GT new_lt5(zwu43000, zwu44000, bg) -> new_esEs8(new_compare7(zwu43000, zwu44000, bg), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, fh), ga), gb), ff) -> new_esEs4(zwu4000, zwu6000, fh, ga, gb) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, cef), ceg), ceh)) -> new_compare8(zwu43000, zwu44000, cef, ceg, ceh) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs29(zwu400, zwu600, ty_Char) -> new_esEs16(zwu400, zwu600) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, cfd)) -> new_compare29(zwu43000, zwu44000, cfd) new_compare15(zwu43000, zwu44000, fa, fb) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, fa, fb), fa, fb) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bgg) -> new_ltEs16(zwu43000, zwu44000) new_esEs30(zwu24, zwu19, ty_Double) -> new_esEs14(zwu24, zwu19) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, ty_Integer) -> new_esEs15(zwu400, zwu600) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_esEs30(zwu24, zwu19, ty_Integer) -> new_esEs15(zwu24, zwu19) new_lt12(zwu43001, zwu44001, app(app(ty_Either, cab), cac)) -> new_lt7(zwu43001, zwu44001, cab, cac) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, ff) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, bgh)) -> new_lt11(zwu43000, zwu44000, bgh) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, cgg), cgh)) -> new_esEs5(zwu4000, zwu6000, cgg, cgh) new_ltEs9(Nothing, Just(zwu44000), cc) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), cb) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, bee)) -> new_esEs6(zwu4000, zwu6000, bee) new_esEs19(zwu4001, zwu6001, app(ty_[], bda)) -> new_esEs17(zwu4001, zwu6001, bda) new_esEs25(zwu4001, zwu6001, app(ty_[], cee)) -> new_esEs17(zwu4001, zwu6001, cee) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, bgd), bge)) -> new_ltEs8(zwu4300, zwu4400, bgd, bge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bgg) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, bh, ca) -> new_esEs8(new_compare9(zwu43000, zwu44000, bh, ca), LT) new_lt16(zwu43000, zwu44000, bha) -> new_esEs8(new_compare0(zwu43000, zwu44000, bha), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_esEs4(zwu43000, zwu44000, bd, be, bf) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], cb) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, cga)) -> new_esEs9(zwu4000, zwu6000, cga) new_compare27(Nothing, Just(zwu4400), False, bfh) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, bfb), bfc)) -> new_esEs7(zwu4000, zwu6000, bfb, bfc) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, cd), ce), cf)) -> new_ltEs4(zwu43000, zwu44000, cd, ce, cf) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], chg)) -> new_lt16(zwu43000, zwu44000, chg) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_esEs5(zwu43000, zwu44000, bh, ca) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, ge), gf), ff) -> new_esEs5(zwu4000, zwu6000, ge, gf) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_esEs7(zwu43000, zwu44000, fa, fb) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cbc)) -> new_ltEs13(zwu43002, zwu44002, cbc) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bgg) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], bec)) -> new_esEs17(zwu4002, zwu6002, bec) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, fd), ff) -> new_esEs6(zwu4000, zwu6000, fd) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bac, bad, bae) -> new_asAs(new_esEs18(zwu4000, zwu6000, bac), new_asAs(new_esEs19(zwu4001, zwu6001, bad), new_esEs20(zwu4002, zwu6002, bae))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, chh)) -> new_esEs6(zwu43000, zwu44000, chh) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_[], bab)) -> new_esEs17(zwu4000, zwu6000, bab) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, ff) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], cb)) -> new_ltEs7(zwu4300, zwu4400, cb) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], bff)) -> new_esEs17(zwu4000, zwu6000, bff) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cdd)) -> new_esEs6(zwu4001, zwu6001, cdd) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bgf), bgg)) -> new_ltEs17(zwu4300, zwu4400, bgf, bgg) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbc)) -> new_ltEs13(zwu43001, zwu44001, dbc) new_lt12(zwu43001, zwu44001, app(ty_Maybe, bhh)) -> new_lt11(zwu43001, zwu44001, bhh) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, fa), fb)) -> new_lt7(zwu43000, zwu44000, fa, fb) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, ff) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], gg), ff) -> new_esEs17(zwu4000, zwu6000, gg) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_@2, hh), baa)) -> new_esEs5(zwu4000, zwu6000, hh, baa) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, bdb)) -> new_esEs6(zwu4002, zwu6002, bdb) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(ty_Either, hf), hg)) -> new_esEs7(zwu4000, zwu6000, hf, hg) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(ty_Maybe, ha)) -> new_esEs6(zwu4000, zwu6000, ha) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, bbh)) -> new_esEs6(zwu4001, zwu6001, bbh) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, dc)) -> new_ltEs9(zwu43000, zwu44000, dc) new_lt20(zwu43000, zwu44000, app(app(ty_@2, che), chf)) -> new_lt6(zwu43000, zwu44000, che, chf) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, dbf), dbg), dbh), bgg) -> new_ltEs4(zwu43000, zwu44000, dbf, dbg, dbh) new_esEs26(zwu43000, zwu44000, app(ty_[], chg)) -> new_esEs17(zwu43000, zwu44000, chg) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bg)) -> new_esEs9(zwu43000, zwu44000, bg) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, bd), be), bf)) -> new_lt10(zwu43000, zwu44000, bd, be, bf) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, cad), cae), caf)) -> new_ltEs4(zwu43002, zwu44002, cad, cae, caf) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_esEs30(zwu24, zwu19, app(ty_Maybe, dg)) -> new_esEs6(zwu24, zwu19, dg) new_ltEs7(zwu4300, zwu4400, cb) -> new_fsEs(new_compare0(zwu4300, zwu4400, cb)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bgg) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, bd, be, bf) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, app(app(app(ty_@3, hc), hd), he)) -> new_esEs4(zwu4000, zwu6000, hc, hd, he) new_ltEs19(zwu43002, zwu44002, app(ty_[], cba)) -> new_ltEs7(zwu43002, zwu44002, cba) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cdc)) -> new_esEs17(zwu4000, zwu6000, cdc) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, bgh) -> new_esEs8(new_compare29(zwu43000, zwu44000, bgh), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], cb) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, bfh) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], dba)) -> new_ltEs7(zwu43001, zwu44001, dba) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, bfg)) -> new_ltEs13(zwu4300, zwu4400, bfg) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, cfa), cfb)) -> new_compare9(zwu43000, zwu44000, cfa, cfb) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, baf)) -> new_esEs6(zwu4000, zwu6000, baf) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, bh), ca)) -> new_lt6(zwu43000, zwu44000, bh, ca) new_esEs29(zwu400, zwu600, ty_Bool) -> new_esEs12(zwu400, zwu600) new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(app(ty_@2, ddc), ddd)) -> new_ltEs8(zwu43000, zwu44000, ddc, ddd) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_esEs9(zwu43001, zwu44001, caa) new_compare23(zwu43000, zwu44000, False, bd, be, bf) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, bd, be, bf), bd, be, bf) new_lt12(zwu43001, zwu44001, app(ty_Ratio, caa)) -> new_lt5(zwu43001, zwu44001, caa) new_esEs29(zwu400, zwu600, app(ty_Maybe, cbf)) -> new_esEs6(zwu400, zwu600, cbf) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, cdf), cdg), cdh)) -> new_esEs4(zwu4001, zwu6001, cdf, cdg, cdh) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), cb) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, cb), cb) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, daa)) -> new_esEs9(zwu43000, zwu44000, daa) new_esEs22(zwu43000, zwu44000, app(ty_[], bha)) -> new_esEs17(zwu43000, zwu44000, bha) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, bce), bcf)) -> new_esEs7(zwu4001, zwu6001, bce, bcf) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, dd)) -> new_ltEs13(zwu43000, zwu44000, dd) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bgf, app(ty_Maybe, ddf)) -> new_ltEs9(zwu43000, zwu44000, ddf) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, cde)) -> new_esEs9(zwu4001, zwu6001, cde) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs30(zwu24, zwu19, ty_Bool) -> new_esEs12(zwu24, zwu19) new_esEs30(zwu24, zwu19, app(app(ty_@2, ef), eg)) -> new_esEs5(zwu24, zwu19, ef, eg) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, ff) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), gh, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, fc) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, ccc)) -> new_esEs9(zwu4000, zwu6000, ccc) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, bhe), bhf)) -> new_lt6(zwu43001, zwu44001, bhe, bhf) new_compare29(zwu43000, zwu44000, bgh) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, bgh), bgh) new_ltEs17(Right(zwu43000), Left(zwu44000), bgf, bgg) -> False new_compare110(zwu43000, zwu44000, False, fa, fb) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, bbe), bbf)) -> new_esEs5(zwu4000, zwu6000, bbe, bbf) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, cc) -> False new_ltEs9(Nothing, Nothing, cc) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs30(zwu24, zwu19, app(app(ty_Either, ed), ee)) -> new_esEs7(zwu24, zwu19, ed, ee) new_esEs29(zwu400, zwu600, ty_Ordering) -> new_esEs8(zwu400, zwu600) new_esEs29(zwu400, zwu600, app(app(ty_@2, cbh), cca)) -> new_esEs5(zwu400, zwu600, cbh, cca) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], cha)) -> new_esEs17(zwu4000, zwu6000, cha) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], bed) -> False new_esEs17([], :(zwu6000, zwu6001), bed) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_esEs29(zwu400, zwu600, app(app(ty_Either, gh), ff)) -> new_esEs7(zwu400, zwu600, gh, ff) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dce), bgg) -> new_ltEs13(zwu43000, zwu44000, dce) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, bh, ca) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, bh, ca), bh, ca) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), bed) -> new_asAs(new_esEs21(zwu4000, zwu6000, bed), new_esEs17(zwu4001, zwu6001, bed)) new_compare28(zwu43000, zwu44000, True, fa, fb) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, dad), dae), daf)) -> new_ltEs4(zwu43001, zwu44001, dad, dae, daf) new_esEs7(Left(zwu4000), Right(zwu6000), gh, ff) -> False new_esEs7(Right(zwu4000), Left(zwu6000), gh, ff) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), cbg) -> new_asAs(new_esEs27(zwu4000, zwu6000, cbg), new_esEs28(zwu4001, zwu6001, cbg)) new_compare12(zwu43000, zwu44000, True, bh, ca) -> LT new_compare25(zwu43000, zwu44000, False, bh, ca) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, bh, ca), bh, ca) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, de), df)) -> new_ltEs17(zwu43000, zwu44000, de, df) The set Q consists of the following terms: new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs8(EQ, EQ) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs20(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Integer) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_compare15(x0, x1, x2, x3) new_esEs21(x0, x1, ty_Int) new_compare8(x0, x1, x2, x3, x4) new_compare10(x0, x1, True, x2, x3, x4) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare111(x0, x1, False) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_lt20(x0, x1, ty_Integer) new_ltEs18(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs28(x0, x1, ty_Int) new_ltEs20(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_esEs29(x0, x1, ty_Integer) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_esEs30(x0, x1, ty_Float) new_compare31(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_compare31(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Ratio, x2)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs29(x0, x1, app(app(ty_Either, x2), x3)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs23(x0, x1, ty_Int) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_esEs21(x0, x1, ty_Char) new_compare28(x0, x1, True, x2, x3) new_compare12(x0, x1, False, x2, x3) new_primMulNat0(Succ(x0), Zero) new_esEs12(False, True) new_esEs12(True, False) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt5(x0, x1, x2) new_lt12(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_compare27(Nothing, Just(x0), False, x1) new_compare0([], :(x0, x1), x2) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs21(x0, x1, ty_@0) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs29(x0, x1, ty_Float) new_primCmpNat0(x0, Succ(x1)) new_esEs29(x0, x1, ty_@0) new_esEs30(x0, x1, ty_Integer) new_esEs29(x0, x1, ty_Bool) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt13(x0, x1, ty_Float) new_compare27(Just(x0), Just(x1), False, x2) new_compare16(x0, x1, False, x2) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, app(app(ty_@2, x2), x3)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_esEs19(x0, x1, ty_Float) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_esEs30(x0, x1, ty_Bool) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_compare27(Nothing, Nothing, False, x0) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_compare27(Just(x0), Nothing, False, x1) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs30(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_primMulInt(Pos(x0), Pos(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_compare210(x0, x1, False) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_esEs19(x0, x1, ty_@0) new_primCmpNat1(Zero, x0) new_esEs30(x0, x1, app(ty_Ratio, x2)) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_compare0([], [], x0) new_ltEs20(x0, x1, ty_Bool) new_ltEs14(x0, x1) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_compare25(x0, x1, True, x2, x3) new_compare31(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_esEs17([], [], x0) new_esEs29(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primPlusNat0(Succ(x0), Succ(x1)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_lt16(x0, x1, x2) new_asAs(False, x0) new_esEs30(x0, x1, ty_Char) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_primCompAux00(x0, LT) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs24(x0, x1, ty_Bool) new_lt11(x0, x1, x2) new_esEs23(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_esEs29(x0, x1, app(ty_Maybe, x2)) new_esEs8(GT, GT) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_compare0(:(x0, x1), :(x2, x3), x4) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_ltEs9(Just(x0), Nothing, x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_primCmpInt(Neg(Zero), Neg(Zero)) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare12(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_esEs29(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, LT) new_ltEs7(x0, x1, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs30(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare110(x0, x1, False, x2, x3) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_sr(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs19(x0, x1, ty_Integer) new_esEs16(Char(x0), Char(x1)) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_esEs22(x0, x1, ty_@0) new_ltEs13(x0, x1, x2) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_lt12(x0, x1, app(ty_[], x2)) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_compare23(x0, x1, True, x2, x3, x4) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_ltEs9(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_primMulInt(Neg(x0), Neg(x1)) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs20(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, ty_Int) new_compare0(:(x0, x1), [], x2) new_esEs30(x0, x1, app(ty_Maybe, x2)) new_esEs26(x0, x1, ty_Bool) new_esEs26(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_ltEs9(Nothing, Nothing, x0) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs17([], :(x0, x1), x2) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Bool) new_primPlusNat0(Succ(x0), Zero) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_esEs30(x0, x1, app(app(ty_@2, x2), x3)) new_lt12(x0, x1, ty_@0) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_esEs25(x0, x1, ty_Int) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_compare25(x0, x1, False, x2, x3) new_lt12(x0, x1, ty_Bool) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_primEqNat0(Succ(x0), Zero) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_primPlusNat1(Succ(x0), x1) new_ltEs18(x0, x1, app(ty_[], x2)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_lt4(x0, x1) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs30(x0, x1, ty_Double) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_ltEs18(x0, x1, ty_Ordering) new_primCmpNat2(Zero, Zero) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_lt13(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs30(x0, x1, ty_Ordering) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs25(x0, x1, ty_Double) new_primPlusNat0(Zero, Zero) new_ltEs9(Nothing, Just(x0), x1) new_lt20(x0, x1, app(ty_Ratio, x2)) new_esEs30(x0, x1, ty_Int) new_esEs30(x0, x1, app(app(ty_Either, x2), x3)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_esEs11(Float(x0, x1), Float(x2, x3)) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Nothing, x1) new_esEs29(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_compare110(x0, x1, True, x2, x3) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_primCmpNat2(Succ(x0), Zero) new_esEs29(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_compare31(x0, x1, app(ty_[], x2)) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs29(x0, x1, ty_Double) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_lt20(x0, x1, ty_Ordering) new_esEs29(x0, x1, ty_Char) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_lt12(x0, x1, app(ty_Maybe, x2)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare29(x0, x1, x2) new_lt10(x0, x1, x2, x3, x4) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_compare28(x0, x1, False, x2, x3) new_compare27(x0, x1, True, x2) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_ltEs5(GT, GT) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_compare10(x0, x1, False, x2, x3, x4) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, ty_Bool) new_esEs21(x0, x1, ty_Bool) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs20(x0, x1, ty_Int) new_esEs6(Nothing, Nothing, x0) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_compare16(x0, x1, True, x2) new_compare23(x0, x1, False, x2, x3, x4) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_compare111(x0, x1, True) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs30(x0, x1, ty_@0) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_lt7(x0, x1, x2, x3) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_ltEs11(x0, x1) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs17(:(x0, x1), [], x2) new_esEs29(x0, x1, ty_Ordering) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs6(Nothing, Just(x0), x1) new_esEs12(True, True) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs18(x0, x1, ty_Integer) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs15(Integer(x0), Integer(x1)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs23(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), ty_Float) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_ltEs6(True, False) new_ltEs6(False, True) new_lt6(x0, x1, x2, x3) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Integer) new_esEs26(x0, x1, ty_Double) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_lt20(x0, x1, ty_@0) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare9(x0, x1, x2, x3) new_lt20(x0, x1, ty_Double) new_primCompAux0(x0, x1, x2, x3) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_ltEs19(x0, x1, ty_Integer) new_esEs18(x0, x1, ty_Int) new_lt12(x0, x1, ty_Int) new_compare31(x0, x1, ty_Double) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_ltEs9(Just(x0), Just(x1), ty_Int) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_lt13(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu63, Nothing, zwu41, h, ba) The graph contains the following edges 4 >= 1, 6 >= 3, 8 >= 4, 9 >= 5 *new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, False, h, ba) -> new_addToFM_C10(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Just(zwu600), False, h), GT), h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 8 >= 8, 9 >= 9 *new_addToFM_C(Branch(Just(zwu600), zwu61, zwu62, zwu63, zwu64), Nothing, zwu41, h, ba) -> new_addToFM_C2(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Just(zwu600), False, h), LT), h, ba) The graph contains the following edges 1 > 1, 1 > 2, 1 > 3, 1 > 4, 1 > 5, 3 >= 6, 4 >= 8, 5 >= 9 *new_addToFM_C(Branch(Nothing, zwu61, zwu62, zwu63, zwu64), Nothing, zwu41, h, ba) -> new_addToFM_C1(zwu61, zwu62, zwu63, zwu64, zwu41, new_esEs8(new_compare27(Nothing, Nothing, True, h), GT), h, ba) The graph contains the following edges 1 > 1, 1 > 2, 1 > 3, 1 > 4, 3 >= 5, 4 >= 7, 5 >= 8 *new_addToFM_C1(zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Nothing, zwu41, h, ba) The graph contains the following edges 4 >= 1, 5 >= 3, 7 >= 4, 8 >= 5 *new_addToFM_C10(zwu600, zwu61, zwu62, zwu63, zwu64, zwu41, True, h, ba) -> new_addToFM_C(zwu64, Nothing, zwu41, h, ba) The graph contains the following edges 5 >= 1, 6 >= 3, 8 >= 4, 9 >= 5 ---------------------------------------- (52) YES ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: new_primCompAux(zwu43000, zwu44000, zwu265, app(ty_Maybe, bac)) -> new_compare4(zwu43000, zwu44000, bac) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(app(app(ty_@3, df), dg), dh), ba, cf) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(app(ty_Either, bbe), bbf))) -> new_ltEs3(zwu43000, zwu44000, bbe, bbf) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(ty_[], gh)), ge)) -> new_lt1(zwu43000, zwu44000, gh) new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(app(ty_Either, bea), beb))) -> new_ltEs3(zwu43000, zwu44000, bea, beb) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(ty_[], ff)) -> new_ltEs1(zwu43001, zwu44001, ff) new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(ty_[], bdg)) -> new_ltEs1(zwu43000, zwu44000, bdg) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(app(ty_Either, dd), de), cf) -> new_lt3(zwu43001, zwu44001, dd, de) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(app(app(ty_@3, eh), fa), fb)) -> new_ltEs(zwu43001, zwu44001, eh, fa, fb) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(ty_Maybe, bh))) -> new_ltEs2(zwu43002, zwu44002, bh) new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(ty_Maybe, bdh))) -> new_ltEs2(zwu43000, zwu44000, bdh) new_ltEs2(Just(zwu43000), Just(zwu44000), app(app(ty_@2, bba), bbb)) -> new_ltEs0(zwu43000, zwu44000, bba, bbb) new_lt3(zwu43000, zwu44000, ee, ef) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(ty_Maybe, fg))) -> new_ltEs2(zwu43001, zwu44001, fg) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(ty_[], ec), ba, cf) -> new_compare(zwu43000, zwu44000, ec) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(ty_[], bg))) -> new_ltEs1(zwu43002, zwu44002, bg) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(app(ty_@2, fc), fd)) -> new_ltEs0(zwu43001, zwu44001, fc, fd) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(app(ty_Either, hb), hc), ge) -> new_lt3(zwu43000, zwu44000, hb, hc) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(app(ty_@2, be), bf)) -> new_ltEs0(zwu43002, zwu44002, be, bf) new_compare1(zwu43000, zwu44000, df, dg, dh) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(app(ty_Either, fh), ga))) -> new_ltEs3(zwu43001, zwu44001, fh, ga) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(app(ty_Either, dd), de)), cf)) -> new_lt3(zwu43001, zwu44001, dd, de) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(ty_[], ff))) -> new_ltEs1(zwu43001, zwu44001, ff) new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(app(app(ty_@3, bbg), bbh), bca)), bcb)) -> new_ltEs(zwu43000, zwu44000, bbg, bbh, bca) new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(app(app(ty_@3, baf), bag), bah))) -> new_ltEs(zwu43000, zwu44000, baf, bag, bah) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(ty_Maybe, dc)), cf)) -> new_lt2(zwu43001, zwu44001, dc) new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(ty_[], bce)), bcb)) -> new_ltEs1(zwu43000, zwu44000, bce) new_ltEs3(Left(zwu43000), Left(zwu44000), app(ty_[], bce), bcb) -> new_ltEs1(zwu43000, zwu44000, bce) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(ty_[], gh), ge) -> new_lt1(zwu43000, zwu44000, gh) new_compare4(zwu43000, zwu44000, ed) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) new_primCompAux(zwu43000, zwu44000, zwu265, app(app(ty_@2, hh), baa)) -> new_compare3(zwu43000, zwu44000, hh, baa) new_ltEs3(Left(zwu43000), Left(zwu44000), app(app(ty_@2, bcc), bcd), bcb) -> new_ltEs0(zwu43000, zwu44000, bcc, bcd) new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(ty_[], bdg))) -> new_ltEs1(zwu43000, zwu44000, bdg) new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(app(ty_Either, bcg), bch)), bcb)) -> new_ltEs3(zwu43000, zwu44000, bcg, bch) new_compare21(Just(:(zwu43000, zwu43001)), Just(:(zwu44000, zwu44001)), False, app(ty_[], hd)) -> new_primCompAux(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, hd), hd) new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(app(app(ty_@3, bdb), bdc), bdd))) -> new_ltEs(zwu43000, zwu44000, bdb, bdc, bdd) new_ltEs3(Left(zwu43000), Left(zwu44000), app(ty_Maybe, bcf), bcb) -> new_ltEs2(zwu43000, zwu44000, bcf) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(app(ty_Either, ca), cb)) -> new_ltEs3(zwu43002, zwu44002, ca, cb) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(app(ty_@2, gf), gg), ge) -> new_lt0(zwu43000, zwu44000, gf, gg) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(app(app(ty_@3, cc), cd), ce)), cf)) -> new_lt(zwu43001, zwu44001, cc, cd, ce) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(ty_[], db)), cf)) -> new_lt1(zwu43001, zwu44001, db) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(app(app(ty_@3, gb), gc), gd)), ge)) -> new_lt(zwu43000, zwu44000, gb, gc, gd) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(app(app(ty_@3, bb), bc), bd)) -> new_ltEs(zwu43002, zwu44002, bb, bc, bd) new_primCompAux(zwu43000, zwu44000, zwu265, app(app(ty_Either, bad), bae)) -> new_compare5(zwu43000, zwu44000, bad, bae) new_ltEs1(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_compare(zwu43001, zwu44001, hd) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(ty_Maybe, bh)) -> new_ltEs2(zwu43002, zwu44002, bh) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(ty_Maybe, ed)), ba), cf)) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(ty_Maybe, bdh)) -> new_ltEs2(zwu43000, zwu44000, bdh) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(ty_Maybe, ha)), ge)) -> new_lt2(zwu43000, zwu44000, ha) new_ltEs2(Just(zwu43000), Just(zwu44000), app(ty_Maybe, bbd)) -> new_ltEs2(zwu43000, zwu44000, bbd) new_compare20(zwu43000, zwu44000, False, ea, eb) -> new_ltEs0(zwu43000, zwu44000, ea, eb) new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(app(ty_@2, bcc), bcd)), bcb)) -> new_ltEs0(zwu43000, zwu44000, bcc, bcd) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(app(ty_@2, ea), eb)), ba), cf)) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(ty_Maybe, dc), cf) -> new_lt2(zwu43001, zwu44001, dc) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(app(ty_@2, ea), eb), ba, cf) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) new_ltEs2(Just(zwu43000), Just(zwu44000), app(ty_[], bbc)) -> new_ltEs1(zwu43000, zwu44000, bbc) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(ty_Maybe, fg)) -> new_ltEs2(zwu43001, zwu44001, fg) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(app(app(ty_@3, eh), fa), fb))) -> new_ltEs(zwu43001, zwu44001, eh, fa, fb) new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(ty_Maybe, bbd))) -> new_ltEs2(zwu43000, zwu44000, bbd) new_ltEs3(Left(zwu43000), Left(zwu44000), app(app(ty_Either, bcg), bch), bcb) -> new_ltEs3(zwu43000, zwu44000, bcg, bch) new_compare21(Just(:(zwu43000, zwu43001)), Just(:(zwu44000, zwu44001)), False, app(ty_[], hd)) -> new_compare(zwu43001, zwu44001, hd) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(app(ty_@2, cg), da)), cf)) -> new_lt0(zwu43001, zwu44001, cg, da) new_lt2(zwu43000, zwu44000, ed) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(app(app(ty_@3, bdb), bdc), bdd)) -> new_ltEs(zwu43000, zwu44000, bdb, bdc, bdd) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(app(ty_Either, ee), ef), ba, cf) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(ty_Maybe, bcf)), bcb)) -> new_ltEs2(zwu43000, zwu44000, bcf) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(app(app(ty_@3, df), dg), dh)), ba), cf)) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(app(ty_@2, fc), fd))) -> new_ltEs0(zwu43001, zwu44001, fc, fd) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(ty_[], db), cf) -> new_lt1(zwu43001, zwu44001, db) new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(app(ty_@2, bde), bdf)) -> new_ltEs0(zwu43000, zwu44000, bde, bdf) new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(app(ty_@2, bde), bdf))) -> new_ltEs0(zwu43000, zwu44000, bde, bdf) new_compare22(zwu43000, zwu44000, False, ee, ef) -> new_ltEs3(zwu43000, zwu44000, ee, ef) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(ty_Maybe, ed), ba, cf) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(app(ty_Either, ee), ef)), ba), cf)) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(app(ty_Either, hb), hc)), ge)) -> new_lt3(zwu43000, zwu44000, hb, hc) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(app(app(ty_@3, gb), gc), gd), ge) -> new_lt(zwu43000, zwu44000, gb, gc, gd) new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(app(ty_Either, bea), beb)) -> new_ltEs3(zwu43000, zwu44000, bea, beb) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(ty_[], bg)) -> new_ltEs1(zwu43002, zwu44002, bg) new_compare(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_primCompAux(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, hd), hd) new_compare2(zwu43000, zwu44000, False, df, dg, dh) -> new_ltEs(zwu43000, zwu44000, df, dg, dh) new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(app(ty_@2, bba), bbb))) -> new_ltEs0(zwu43000, zwu44000, bba, bbb) new_compare3(zwu43000, zwu44000, ea, eb) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) new_lt(zwu43000, zwu44000, df, dg, dh) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) new_compare5(zwu43000, zwu44000, ee, ef) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) new_primCompAux(zwu43000, zwu44000, zwu265, app(ty_[], bab)) -> new_compare(zwu43000, zwu44000, bab) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(app(ty_Either, fh), ga)) -> new_ltEs3(zwu43001, zwu44001, fh, ga) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(app(app(ty_@3, cc), cd), ce), cf) -> new_lt(zwu43001, zwu44001, cc, cd, ce) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(app(ty_@2, be), bf))) -> new_ltEs0(zwu43002, zwu44002, be, bf) new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(app(ty_@2, gf), gg)), ge)) -> new_lt0(zwu43000, zwu44000, gf, gg) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(ty_[], ec)), ba), cf)) -> new_compare(zwu43000, zwu44000, ec) new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(app(ty_@2, cg), da), cf) -> new_lt0(zwu43001, zwu44001, cg, da) new_ltEs2(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, baf), bag), bah)) -> new_ltEs(zwu43000, zwu44000, baf, bag, bah) new_compare(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_compare(zwu43001, zwu44001, hd) new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(ty_[], bbc))) -> new_ltEs1(zwu43000, zwu44000, bbc) new_ltEs1(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_primCompAux(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, hd), hd) new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(ty_Maybe, ha), ge) -> new_lt2(zwu43000, zwu44000, ha) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(app(ty_Either, ca), cb))) -> new_ltEs3(zwu43002, zwu44002, ca, cb) new_ltEs2(Just(zwu43000), Just(zwu44000), app(app(ty_Either, bbe), bbf)) -> new_ltEs3(zwu43000, zwu44000, bbe, bbf) new_lt1(zwu43000, zwu44000, ec) -> new_compare(zwu43000, zwu44000, ec) new_primCompAux(zwu43000, zwu44000, zwu265, app(app(app(ty_@3, he), hf), hg)) -> new_compare1(zwu43000, zwu44000, he, hf, hg) new_lt0(zwu43000, zwu44000, ea, eb) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) new_ltEs3(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, bbg), bbh), bca), bcb) -> new_ltEs(zwu43000, zwu44000, bbg, bbh, bca) new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(app(app(ty_@3, bb), bc), bd))) -> new_ltEs(zwu43002, zwu44002, bb, bc, bd) The TRS R consists of the following rules: new_esEs7(Right(zwu4000), Right(zwu6000), bgb, app(ty_Ratio, bgd)) -> new_esEs9(zwu4000, zwu6000, bgd) new_ltEs19(zwu43002, zwu44002, ty_Integer) -> new_ltEs11(zwu43002, zwu44002) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primEqInt(Pos(Zero), Pos(Zero)) -> True new_compare10(zwu43000, zwu44000, True, df, dg, dh) -> LT new_primPlusNat0(Zero, Zero) -> Zero new_esEs23(zwu43001, zwu44001, app(ty_[], db)) -> new_esEs17(zwu43001, zwu44001, db) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, app(ty_Maybe, dc)) -> new_esEs6(zwu43001, zwu44001, dc) new_pePe(True, zwu264) -> True new_compare12(zwu43000, zwu44000, False, ea, eb) -> GT new_esEs22(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_compare30(zwu43000, zwu44000) -> new_compare24(zwu43000, zwu44000, new_esEs8(zwu43000, zwu44000)) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(ty_Either, cae), caf)) -> new_esEs7(zwu4000, zwu6000, cae, caf) new_lt7(zwu43000, zwu44000, ee, ef) -> new_esEs8(new_compare15(zwu43000, zwu44000, ee, ef), LT) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Float) -> new_esEs11(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_lt13(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_Either, bad), bae)) -> new_compare15(zwu43000, zwu44000, bad, bae) new_compare31(zwu43000, zwu44000, ty_Char) -> new_compare19(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_esEs11(Float(zwu4000, zwu4001), Float(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_esEs22(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Ratio, bfa), beh) -> new_esEs9(zwu4000, zwu6000, bfa) new_esEs24(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(app(app(ty_@3, cab), cac), cad)) -> new_esEs4(zwu4000, zwu6000, cab, cac, cad) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_ltEs14(zwu4300, zwu4400) -> new_fsEs(new_compare17(zwu4300, zwu4400)) new_esEs20(zwu4002, zwu6002, app(ty_Ratio, cce)) -> new_esEs9(zwu4002, zwu6002, cce) new_lt13(zwu43000, zwu44000, app(ty_Ratio, bec)) -> new_lt5(zwu43000, zwu44000, bec) new_ltEs19(zwu43002, zwu44002, app(ty_Maybe, bh)) -> new_ltEs9(zwu43002, zwu44002, bh) new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_lt13(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Ordering) -> new_lt14(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, app(app(ty_@2, chh), daa)) -> new_esEs5(zwu4001, zwu6001, chh, daa) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs18(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, app(app(app(ty_@3, bdb), bdc), bdd)) -> new_ltEs4(zwu43000, zwu44000, bdb, bdc, bdd) new_lt12(zwu43001, zwu44001, ty_Bool) -> new_lt9(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, app(ty_Maybe, fg)) -> new_ltEs9(zwu43001, zwu44001, fg) new_esEs8(GT, GT) -> True new_primEqInt(Pos(Succ(zwu40000)), Pos(Zero)) -> False new_primEqInt(Pos(Zero), Pos(Succ(zwu60000))) -> False new_esEs20(zwu4002, zwu6002, app(app(ty_@2, cdc), cdd)) -> new_esEs5(zwu4002, zwu6002, cdc, cdd) new_lt17(zwu430, zwu440) -> new_esEs8(new_compare14(zwu430, zwu440), LT) new_fsEs(zwu246) -> new_not(new_esEs8(zwu246, GT)) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_@2, bba), bbb)) -> new_ltEs8(zwu43000, zwu44000, bba, bbb) new_ltEs19(zwu43002, zwu44002, ty_Int) -> new_ltEs12(zwu43002, zwu44002) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, app(app(ty_@2, cca), ccb)) -> new_esEs5(zwu4001, zwu6001, cca, ccb) new_esEs8(EQ, EQ) -> True new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Integer, bcb) -> new_ltEs11(zwu43000, zwu44000) new_lt12(zwu43001, zwu44001, app(app(app(ty_@3, cc), cd), ce)) -> new_lt10(zwu43001, zwu44001, cc, cd, ce) new_primEqNat0(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat0(zwu40000, zwu60000) new_ltEs18(zwu4300, zwu4400, app(app(app(ty_@3, h), ba), cf)) -> new_ltEs4(zwu4300, zwu4400, h, ba, cf) new_compare28(zwu43000, zwu44000, False, ee, ef) -> new_compare110(zwu43000, zwu44000, new_ltEs17(zwu43000, zwu44000, ee, ef), ee, ef) new_ltEs20(zwu43001, zwu44001, ty_Bool) -> new_ltEs6(zwu43001, zwu44001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_esEs27(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_Ordering) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_not(True) -> False new_compare24(zwu43000, zwu44000, False) -> new_compare11(zwu43000, zwu44000, new_ltEs5(zwu43000, zwu44000)) new_compare16(zwu217, zwu218, True, bef) -> LT new_esEs6(Just(zwu4000), Just(zwu6000), ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCompAux00(zwu269, LT) -> LT new_ltEs19(zwu43002, zwu44002, ty_Bool) -> new_ltEs6(zwu43002, zwu44002) new_compare11(zwu43000, zwu44000, False) -> GT new_compare27(Nothing, Nothing, False, cfb) -> LT new_esEs26(zwu43000, zwu44000, ty_Integer) -> new_esEs15(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, app(app(ty_Either, cda), cdb)) -> new_esEs7(zwu4002, zwu6002, cda, cdb) new_esEs23(zwu43001, zwu44001, ty_Bool) -> new_esEs12(zwu43001, zwu44001) new_ltEs20(zwu43001, zwu44001, ty_Int) -> new_ltEs12(zwu43001, zwu44001) new_compare27(zwu430, zwu440, True, cfb) -> EQ new_compare26(zwu43000, zwu44000) -> new_compare210(zwu43000, zwu44000, new_esEs12(zwu43000, zwu44000)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Integer, beh) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Right(zwu44000), bda, bcb) -> True new_esEs19(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqNat0(Succ(zwu40000), Zero) -> False new_primEqNat0(Zero, Succ(zwu60000)) -> False new_esEs27(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, app(app(ty_Either, hb), hc)) -> new_lt7(zwu43000, zwu44000, hb, hc) new_lt13(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Integer) -> new_ltEs11(zwu43001, zwu44001) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCompAux00(zwu269, GT) -> GT new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Char, beh) -> new_esEs16(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Int) -> new_esEs10(zwu43001, zwu44001) new_esEs20(zwu4002, zwu6002, ty_@0) -> new_esEs13(zwu4002, zwu6002) new_esEs20(zwu4002, zwu6002, ty_Ordering) -> new_esEs8(zwu4002, zwu6002) new_ltEs6(True, True) -> True new_lt12(zwu43001, zwu44001, ty_Int) -> new_lt17(zwu43001, zwu44001) new_esEs24(zwu4000, zwu6000, app(app(app(ty_@3, cga), cgb), cgc)) -> new_esEs4(zwu4000, zwu6000, cga, cgb, cgc) new_esEs23(zwu43001, zwu44001, app(app(app(ty_@3, cc), cd), ce)) -> new_esEs4(zwu43001, zwu44001, cc, cd, ce) new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_esEs28(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, app(app(ty_Either, bea), beb)) -> new_ltEs17(zwu43000, zwu44000, bea, beb) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Float) -> new_ltEs10(zwu43000, zwu44000) new_ltEs18(zwu4300, zwu4400, ty_Double) -> new_ltEs15(zwu4300, zwu4400) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_@2, bcc), bcd), bcb) -> new_ltEs8(zwu43000, zwu44000, bcc, bcd) new_compare110(zwu43000, zwu44000, True, ee, ef) -> LT new_lt20(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs5(@2(zwu4000, zwu4001), @2(zwu6000, zwu6001), cfe, cff) -> new_asAs(new_esEs24(zwu4000, zwu6000, cfe), new_esEs25(zwu4001, zwu6001, cff)) new_esEs26(zwu43000, zwu44000, ty_Double) -> new_esEs14(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Bool, bcb) -> new_ltEs6(zwu43000, zwu44000) new_ltEs5(LT, GT) -> True new_lt13(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_ltEs8(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, ge) -> new_pePe(new_lt20(zwu43000, zwu44000, eg), new_asAs(new_esEs26(zwu43000, zwu44000, eg), new_ltEs20(zwu43001, zwu44001, ge))) new_esEs26(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCompAux0(zwu43000, zwu44000, zwu265, hd) -> new_primCompAux00(zwu265, new_compare31(zwu43000, zwu44000, hd)) new_compare8(zwu43000, zwu44000, df, dg, dh) -> new_compare23(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) new_ltEs18(zwu4300, zwu4400, ty_Bool) -> new_ltEs6(zwu4300, zwu4400) new_esEs21(zwu4000, zwu6000, app(app(ty_@2, cef), ceg)) -> new_esEs5(zwu4000, zwu6000, cef, ceg) new_esEs19(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare210(zwu43000, zwu44000, True) -> EQ new_esEs7(Left(zwu4000), Left(zwu6000), ty_Double, beh) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_@0) -> new_esEs13(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Ratio, dac)) -> new_compare7(zwu43000, zwu44000, dac) new_esEs19(zwu4001, zwu6001, app(app(app(ty_@3, cbd), cbe), cbf)) -> new_esEs4(zwu4001, zwu6001, cbd, cbe, cbf) new_pePe(False, zwu264) -> zwu264 new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Int) -> new_compare14(new_sr(zwu43000, zwu44001), new_sr(zwu44000, zwu43001)) new_lt14(zwu43000, zwu44000) -> new_esEs8(new_compare30(zwu43000, zwu44000), LT) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_Either, dbb), dbc)) -> new_esEs7(zwu4000, zwu6000, dbb, dbc) new_esEs12(False, False) -> True new_esEs21(zwu4000, zwu6000, app(ty_Ratio, cdh)) -> new_esEs9(zwu4000, zwu6000, cdh) new_compare25(zwu43000, zwu44000, True, ea, eb) -> EQ new_lt20(zwu43000, zwu44000, ty_@0) -> new_lt8(zwu43000, zwu44000) new_lt10(zwu43000, zwu44000, df, dg, dh) -> new_esEs8(new_compare8(zwu43000, zwu44000, df, dg, dh), LT) new_esEs20(zwu4002, zwu6002, ty_Int) -> new_esEs10(zwu4002, zwu6002) new_esEs18(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_Integer) -> new_ltEs11(zwu4300, zwu4400) new_esEs26(zwu43000, zwu44000, app(app(ty_@2, gf), gg)) -> new_esEs5(zwu43000, zwu44000, gf, gg) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Maybe, bcf), bcb) -> new_ltEs9(zwu43000, zwu44000, bcf) new_esEs17([], [], cdf) -> True new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_esEs22(zwu43000, zwu44000, app(ty_Maybe, ed)) -> new_esEs6(zwu43000, zwu44000, ed) new_primEqInt(Pos(Zero), Neg(Succ(zwu60000))) -> False new_primEqInt(Neg(Zero), Pos(Succ(zwu60000))) -> False new_ltEs19(zwu43002, zwu44002, app(app(ty_Either, ca), cb)) -> new_ltEs17(zwu43002, zwu44002, ca, cb) new_esEs21(zwu4000, zwu6000, ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Integer) -> new_lt15(zwu43001, zwu44001) new_ltEs18(zwu4300, zwu4400, ty_Float) -> new_ltEs10(zwu4300, zwu4400) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(app(ty_@3, dag), dah), dba)) -> new_esEs4(zwu4000, zwu6000, dag, dah, dba) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, app(app(ty_Either, dd), de)) -> new_esEs7(zwu43001, zwu44001, dd, de) new_ltEs4(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, cf) -> new_pePe(new_lt13(zwu43000, zwu44000, h), new_asAs(new_esEs22(zwu43000, zwu44000, h), new_pePe(new_lt12(zwu43001, zwu44001, ba), new_asAs(new_esEs23(zwu43001, zwu44001, ba), new_ltEs19(zwu43002, zwu44002, cf))))) new_esEs18(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, app(app(ty_Either, fh), ga)) -> new_ltEs17(zwu43001, zwu44001, fh, ga) new_ltEs6(False, False) -> True new_ltEs18(zwu4300, zwu4400, ty_Char) -> new_ltEs16(zwu4300, zwu4400) new_esEs25(zwu4001, zwu6001, ty_Ordering) -> new_esEs8(zwu4001, zwu6001) new_primEqInt(Neg(Succ(zwu40000)), Neg(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs18(zwu4000, zwu6000, app(ty_[], cba)) -> new_esEs17(zwu4000, zwu6000, cba) new_lt18(zwu43000, zwu44000) -> new_esEs8(new_compare13(zwu43000, zwu44000), LT) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_esEs7(Left(zwu4000), Left(zwu6000), ty_@0, beh) -> new_esEs13(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_compare31(zwu43000, zwu44000, ty_Double) -> new_compare13(zwu43000, zwu44000) new_ltEs20(zwu43001, zwu44001, ty_Double) -> new_ltEs15(zwu43001, zwu44001) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_Either, bfe), bff), beh) -> new_esEs7(zwu4000, zwu6000, bfe, bff) new_esEs24(zwu4000, zwu6000, app(ty_Maybe, cfg)) -> new_esEs6(zwu4000, zwu6000, cfg) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(ty_Either, bcg), bch), bcb) -> new_ltEs17(zwu43000, zwu44000, bcg, bch) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs25(zwu4001, zwu6001, app(app(ty_Either, chf), chg)) -> new_esEs7(zwu4001, zwu6001, chf, chg) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_@0) -> new_ltEs14(zwu43000, zwu44000) new_compare18(Integer(zwu43000), Integer(zwu44000)) -> new_primCmpInt(zwu43000, zwu44000) new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_esEs14(Double(zwu4000, zwu4001), Double(zwu6000, zwu6001)) -> new_esEs10(new_sr(zwu4000, zwu6001), new_sr(zwu4001, zwu6000)) new_ltEs5(EQ, EQ) -> True new_esEs18(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs18(zwu4000, zwu6000, app(ty_Ratio, caa)) -> new_esEs9(zwu4000, zwu6000, caa) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, app(ty_Ratio, dcb)) -> new_ltEs13(zwu43000, zwu44000, dcb) new_esEs18(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, app(app(app(ty_@3, cea), ceb), cec)) -> new_esEs4(zwu4000, zwu6000, cea, ceb, cec) new_lt13(zwu43000, zwu44000, app(ty_[], ec)) -> new_lt16(zwu43000, zwu44000, ec) new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_ltEs6(True, False) -> False new_esEs8(LT, LT) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_compare111(zwu43000, zwu44000, True) -> LT new_lt15(zwu43000, zwu44000) -> new_esEs8(new_compare18(zwu43000, zwu44000), LT) new_esEs20(zwu4002, zwu6002, app(app(app(ty_@3, ccf), ccg), cch)) -> new_esEs4(zwu4002, zwu6002, ccf, ccg, cch) new_esEs24(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_ltEs16(zwu4300, zwu4400) -> new_fsEs(new_compare19(zwu4300, zwu4400)) new_ltEs19(zwu43002, zwu44002, ty_@0) -> new_ltEs14(zwu43002, zwu44002) new_ltEs19(zwu43002, zwu44002, app(app(ty_@2, be), bf)) -> new_ltEs8(zwu43002, zwu44002, be, bf) new_ltEs19(zwu43002, zwu44002, ty_Char) -> new_ltEs16(zwu43002, zwu44002) new_esEs23(zwu43001, zwu44001, app(app(ty_@2, cg), da)) -> new_esEs5(zwu43001, zwu44001, cg, da) new_ltEs20(zwu43001, zwu44001, ty_Float) -> new_ltEs10(zwu43001, zwu44001) new_esEs25(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_ltEs18(zwu4300, zwu4400, app(ty_Maybe, bed)) -> new_ltEs9(zwu4300, zwu4400, bed) new_lt13(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Ordering) -> new_esEs8(zwu4000, zwu6000) new_ltEs20(zwu43001, zwu44001, ty_@0) -> new_ltEs14(zwu43001, zwu44001) new_lt20(zwu43000, zwu44000, app(ty_Maybe, ha)) -> new_lt11(zwu43000, zwu44000, ha) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Int, bcb) -> new_ltEs12(zwu43000, zwu44000) new_ltEs5(LT, LT) -> True new_ltEs20(zwu43001, zwu44001, app(app(ty_@2, fc), fd)) -> new_ltEs8(zwu43001, zwu44001, fc, fd) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_ltEs19(zwu43002, zwu44002, ty_Float) -> new_ltEs10(zwu43002, zwu44002) new_ltEs13(zwu4300, zwu4400, cfa) -> new_fsEs(new_compare7(zwu4300, zwu4400, cfa)) new_lt20(zwu43000, zwu44000, app(ty_Ratio, dbg)) -> new_lt5(zwu43000, zwu44000, dbg) new_ltEs5(LT, EQ) -> True new_esEs28(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Maybe, dae)) -> new_esEs6(zwu4000, zwu6000, dae) new_esEs6(Nothing, Just(zwu6000), dad) -> False new_esEs6(Just(zwu4000), Nothing, dad) -> False new_esEs19(zwu4001, zwu6001, app(ty_Ratio, cbc)) -> new_esEs9(zwu4001, zwu6001, cbc) new_esEs6(Nothing, Nothing, dad) -> True new_esEs24(zwu4000, zwu6000, app(app(ty_@2, cgf), cgg)) -> new_esEs5(zwu4000, zwu6000, cgf, cgg) new_esEs24(zwu4000, zwu6000, app(app(ty_Either, cgd), cge)) -> new_esEs7(zwu4000, zwu6000, cgd, cge) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_[], bbc)) -> new_ltEs7(zwu43000, zwu44000, bbc) new_lt12(zwu43001, zwu44001, app(ty_[], db)) -> new_lt16(zwu43001, zwu44001, db) new_ltEs20(zwu43001, zwu44001, ty_Char) -> new_ltEs16(zwu43001, zwu44001) new_esEs23(zwu43001, zwu44001, ty_Ordering) -> new_esEs8(zwu43001, zwu44001) new_compare27(Just(zwu4300), Just(zwu4400), False, cfb) -> new_compare16(zwu4300, zwu4400, new_ltEs18(zwu4300, zwu4400, cfb), cfb) new_esEs19(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Double, bcb) -> new_ltEs15(zwu43000, zwu44000) new_lt20(zwu43000, zwu44000, app(app(app(ty_@3, gb), gc), gd)) -> new_lt10(zwu43000, zwu44000, gb, gc, gd) new_esEs26(zwu43000, zwu44000, app(app(app(ty_@3, gb), gc), gd)) -> new_esEs4(zwu43000, zwu44000, gb, gc, gd) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, app(ty_[], bdg)) -> new_ltEs7(zwu43000, zwu44000, bdg) new_esEs26(zwu43000, zwu44000, app(app(ty_Either, hb), hc)) -> new_esEs7(zwu43000, zwu44000, hb, hc) new_esEs20(zwu4002, zwu6002, ty_Integer) -> new_esEs15(zwu4002, zwu6002) new_esEs22(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_[], bce), bcb) -> new_ltEs7(zwu43000, zwu44000, bce) new_compare31(zwu43000, zwu44000, app(ty_[], bab)) -> new_compare0(zwu43000, zwu44000, bab) new_compare10(zwu43000, zwu44000, False, df, dg, dh) -> GT new_lt5(zwu43000, zwu44000, bec) -> new_esEs8(new_compare7(zwu43000, zwu44000, bec), LT) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(app(ty_@3, bfb), bfc), bfd), beh) -> new_esEs4(zwu4000, zwu6000, bfb, bfc, bfd) new_esEs19(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_lt19(zwu43000, zwu44000) -> new_esEs8(new_compare19(zwu43000, zwu44000), LT) new_lt8(zwu43000, zwu44000) -> new_esEs8(new_compare17(zwu43000, zwu44000), LT) new_compare31(zwu43000, zwu44000, app(app(app(ty_@3, he), hf), hg)) -> new_compare8(zwu43000, zwu44000, he, hf, hg) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_sr0(Integer(zwu440000), Integer(zwu430010)) -> Integer(new_primMulInt(zwu440000, zwu430010)) new_esEs24(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_compare31(zwu43000, zwu44000, app(ty_Maybe, bac)) -> new_compare29(zwu43000, zwu44000, bac) new_compare15(zwu43000, zwu44000, ee, ef) -> new_compare28(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Char, bcb) -> new_ltEs16(zwu43000, zwu44000) new_esEs23(zwu43001, zwu44001, ty_@0) -> new_esEs13(zwu43001, zwu44001) new_primCmpNat0(zwu4300, Zero) -> GT new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_lt12(zwu43001, zwu44001, app(app(ty_Either, dd), de)) -> new_lt7(zwu43001, zwu44001, dd, de) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Bool, beh) -> new_esEs12(zwu4000, zwu6000) new_esEs25(zwu4001, zwu6001, ty_Char) -> new_esEs16(zwu4001, zwu6001) new_esEs15(Integer(zwu4000), Integer(zwu6000)) -> new_primEqInt(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(ty_Maybe, ed)) -> new_lt11(zwu43000, zwu44000, ed) new_esEs6(Just(zwu4000), Just(zwu6000), app(app(ty_@2, dbd), dbe)) -> new_esEs5(zwu4000, zwu6000, dbd, dbe) new_ltEs9(Nothing, Just(zwu44000), bed) -> True new_esEs18(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_compare0([], :(zwu44000, zwu44001), hd) -> LT new_asAs(True, zwu224) -> zwu224 new_esEs19(zwu4001, zwu6001, ty_Float) -> new_esEs11(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(ty_Maybe, cdg)) -> new_esEs6(zwu4000, zwu6000, cdg) new_esEs19(zwu4001, zwu6001, app(ty_[], ccc)) -> new_esEs17(zwu4001, zwu6001, ccc) new_esEs25(zwu4001, zwu6001, app(ty_[], dab)) -> new_esEs17(zwu4001, zwu6001, dab) new_ltEs18(zwu4300, zwu4400, app(app(ty_@2, eg), ge)) -> new_ltEs8(zwu4300, zwu4400, eg, ge) new_ltEs5(GT, LT) -> False new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Float, bcb) -> new_ltEs10(zwu43000, zwu44000) new_lt6(zwu43000, zwu44000, ea, eb) -> new_esEs8(new_compare9(zwu43000, zwu44000, ea, eb), LT) new_lt16(zwu43000, zwu44000, ec) -> new_esEs8(new_compare0(zwu43000, zwu44000, ec), LT) new_esEs21(zwu4000, zwu6000, ty_Bool) -> new_esEs12(zwu4000, zwu6000) new_esEs16(Char(zwu4000), Char(zwu6000)) -> new_primEqNat0(zwu4000, zwu6000) new_ltEs19(zwu43002, zwu44002, ty_Double) -> new_ltEs15(zwu43002, zwu44002) new_esEs24(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs26(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, app(app(app(ty_@3, df), dg), dh)) -> new_esEs4(zwu43000, zwu44000, df, dg, dh) new_lt20(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, ty_@0) -> new_ltEs14(zwu4300, zwu4400) new_compare7(:%(zwu43000, zwu43001), :%(zwu44000, zwu44001), ty_Integer) -> new_compare18(new_sr0(zwu43000, zwu44001), new_sr0(zwu44000, zwu43001)) new_primCompAux00(zwu269, EQ) -> zwu269 new_compare0([], [], hd) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) new_compare6(Float(zwu43000, Pos(zwu430010)), Float(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs12(False, True) -> False new_esEs12(True, False) -> False new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_Ratio, daf)) -> new_esEs9(zwu4000, zwu6000, daf) new_compare27(Nothing, Just(zwu4400), False, cfb) -> LT new_esEs25(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs21(zwu4000, zwu6000, app(app(ty_Either, ced), cee)) -> new_esEs7(zwu4000, zwu6000, ced, cee) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, baf), bag), bah)) -> new_ltEs4(zwu43000, zwu44000, baf, bag, bah) new_primMulNat0(Zero, Zero) -> Zero new_esEs12(True, True) -> True new_lt20(zwu43000, zwu44000, app(ty_[], gh)) -> new_lt16(zwu43000, zwu44000, gh) new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_esEs20(zwu4002, zwu6002, ty_Float) -> new_esEs11(zwu4002, zwu6002) new_compare111(zwu43000, zwu44000, False) -> GT new_esEs22(zwu43000, zwu44000, app(app(ty_@2, ea), eb)) -> new_esEs5(zwu43000, zwu44000, ea, eb) new_esEs7(Left(zwu4000), Left(zwu6000), app(app(ty_@2, bfg), bfh), beh) -> new_esEs5(zwu4000, zwu6000, bfg, bfh) new_esEs22(zwu43000, zwu44000, app(app(ty_Either, ee), ef)) -> new_esEs7(zwu43000, zwu44000, ee, ef) new_primCmpNat1(Zero, zwu4300) -> LT new_ltEs19(zwu43002, zwu44002, app(ty_Ratio, cfd)) -> new_ltEs13(zwu43002, zwu44002, cfd) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_Ordering, bcb) -> new_ltEs5(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Integer) -> new_esEs15(zwu4001, zwu6001) new_esEs20(zwu4002, zwu6002, app(ty_[], cde)) -> new_esEs17(zwu4002, zwu6002, cde) new_lt20(zwu43000, zwu44000, ty_Ordering) -> new_lt14(zwu43000, zwu44000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_Maybe, beg), beh) -> new_esEs6(zwu4000, zwu6000, beg) new_esEs19(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_esEs4(@3(zwu4000, zwu4001, zwu4002), @3(zwu6000, zwu6001, zwu6002), bhe, bhf, bhg) -> new_asAs(new_esEs18(zwu4000, zwu6000, bhe), new_asAs(new_esEs19(zwu4001, zwu6001, bhf), new_esEs20(zwu4002, zwu6002, bhg))) new_lt9(zwu43000, zwu44000) -> new_esEs8(new_compare26(zwu43000, zwu44000), LT) new_esEs21(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_primCmpNat2(Zero, Zero) -> EQ new_esEs26(zwu43000, zwu44000, app(ty_Maybe, ha)) -> new_esEs6(zwu43000, zwu44000, ha) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, app(ty_[], bhd)) -> new_esEs17(zwu4000, zwu6000, bhd) new_ltEs5(EQ, LT) -> False new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Int) -> new_ltEs12(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs21(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_compare13(Double(zwu43000, Neg(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_ltEs6(False, True) -> True new_ltEs12(zwu4300, zwu4400) -> new_fsEs(new_compare14(zwu4300, zwu4400)) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Ordering, beh) -> new_esEs8(zwu4000, zwu6000) new_ltEs18(zwu4300, zwu4400, app(ty_[], hd)) -> new_ltEs7(zwu4300, zwu4400, hd) new_esEs26(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_Integer) -> new_ltEs11(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Double) -> new_esEs14(zwu4002, zwu6002) new_esEs21(zwu4000, zwu6000, app(ty_[], ceh)) -> new_esEs17(zwu4000, zwu6000, ceh) new_primEqInt(Neg(Succ(zwu40000)), Neg(Zero)) -> False new_primEqInt(Neg(Zero), Neg(Succ(zwu60000))) -> False new_esEs25(zwu4001, zwu6001, app(ty_Maybe, cha)) -> new_esEs6(zwu4001, zwu6001, cha) new_esEs20(zwu4002, zwu6002, ty_Char) -> new_esEs16(zwu4002, zwu6002) new_ltEs18(zwu4300, zwu4400, app(app(ty_Either, bda), bcb)) -> new_ltEs17(zwu4300, zwu4400, bda, bcb) new_ltEs20(zwu43001, zwu44001, app(ty_Ratio, dbh)) -> new_ltEs13(zwu43001, zwu44001, dbh) new_lt12(zwu43001, zwu44001, app(ty_Maybe, dc)) -> new_lt11(zwu43001, zwu44001, dc) new_primEqInt(Pos(Succ(zwu40000)), Pos(Succ(zwu60000))) -> new_primEqNat0(zwu40000, zwu60000) new_esEs22(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_compare6(Float(zwu43000, Neg(zwu430010)), Float(zwu44000, Neg(zwu440010))) -> new_compare14(new_sr(zwu43000, Neg(zwu440010)), new_sr(Neg(zwu430010), zwu44000)) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, ty_Bool) -> new_ltEs6(zwu43000, zwu44000) new_compare24(zwu43000, zwu44000, True) -> EQ new_lt13(zwu43000, zwu44000, app(app(ty_Either, ee), ef)) -> new_lt7(zwu43000, zwu44000, ee, ef) new_esEs7(Left(zwu4000), Left(zwu6000), ty_Float, beh) -> new_esEs11(zwu4000, zwu6000) new_esEs7(Left(zwu4000), Left(zwu6000), app(ty_[], bga), beh) -> new_esEs17(zwu4000, zwu6000, bga) new_lt20(zwu43000, zwu44000, ty_Bool) -> new_lt9(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, app(app(ty_@2, bhb), bhc)) -> new_esEs5(zwu4000, zwu6000, bhb, bhc) new_esEs20(zwu4002, zwu6002, app(ty_Maybe, ccd)) -> new_esEs6(zwu4002, zwu6002, ccd) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, app(app(ty_Either, bgh), bha)) -> new_esEs7(zwu4000, zwu6000, bgh, bha) new_esEs26(zwu43000, zwu44000, ty_Ordering) -> new_esEs8(zwu43000, zwu44000) new_primEqInt(Pos(Succ(zwu40000)), Neg(zwu6000)) -> False new_primEqInt(Neg(Succ(zwu40000)), Pos(zwu6000)) -> False new_esEs7(Right(zwu4000), Right(zwu6000), bgb, app(ty_Maybe, bgc)) -> new_esEs6(zwu4000, zwu6000, bgc) new_esEs19(zwu4001, zwu6001, app(ty_Maybe, cbb)) -> new_esEs6(zwu4001, zwu6001, cbb) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Maybe, bbd)) -> new_ltEs9(zwu43000, zwu44000, bbd) new_lt20(zwu43000, zwu44000, app(app(ty_@2, gf), gg)) -> new_lt6(zwu43000, zwu44000, gf, gg) new_compare14(zwu43, zwu44) -> new_primCmpInt(zwu43, zwu44) new_ltEs17(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, bbg), bbh), bca), bcb) -> new_ltEs4(zwu43000, zwu44000, bbg, bbh, bca) new_esEs26(zwu43000, zwu44000, app(ty_[], gh)) -> new_esEs17(zwu43000, zwu44000, gh) new_esEs22(zwu43000, zwu44000, app(ty_Ratio, bec)) -> new_esEs9(zwu43000, zwu44000, bec) new_lt4(zwu43000, zwu44000) -> new_esEs8(new_compare6(zwu43000, zwu44000), LT) new_esEs22(zwu43000, zwu44000, ty_Bool) -> new_esEs12(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_compare19(Char(zwu43000), Char(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, app(app(app(ty_@3, df), dg), dh)) -> new_lt10(zwu43000, zwu44000, df, dg, dh) new_ltEs18(zwu4300, zwu4400, ty_Int) -> new_ltEs12(zwu4300, zwu4400) new_ltEs19(zwu43002, zwu44002, app(app(app(ty_@3, bb), bc), bd)) -> new_ltEs4(zwu43002, zwu44002, bb, bc, bd) new_ltEs15(zwu4300, zwu4400) -> new_fsEs(new_compare13(zwu4300, zwu4400)) new_ltEs7(zwu4300, zwu4400, hd) -> new_fsEs(new_compare0(zwu4300, zwu4400, hd)) new_lt12(zwu43001, zwu44001, ty_Double) -> new_lt18(zwu43001, zwu44001) new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_esEs21(zwu4000, zwu6000, ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_ltEs17(Left(zwu43000), Left(zwu44000), ty_@0, bcb) -> new_ltEs14(zwu43000, zwu44000) new_compare13(Double(zwu43000, Pos(zwu430010)), Double(zwu44000, Pos(zwu440010))) -> new_compare14(new_sr(zwu43000, Pos(zwu440010)), new_sr(Pos(zwu430010), zwu44000)) new_esEs24(zwu4000, zwu6000, ty_Float) -> new_esEs11(zwu4000, zwu6000) new_esEs23(zwu43001, zwu44001, ty_Double) -> new_esEs14(zwu43001, zwu44001) new_esEs22(zwu43000, zwu44000, ty_@0) -> new_esEs13(zwu43000, zwu44000) new_compare23(zwu43000, zwu44000, True, df, dg, dh) -> EQ new_ltEs5(EQ, GT) -> True new_lt20(zwu43000, zwu44000, ty_Double) -> new_lt18(zwu43000, zwu44000) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, app(app(app(ty_@3, bge), bgf), bgg)) -> new_esEs4(zwu4000, zwu6000, bge, bgf, bgg) new_ltEs19(zwu43002, zwu44002, app(ty_[], bg)) -> new_ltEs7(zwu43002, zwu44002, bg) new_not(False) -> True new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Double) -> new_ltEs15(zwu43000, zwu44000) new_esEs21(zwu4000, zwu6000, ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs24(zwu4000, zwu6000, app(ty_[], cgh)) -> new_esEs17(zwu4000, zwu6000, cgh) new_compare31(zwu43000, zwu44000, ty_Int) -> new_compare14(zwu43000, zwu44000) new_lt13(zwu43000, zwu44000, ty_Int) -> new_lt17(zwu43000, zwu44000) new_lt11(zwu43000, zwu44000, ed) -> new_esEs8(new_compare29(zwu43000, zwu44000, ed), LT) new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_compare0(:(zwu43000, zwu43001), [], hd) -> GT new_ltEs5(GT, GT) -> True new_compare27(Just(zwu4300), Nothing, False, cfb) -> GT new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Char) -> new_lt19(zwu43001, zwu44001) new_compare31(zwu43000, zwu44000, ty_@0) -> new_compare17(zwu43000, zwu44000) new_esEs20(zwu4002, zwu6002, ty_Bool) -> new_esEs12(zwu4002, zwu6002) new_ltEs10(zwu4300, zwu4400) -> new_fsEs(new_compare6(zwu4300, zwu4400)) new_esEs25(zwu4001, zwu6001, ty_Double) -> new_esEs14(zwu4001, zwu6001) new_ltEs20(zwu43001, zwu44001, app(ty_[], ff)) -> new_ltEs7(zwu43001, zwu44001, ff) new_ltEs18(zwu4300, zwu4400, app(ty_Ratio, cfa)) -> new_ltEs13(zwu4300, zwu4400, cfa) new_lt20(zwu43000, zwu44000, ty_Integer) -> new_lt15(zwu43000, zwu44000) new_esEs22(zwu43000, zwu44000, ty_Float) -> new_esEs11(zwu43000, zwu44000) new_compare31(zwu43000, zwu44000, app(app(ty_@2, hh), baa)) -> new_compare9(zwu43000, zwu44000, hh, baa) new_esEs18(zwu4000, zwu6000, app(ty_Maybe, bhh)) -> new_esEs6(zwu4000, zwu6000, bhh) new_ltEs9(Just(zwu43000), Just(zwu44000), ty_Char) -> new_ltEs16(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_lt13(zwu43000, zwu44000, app(app(ty_@2, ea), eb)) -> new_lt6(zwu43000, zwu44000, ea, eb) new_ltEs17(Right(zwu43000), Right(zwu44000), bda, app(app(ty_@2, bde), bdf)) -> new_ltEs8(zwu43000, zwu44000, bde, bdf) new_esEs23(zwu43001, zwu44001, app(ty_Ratio, cfc)) -> new_esEs9(zwu43001, zwu44001, cfc) new_compare23(zwu43000, zwu44000, False, df, dg, dh) -> new_compare10(zwu43000, zwu44000, new_ltEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) new_lt12(zwu43001, zwu44001, app(ty_Ratio, cfc)) -> new_lt5(zwu43001, zwu44001, cfc) new_esEs24(zwu4000, zwu6000, ty_Int) -> new_esEs10(zwu4000, zwu6000) new_esEs10(zwu400, zwu600) -> new_primEqInt(zwu400, zwu600) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_esEs25(zwu4001, zwu6001, app(app(app(ty_@3, chc), chd), che)) -> new_esEs4(zwu4001, zwu6001, chc, chd, che) new_compare0(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_primCompAux0(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, hd), hd) new_compare31(zwu43000, zwu44000, ty_Ordering) -> new_compare30(zwu43000, zwu44000) new_esEs26(zwu43000, zwu44000, app(ty_Ratio, dbg)) -> new_esEs9(zwu43000, zwu44000, dbg) new_esEs22(zwu43000, zwu44000, app(ty_[], ec)) -> new_esEs17(zwu43000, zwu44000, ec) new_esEs19(zwu4001, zwu6001, app(app(ty_Either, cbg), cbh)) -> new_esEs7(zwu4001, zwu6001, cbg, cbh) new_ltEs11(zwu4300, zwu4400) -> new_fsEs(new_compare18(zwu4300, zwu4400)) new_ltEs18(zwu4300, zwu4400, ty_Ordering) -> new_ltEs5(zwu4300, zwu4400) new_lt20(zwu43000, zwu44000, ty_Char) -> new_lt19(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(ty_Ratio, bee)) -> new_ltEs13(zwu43000, zwu44000, bee) new_lt13(zwu43000, zwu44000, ty_Float) -> new_lt4(zwu43000, zwu44000) new_esEs13(@0, @0) -> True new_ltEs17(Right(zwu43000), Right(zwu44000), bda, app(ty_Maybe, bdh)) -> new_ltEs9(zwu43000, zwu44000, bdh) new_compare11(zwu43000, zwu44000, True) -> LT new_esEs25(zwu4001, zwu6001, app(ty_Ratio, chb)) -> new_esEs9(zwu4001, zwu6001, chb) new_esEs25(zwu4001, zwu6001, ty_Int) -> new_esEs10(zwu4001, zwu6001) new_esEs23(zwu43001, zwu44001, ty_Char) -> new_esEs16(zwu43001, zwu44001) new_primEqInt(Neg(Zero), Neg(Zero)) -> True new_esEs7(Left(zwu4000), Left(zwu6000), ty_Int, beh) -> new_esEs10(zwu4000, zwu6000) new_esEs7(Right(zwu4000), Right(zwu6000), bgb, ty_@0) -> new_esEs13(zwu4000, zwu6000) new_compare210(zwu43000, zwu44000, False) -> new_compare111(zwu43000, zwu44000, new_ltEs6(zwu43000, zwu44000)) new_compare17(@0, @0) -> EQ new_compare16(zwu217, zwu218, False, bef) -> GT new_esEs22(zwu43000, zwu44000, ty_Char) -> new_esEs16(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_esEs24(zwu4000, zwu6000, ty_Char) -> new_esEs16(zwu4000, zwu6000) new_lt12(zwu43001, zwu44001, ty_Float) -> new_lt4(zwu43001, zwu44001) new_esEs26(zwu43000, zwu44000, ty_Int) -> new_esEs10(zwu43000, zwu44000) new_esEs24(zwu4000, zwu6000, app(ty_Ratio, cfh)) -> new_esEs9(zwu4000, zwu6000, cfh) new_compare31(zwu43000, zwu44000, ty_Integer) -> new_compare18(zwu43000, zwu44000) new_primEqInt(Pos(Zero), Neg(Zero)) -> True new_primEqInt(Neg(Zero), Pos(Zero)) -> True new_lt12(zwu43001, zwu44001, app(app(ty_@2, cg), da)) -> new_lt6(zwu43001, zwu44001, cg, da) new_compare29(zwu43000, zwu44000, ed) -> new_compare27(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) new_ltEs17(Right(zwu43000), Left(zwu44000), bda, bcb) -> False new_compare110(zwu43000, zwu44000, False, ee, ef) -> GT new_esEs18(zwu4000, zwu6000, app(app(ty_@2, cag), cah)) -> new_esEs5(zwu4000, zwu6000, cag, cah) new_esEs23(zwu43001, zwu44001, ty_Integer) -> new_esEs15(zwu43001, zwu44001) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Char) -> new_esEs16(zwu4000, zwu6000) new_primEqNat0(Zero, Zero) -> True new_compare31(zwu43000, zwu44000, ty_Float) -> new_compare6(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Nothing, bed) -> False new_ltEs9(Nothing, Nothing, bed) -> True new_esEs6(Just(zwu4000), Just(zwu6000), ty_@0) -> new_esEs13(zwu4000, zwu6000) new_esEs6(Just(zwu4000), Just(zwu6000), app(ty_[], dbf)) -> new_esEs17(zwu4000, zwu6000, dbf) new_ltEs19(zwu43002, zwu44002, ty_Ordering) -> new_ltEs5(zwu43002, zwu44002) new_asAs(False, zwu224) -> False new_esEs17(:(zwu4000, zwu4001), [], cdf) -> False new_esEs17([], :(zwu6000, zwu6001), cdf) -> False new_esEs6(Just(zwu4000), Just(zwu6000), ty_Double) -> new_esEs14(zwu4000, zwu6000) new_esEs19(zwu4001, zwu6001, ty_Bool) -> new_esEs12(zwu4001, zwu6001) new_lt12(zwu43001, zwu44001, ty_@0) -> new_lt8(zwu43001, zwu44001) new_ltEs17(Left(zwu43000), Left(zwu44000), app(ty_Ratio, dca), bcb) -> new_ltEs13(zwu43000, zwu44000, dca) new_ltEs5(GT, EQ) -> False new_compare9(zwu43000, zwu44000, ea, eb) -> new_compare25(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) new_ltEs20(zwu43001, zwu44001, ty_Ordering) -> new_ltEs5(zwu43001, zwu44001) new_esEs17(:(zwu4000, zwu4001), :(zwu6000, zwu6001), cdf) -> new_asAs(new_esEs21(zwu4000, zwu6000, cdf), new_esEs17(zwu4001, zwu6001, cdf)) new_compare28(zwu43000, zwu44000, True, ee, ef) -> EQ new_esEs23(zwu43001, zwu44001, ty_Float) -> new_esEs11(zwu43001, zwu44001) new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_ltEs20(zwu43001, zwu44001, app(app(app(ty_@3, eh), fa), fb)) -> new_ltEs4(zwu43001, zwu44001, eh, fa, fb) new_esEs7(Left(zwu4000), Right(zwu6000), bgb, beh) -> False new_esEs7(Right(zwu4000), Left(zwu6000), bgb, beh) -> False new_esEs9(:%(zwu4000, zwu4001), :%(zwu6000, zwu6001), dcc) -> new_asAs(new_esEs27(zwu4000, zwu6000, dcc), new_esEs28(zwu4001, zwu6001, dcc)) new_compare12(zwu43000, zwu44000, True, ea, eb) -> LT new_compare25(zwu43000, zwu44000, False, ea, eb) -> new_compare12(zwu43000, zwu44000, new_ltEs8(zwu43000, zwu44000, ea, eb), ea, eb) new_esEs6(Just(zwu4000), Just(zwu6000), ty_Integer) -> new_esEs15(zwu4000, zwu6000) new_compare31(zwu43000, zwu44000, ty_Bool) -> new_compare26(zwu43000, zwu44000) new_ltEs9(Just(zwu43000), Just(zwu44000), app(app(ty_Either, bbe), bbf)) -> new_ltEs17(zwu43000, zwu44000, bbe, bbf) The set Q consists of the following terms: new_esEs8(EQ, EQ) new_esEs6(Nothing, Nothing, x0) new_lt20(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Ordering) new_ltEs17(Left(x0), Left(x1), ty_Float, x2) new_ltEs8(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs18(x0, x1, ty_Integer) new_esEs19(x0, x1, app(ty_Maybe, x2)) new_compare24(x0, x1, False) new_esEs14(Double(x0, x1), Double(x2, x3)) new_esEs19(x0, x1, app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Int) new_esEs7(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_lt20(x0, x1, ty_Bool) new_compare31(x0, x1, ty_Bool) new_compare27(x0, x1, True, x2) new_compare111(x0, x1, False) new_lt20(x0, x1, app(ty_Ratio, x2)) new_lt20(x0, x1, ty_Integer) new_esEs24(x0, x1, app(ty_[], x2)) new_ltEs18(x0, x1, ty_Float) new_compare30(x0, x1) new_esEs21(x0, x1, ty_Ordering) new_esEs20(x0, x1, app(ty_Ratio, x2)) new_compare16(x0, x1, True, x2) new_compare10(x0, x1, False, x2, x3, x4) new_esEs28(x0, x1, ty_Int) new_primCompAux0(x0, x1, x2, x3) new_ltEs20(x0, x1, ty_Int) new_lt6(x0, x1, x2, x3) new_lt20(x0, x1, app(app(ty_Either, x2), x3)) new_fsEs(x0) new_primEqInt(Pos(Zero), Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_primEqInt(Neg(Succ(x0)), Neg(Zero)) new_esEs17(:(x0, x1), :(x2, x3), x4) new_esEs6(Nothing, Just(x0), x1) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_ltEs17(Right(x0), Right(x1), x2, ty_Double) new_compare31(x0, x1, ty_Integer) new_ltEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, ty_Char) new_esEs23(x0, x1, ty_Ordering) new_esEs18(x0, x1, ty_Bool) new_ltEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_ltEs17(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_ltEs20(x0, x1, ty_Double) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_esEs23(x0, x1, ty_Double) new_compare17(@0, @0) new_esEs22(x0, x1, ty_Double) new_esEs25(x0, x1, app(app(ty_Either, x2), x3)) new_esEs23(x0, x1, ty_Int) new_lt20(x0, x1, app(ty_Maybe, x2)) new_esEs21(x0, x1, ty_Double) new_primEqInt(Neg(Zero), Neg(Zero)) new_ltEs19(x0, x1, app(ty_[], x2)) new_esEs6(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs21(x0, x1, ty_Char) new_esEs25(x0, x1, app(ty_Maybe, x2)) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_lt13(x0, x1, app(app(ty_Either, x2), x3)) new_primMulNat0(Succ(x0), Zero) new_esEs21(x0, x1, app(ty_Maybe, x2)) new_esEs12(False, True) new_esEs12(True, False) new_ltEs5(LT, GT) new_ltEs5(GT, LT) new_esEs10(x0, x1) new_ltEs19(x0, x1, ty_Double) new_esEs22(x0, x1, ty_Ordering) new_lt12(x0, x1, app(ty_Maybe, x2)) new_ltEs20(x0, x1, app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(app(ty_Either, x2), x3)) new_compare7(:%(x0, x1), :%(x2, x3), ty_Int) new_esEs25(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_Either, x3), x4)) new_ltEs9(Just(x0), Just(x1), ty_Ordering) new_esEs18(x0, x1, app(ty_Maybe, x2)) new_ltEs9(Nothing, Just(x0), x1) new_ltEs17(Right(x0), Right(x1), x2, ty_Int) new_esEs21(x0, x1, ty_@0) new_primCmpNat0(x0, Succ(x1)) new_ltEs17(Right(x0), Right(x1), x2, app(ty_[], x3)) new_ltEs9(Just(x0), Just(x1), app(ty_Maybe, x2)) new_ltEs20(x0, x1, app(app(ty_@2, x2), x3)) new_compare28(x0, x1, False, x2, x3) new_lt13(x0, x1, ty_Float) new_ltEs9(Just(x0), Just(x1), ty_Integer) new_esEs25(x0, x1, app(app(ty_@2, x2), x3)) new_esEs7(Left(x0), Left(x1), ty_Integer, x2) new_primEqInt(Pos(Zero), Neg(Zero)) new_primEqInt(Neg(Zero), Pos(Zero)) new_compare27(Just(x0), Nothing, False, x1) new_esEs25(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs27(x0, x1, ty_Int) new_ltEs10(x0, x1) new_esEs19(x0, x1, ty_Float) new_esEs21(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs7(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt12(x0, x1, app(app(ty_@2, x2), x3)) new_compare27(Just(x0), Just(x1), False, x2) new_esEs6(Just(x0), Just(x1), app(ty_Maybe, x2)) new_lt12(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare18(Integer(x0), Integer(x1)) new_primCompAux00(x0, EQ) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_esEs7(Right(x0), Right(x1), x2, ty_Integer) new_esEs6(Just(x0), Just(x1), app(ty_Ratio, x2)) new_ltEs18(x0, x1, app(ty_Ratio, x2)) new_esEs24(x0, x1, ty_Float) new_primMulInt(Pos(x0), Pos(x1)) new_compare210(x0, x1, False) new_compare0([], :(x0, x1), x2) new_ltEs20(x0, x1, app(ty_Maybe, x2)) new_esEs19(x0, x1, ty_@0) new_esEs20(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), ty_Bool, x2) new_primCmpNat1(Zero, x0) new_ltEs15(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Pos(x3))) new_lt12(x0, x1, app(ty_Ratio, x2)) new_compare12(x0, x1, True, x2, x3) new_compare8(x0, x1, x2, x3, x4) new_esEs20(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_@0) new_ltEs20(x0, x1, ty_Bool) new_lt5(x0, x1, x2) new_ltEs14(x0, x1) new_compare27(Nothing, Nothing, False, x0) new_esEs6(Just(x0), Just(x1), ty_Integer) new_esEs26(x0, x1, ty_Int) new_ltEs17(Left(x0), Left(x1), app(ty_[], x2), x3) new_compare31(x0, x1, ty_Float) new_lt20(x0, x1, ty_Float) new_compare24(x0, x1, True) new_ltEs17(Left(x0), Right(x1), x2, x3) new_ltEs17(Right(x0), Left(x1), x2, x3) new_esEs26(x0, x1, ty_Char) new_compare31(x0, x1, ty_Ordering) new_primPlusNat0(Succ(x0), Succ(x1)) new_lt20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, ty_Bool) new_lt13(x0, x1, ty_Integer) new_compare13(Double(x0, Pos(x1)), Double(x2, Neg(x3))) new_compare13(Double(x0, Neg(x1)), Double(x2, Pos(x3))) new_esEs17([], [], x0) new_asAs(False, x0) new_ltEs17(Left(x0), Left(x1), ty_Integer, x2) new_ltEs5(EQ, GT) new_ltEs5(GT, EQ) new_esEs26(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare28(x0, x1, True, x2, x3) new_esEs19(x0, x1, ty_Bool) new_primPlusNat0(Zero, Succ(x0)) new_esEs26(x0, x1, ty_Float) new_primCompAux00(x0, LT) new_esEs26(x0, x1, app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, ty_Bool) new_ltEs17(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs23(x0, x1, ty_Char) new_compare15(x0, x1, x2, x3) new_esEs19(x0, x1, app(ty_Ratio, x2)) new_esEs8(GT, GT) new_lt19(x0, x1) new_esEs26(x0, x1, ty_Ordering) new_ltEs17(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primCmpInt(Neg(Zero), Neg(Zero)) new_esEs26(x0, x1, app(ty_Maybe, x2)) new_compare25(x0, x1, True, x2, x3) new_esEs18(x0, x1, ty_@0) new_esEs23(x0, x1, ty_Integer) new_esEs6(Just(x0), Just(x1), ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_esEs8(LT, LT) new_lt7(x0, x1, x2, x3) new_esEs22(x0, x1, app(app(ty_Either, x2), x3)) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_esEs25(x0, x1, ty_Float) new_compare7(:%(x0, x1), :%(x2, x3), ty_Integer) new_compare29(x0, x1, x2) new_sr(x0, x1) new_esEs7(Left(x0), Left(x1), ty_Double, x2) new_ltEs17(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) new_ltEs9(Just(x0), Just(x1), ty_Double) new_esEs19(x0, x1, ty_Integer) new_ltEs20(x0, x1, app(ty_[], x2)) new_esEs16(Char(x0), Char(x1)) new_ltEs17(Left(x0), Left(x1), ty_Char, x2) new_esEs22(x0, x1, ty_@0) new_lt13(x0, x1, ty_Bool) new_ltEs6(False, False) new_esEs18(x0, x1, ty_Double) new_primEqInt(Pos(Succ(x0)), Pos(Zero)) new_lt13(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs20(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Right(x0), Right(x1), x2, ty_@0) new_lt18(x0, x1) new_lt20(x0, x1, ty_Char) new_esEs20(x0, x1, app(app(ty_Either, x2), x3)) new_primEqInt(Neg(Succ(x0)), Neg(Succ(x1))) new_esEs6(Just(x0), Just(x1), app(ty_[], x2)) new_ltEs9(Just(x0), Just(x1), ty_@0) new_primMulInt(Neg(x0), Neg(x1)) new_ltEs9(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_compare31(x0, x1, ty_Int) new_esEs26(x0, x1, ty_Bool) new_lt12(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_@0, x2) new_esEs17([], :(x0, x1), x2) new_esEs24(x0, x1, ty_Integer) new_compare31(x0, x1, ty_Char) new_esEs22(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs23(x0, x1, app(ty_[], x2)) new_ltEs20(x0, x1, ty_Float) new_lt20(x0, x1, ty_Int) new_esEs19(x0, x1, ty_Ordering) new_esEs25(x0, x1, ty_Char) new_lt13(x0, x1, app(ty_Maybe, x2)) new_esEs20(x0, x1, ty_Bool) new_ltEs17(Left(x0), Left(x1), ty_Ordering, x2) new_primPlusNat0(Succ(x0), Zero) new_esEs26(x0, x1, app(ty_Ratio, x2)) new_primMulNat0(Zero, Succ(x0)) new_lt17(x0, x1) new_lt12(x0, x1, ty_@0) new_ltEs9(Just(x0), Just(x1), app(app(ty_@2, x2), x3)) new_esEs24(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_lt13(x0, x1, ty_Char) new_esEs26(x0, x1, ty_Integer) new_lt13(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs19(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_primMulNat0(Zero, Zero) new_esEs23(x0, x1, ty_Float) new_esEs24(x0, x1, ty_Int) new_esEs19(x0, x1, app(ty_[], x2)) new_esEs7(Right(x0), Right(x1), x2, app(ty_[], x3)) new_esEs25(x0, x1, ty_Int) new_ltEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_ltEs17(Left(x0), Left(x1), ty_Double, x2) new_esEs24(x0, x1, ty_Ordering) new_primEqInt(Neg(Zero), Neg(Succ(x0))) new_lt10(x0, x1, x2, x3, x4) new_esEs24(x0, x1, app(ty_Maybe, x2)) new_lt12(x0, x1, ty_Bool) new_esEs23(x0, x1, app(ty_Ratio, x2)) new_primEqNat0(Succ(x0), Zero) new_esEs18(x0, x1, app(app(ty_@2, x2), x3)) new_primPlusNat1(Succ(x0), x1) new_esEs4(@3(x0, x1, x2), @3(x3, x4, x5), x6, x7, x8) new_lt4(x0, x1) new_ltEs17(Left(x0), Left(x1), ty_Int, x2) new_primEqInt(Pos(Zero), Neg(Succ(x0))) new_primEqInt(Neg(Zero), Pos(Succ(x0))) new_esEs18(x0, x1, app(ty_[], x2)) new_esEs26(x0, x1, app(ty_[], x2)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_esEs6(Just(x0), Just(x1), app(app(app(ty_@3, x2), x3), x4)) new_primCmpNat1(Succ(x0), x1) new_esEs24(x0, x1, ty_Char) new_esEs18(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(ty_[], x2)) new_ltEs18(x0, x1, ty_Ordering) new_esEs7(Right(x0), Right(x1), x2, ty_Double) new_lt13(x0, x1, app(ty_Ratio, x2)) new_ltEs13(x0, x1, x2) new_primCmpNat2(Zero, Zero) new_esEs7(Left(x0), Left(x1), app(ty_Ratio, x2), x3) new_esEs6(Just(x0), Just(x1), ty_Int) new_lt13(x0, x1, ty_Ordering) new_ltEs9(Just(x0), Just(x1), app(ty_[], x2)) new_esEs20(x0, x1, ty_@0) new_esEs6(Just(x0), Just(x1), ty_Double) new_ltEs18(x0, x1, ty_Double) new_ltEs18(x0, x1, ty_Int) new_esEs23(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs24(x0, x1, ty_Double) new_esEs6(Just(x0), Just(x1), ty_Char) new_esEs26(x0, x1, ty_@0) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_lt13(x0, x1, ty_Int) new_esEs25(x0, x1, ty_Double) new_lt16(x0, x1, x2) new_primPlusNat0(Zero, Zero) new_ltEs18(x0, x1, app(ty_Maybe, x2)) new_esEs24(x0, x1, app(app(ty_Either, x2), x3)) new_esEs22(x0, x1, app(app(ty_@2, x2), x3)) new_compare27(Nothing, Just(x0), False, x1) new_esEs23(x0, x1, app(ty_Maybe, x2)) new_not(True) new_lt12(x0, x1, ty_Integer) new_ltEs19(x0, x1, ty_@0) new_compare11(x0, x1, True) new_esEs21(x0, x1, app(app(ty_@2, x2), x3)) new_lt8(x0, x1) new_ltEs19(x0, x1, ty_Float) new_esEs7(Left(x0), Left(x1), ty_Ordering, x2) new_esEs11(Float(x0, x1), Float(x2, x3)) new_esEs22(x0, x1, app(ty_[], x2)) new_esEs7(Left(x0), Right(x1), x2, x3) new_esEs7(Right(x0), Left(x1), x2, x3) new_lt13(x0, x1, ty_@0) new_esEs19(x0, x1, ty_Int) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_esEs12(False, False) new_esEs25(x0, x1, ty_Bool) new_esEs21(x0, x1, app(ty_Ratio, x2)) new_esEs6(Just(x0), Just(x1), ty_Bool) new_pePe(False, x0) new_esEs6(Just(x0), Just(x1), ty_Ordering) new_esEs22(x0, x1, ty_Bool) new_compare19(Char(x0), Char(x1)) new_esEs19(x0, x1, ty_Double) new_compare31(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs25(x0, x1, ty_Ordering) new_pePe(True, x0) new_primEqNat0(Zero, Succ(x0)) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_ltEs17(Right(x0), Right(x1), x2, ty_@0) new_compare9(x0, x1, x2, x3) new_ltEs20(x0, x1, ty_Integer) new_esEs19(x0, x1, ty_Char) new_compare23(x0, x1, False, x2, x3, x4) new_esEs24(x0, x1, ty_@0) new_lt12(x0, x1, ty_Ordering) new_esEs22(x0, x1, ty_Integer) new_primEqInt(Pos(Zero), Pos(Succ(x0))) new_esEs20(x0, x1, app(app(ty_@2, x2), x3)) new_primCmpNat2(Succ(x0), Zero) new_compare31(x0, x1, app(ty_Maybe, x2)) new_esEs23(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs18(x0, x1, app(app(ty_@2, x2), x3)) new_lt11(x0, x1, x2) new_esEs19(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare13(Double(x0, Neg(x1)), Double(x2, Neg(x3))) new_esEs21(x0, x1, ty_Float) new_esEs7(Right(x0), Right(x1), x2, ty_Ordering) new_ltEs6(True, True) new_esEs25(x0, x1, ty_Integer) new_lt20(x0, x1, ty_Ordering) new_ltEs17(Right(x0), Right(x1), x2, ty_Float) new_compare110(x0, x1, False, x2, x3) new_lt20(x0, x1, app(app(ty_@2, x2), x3)) new_esEs18(x0, x1, ty_Ordering) new_ltEs5(LT, LT) new_primEqInt(Pos(Succ(x0)), Pos(Succ(x1))) new_compare31(x0, x1, app(app(ty_Either, x2), x3)) new_esEs28(x0, x1, ty_Integer) new_ltEs16(x0, x1) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs26(x0, x1, app(app(ty_Either, x2), x3)) new_esEs7(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_lt14(x0, x1) new_compare6(Float(x0, Pos(x1)), Float(x2, Neg(x3))) new_compare6(Float(x0, Neg(x1)), Float(x2, Pos(x3))) new_primCompAux00(x0, GT) new_compare14(x0, x1) new_ltEs19(x0, x1, ty_Char) new_compare6(Float(x0, Neg(x1)), Float(x2, Neg(x3))) new_ltEs9(Just(x0), Nothing, x1) new_esEs7(Right(x0), Right(x1), x2, app(ty_Ratio, x3)) new_esEs20(x0, x1, ty_Float) new_primEqInt(Pos(Succ(x0)), Neg(x1)) new_primEqInt(Neg(Succ(x0)), Pos(x1)) new_esEs18(x0, x1, ty_Char) new_lt12(x0, x1, app(ty_[], x2)) new_primPlusNat1(Zero, x0) new_esEs23(x0, x1, ty_@0) new_esEs21(x0, x1, ty_Integer) new_esEs21(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs5(LT, EQ) new_ltEs5(EQ, LT) new_esEs9(:%(x0, x1), :%(x2, x3), x4) new_ltEs5(GT, GT) new_ltEs19(x0, x1, app(app(ty_Either, x2), x3)) new_esEs22(x0, x1, app(ty_Maybe, x2)) new_compare31(x0, x1, app(ty_Ratio, x2)) new_esEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare16(x0, x1, False, x2) new_ltEs12(x0, x1) new_ltEs20(x0, x1, ty_@0) new_lt12(x0, x1, ty_Float) new_ltEs19(x0, x1, ty_Int) new_primCmpNat0(x0, Zero) new_esEs7(Right(x0), Right(x1), x2, app(app(ty_@2, x3), x4)) new_esEs18(x0, x1, app(ty_Ratio, x2)) new_esEs8(LT, GT) new_esEs8(GT, LT) new_ltEs19(x0, x1, app(ty_Maybe, x2)) new_ltEs18(x0, x1, ty_Bool) new_ltEs9(Just(x0), Just(x1), app(ty_Ratio, x2)) new_esEs21(x0, x1, ty_Bool) new_esEs22(x0, x1, app(ty_Ratio, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Char) new_ltEs19(x0, x1, app(ty_Ratio, x2)) new_esEs20(x0, x1, ty_Int) new_esEs25(x0, x1, app(ty_Ratio, x2)) new_ltEs17(Right(x0), Right(x1), x2, ty_Char) new_compare31(x0, x1, app(ty_[], x2)) new_ltEs17(Left(x0), Left(x1), app(app(ty_Either, x2), x3), x4) new_lt12(x0, x1, app(app(ty_Either, x2), x3)) new_esEs22(x0, x1, ty_Int) new_primCmpNat2(Zero, Succ(x0)) new_esEs7(Left(x0), Left(x1), app(ty_[], x2), x3) new_compare13(Double(x0, Pos(x1)), Double(x2, Pos(x3))) new_primMulNat0(Succ(x0), Succ(x1)) new_esEs22(x0, x1, ty_Char) new_ltEs17(Right(x0), Right(x1), x2, ty_Bool) new_ltEs17(Left(x0), Left(x1), ty_@0, x2) new_compare111(x0, x1, True) new_compare0(:(x0, x1), :(x2, x3), x4) new_compare110(x0, x1, True, x2, x3) new_esEs20(x0, x1, ty_Ordering) new_ltEs18(x0, x1, ty_Char) new_esEs20(x0, x1, app(ty_Maybe, x2)) new_esEs7(Right(x0), Right(x1), x2, ty_Bool) new_esEs6(Just(x0), Just(x1), app(app(ty_Either, x2), x3)) new_ltEs11(x0, x1) new_compare0([], [], x0) new_compare23(x0, x1, True, x2, x3, x4) new_lt13(x0, x1, ty_Double) new_lt9(x0, x1) new_compare11(x0, x1, False) new_esEs25(x0, x1, ty_@0) new_primEqNat0(Zero, Zero) new_compare25(x0, x1, False, x2, x3) new_lt13(x0, x1, app(ty_[], x2)) new_esEs12(True, True) new_ltEs18(x0, x1, ty_Integer) new_not(False) new_ltEs19(x0, x1, ty_Bool) new_compare210(x0, x1, True) new_esEs22(x0, x1, ty_Float) new_esEs20(x0, x1, ty_Char) new_esEs5(@2(x0, x1), @2(x2, x3), x4, x5) new_esEs7(Left(x0), Left(x1), ty_Bool, x2) new_esEs15(Integer(x0), Integer(x1)) new_esEs21(x0, x1, app(ty_[], x2)) new_esEs24(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_ltEs19(x0, x1, ty_Ordering) new_compare26(x0, x1) new_esEs6(Just(x0), Nothing, x1) new_esEs6(Just(x0), Just(x1), ty_Float) new_esEs7(Left(x0), Left(x1), ty_Float, x2) new_esEs18(x0, x1, ty_Float) new_lt15(x0, x1) new_ltEs9(Just(x0), Just(x1), ty_Bool) new_esEs7(Left(x0), Left(x1), app(ty_Maybe, x2), x3) new_esEs7(Right(x0), Right(x1), x2, ty_Int) new_ltEs6(True, False) new_ltEs6(False, True) new_esEs17(:(x0, x1), [], x2) new_esEs20(x0, x1, ty_Integer) new_ltEs18(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs26(x0, x1, ty_Double) new_ltEs9(Just(x0), Just(x1), ty_Float) new_primEqNat0(Succ(x0), Succ(x1)) new_asAs(True, x0) new_ltEs5(EQ, EQ) new_compare31(x0, x1, ty_@0) new_ltEs17(Right(x0), Right(x1), x2, app(app(app(ty_@3, x3), x4), x5)) new_lt20(x0, x1, ty_@0) new_compare0(:(x0, x1), [], x2) new_lt20(x0, x1, ty_Double) new_esEs7(Left(x0), Left(x1), ty_Char, x2) new_esEs20(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_compare31(x0, x1, app(app(ty_@2, x2), x3)) new_ltEs9(Just(x0), Just(x1), ty_Char) new_compare10(x0, x1, True, x2, x3, x4) new_ltEs19(x0, x1, ty_Integer) new_ltEs7(x0, x1, x2) new_esEs18(x0, x1, ty_Int) new_esEs7(Left(x0), Left(x1), app(app(app(ty_@3, x2), x3), x4), x5) new_lt12(x0, x1, ty_Int) new_ltEs17(Right(x0), Right(x1), x2, ty_Ordering) new_esEs24(x0, x1, app(ty_Ratio, x2)) new_compare31(x0, x1, ty_Double) new_esEs19(x0, x1, app(app(ty_Either, x2), x3)) new_ltEs17(Right(x0), Right(x1), x2, app(ty_Maybe, x3)) new_ltEs17(Right(x0), Right(x1), x2, ty_Integer) new_compare12(x0, x1, False, x2, x3) new_esEs7(Right(x0), Right(x1), x2, ty_Float) new_esEs13(@0, @0) new_lt12(x0, x1, ty_Char) new_esEs7(Left(x0), Left(x1), ty_Int, x2) new_esEs27(x0, x1, ty_Integer) new_sr0(Integer(x0), Integer(x1)) new_ltEs9(Just(x0), Just(x1), ty_Int) new_ltEs9(Nothing, Nothing, x0) new_esEs7(Left(x0), Left(x1), app(app(ty_@2, x2), x3), x4) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_compare4(zwu43000, zwu44000, ed) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4 *new_compare2(zwu43000, zwu44000, False, df, dg, dh) -> new_ltEs(zwu43000, zwu44000, df, dg, dh) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3, 5 >= 4, 6 >= 5 *new_lt1(zwu43000, zwu44000, ec) -> new_compare(zwu43000, zwu44000, ec) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3 *new_ltEs1(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_primCompAux(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, hd), hd) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 4 *new_ltEs1(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_compare(zwu43001, zwu44001, hd) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_lt3(zwu43000, zwu44000, ee, ef) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(app(app(ty_@3, bb), bc), bd)) -> new_ltEs(zwu43002, zwu44002, bb, bc, bd) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4, 5 > 5 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(ty_Maybe, ed), ba, cf) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) The graph contains the following edges 1 > 1, 2 > 2, 3 > 4 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(app(ty_@2, be), bf)) -> new_ltEs0(zwu43002, zwu44002, be, bf) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(app(ty_Either, ca), cb)) -> new_ltEs3(zwu43002, zwu44002, ca, cb) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3, 5 > 4 *new_ltEs2(Just(zwu43000), Just(zwu44000), app(app(app(ty_@3, baf), bag), bah)) -> new_ltEs(zwu43000, zwu44000, baf, bag, bah) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_ltEs2(Just(zwu43000), Just(zwu44000), app(app(ty_@2, bba), bbb)) -> new_ltEs0(zwu43000, zwu44000, bba, bbb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs2(Just(zwu43000), Just(zwu44000), app(app(ty_Either, bbe), bbf)) -> new_ltEs3(zwu43000, zwu44000, bbe, bbf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(app(app(ty_@3, eh), fa), fb)) -> new_ltEs(zwu43001, zwu44001, eh, fa, fb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(app(ty_@2, fc), fd)) -> new_ltEs0(zwu43001, zwu44001, fc, fd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(app(ty_Either, fh), ga)) -> new_ltEs3(zwu43001, zwu44001, fh, ga) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(ty_Maybe, bh)) -> new_ltEs2(zwu43002, zwu44002, bh) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_ltEs2(Just(zwu43000), Just(zwu44000), app(ty_Maybe, bbd)) -> new_ltEs2(zwu43000, zwu44000, bbd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs2(Just(zwu43000), Just(zwu44000), app(ty_[], bbc)) -> new_ltEs1(zwu43000, zwu44000, bbc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(ty_Maybe, fg)) -> new_ltEs2(zwu43001, zwu44001, fg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare22(zwu43000, zwu44000, False, ee, ef) -> new_ltEs3(zwu43000, zwu44000, ee, ef) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3, 5 >= 4 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(app(ty_Either, dd), de), cf) -> new_lt3(zwu43001, zwu44001, dd, de) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(app(ty_Either, hb), hc), ge) -> new_lt3(zwu43000, zwu44000, hb, hc) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_compare(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_primCompAux(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, hd), hd) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 4 *new_compare21(Just(:(zwu43000, zwu43001)), Just(:(zwu44000, zwu44001)), False, app(ty_[], hd)) -> new_primCompAux(zwu43000, zwu44000, new_compare0(zwu43001, zwu44001, hd), hd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4 *new_compare(:(zwu43000, zwu43001), :(zwu44000, zwu44001), hd) -> new_compare(zwu43001, zwu44001, hd) The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 *new_primCompAux(zwu43000, zwu44000, zwu265, app(app(app(ty_@3, he), hf), hg)) -> new_compare1(zwu43000, zwu44000, he, hf, hg) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4, 4 > 5 *new_lt2(zwu43000, zwu44000, ed) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(ty_Maybe, ed)), ba), cf)) -> new_compare21(zwu43000, zwu44000, new_esEs6(zwu43000, zwu44000, ed), ed) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4 *new_compare20(zwu43000, zwu44000, False, ea, eb) -> new_ltEs0(zwu43000, zwu44000, ea, eb) The graph contains the following edges 1 >= 1, 2 >= 2, 4 >= 3, 5 >= 4 *new_primCompAux(zwu43000, zwu44000, zwu265, app(ty_Maybe, bac)) -> new_compare4(zwu43000, zwu44000, bac) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3 *new_compare3(zwu43000, zwu44000, ea, eb) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_lt0(zwu43000, zwu44000, ea, eb) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_lt(zwu43000, zwu44000, df, dg, dh) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5, 5 >= 6 *new_compare5(zwu43000, zwu44000, ee, ef) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5 *new_compare1(zwu43000, zwu44000, df, dg, dh) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 4, 4 >= 5, 5 >= 6 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, ba, app(ty_[], bg)) -> new_ltEs1(zwu43002, zwu44002, bg) The graph contains the following edges 1 > 1, 2 > 2, 5 > 3 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), eg, app(ty_[], ff)) -> new_ltEs1(zwu43001, zwu44001, ff) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(app(ty_@2, ea), eb), ba, cf) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) The graph contains the following edges 1 > 1, 2 > 2, 3 > 4, 3 > 5 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(app(ty_@2, ea), eb)), ba), cf)) -> new_compare20(zwu43000, zwu44000, new_esEs5(zwu43000, zwu44000, ea, eb), ea, eb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(ty_Maybe, dc), cf) -> new_lt2(zwu43001, zwu44001, dc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(ty_Maybe, ha), ge) -> new_lt2(zwu43000, zwu44000, ha) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(app(ty_Either, ee), ef), ba, cf) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) The graph contains the following edges 1 > 1, 2 > 2, 3 > 4, 3 > 5 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(app(ty_Either, ee), ef)), ba), cf)) -> new_compare22(zwu43000, zwu44000, new_esEs7(zwu43000, zwu44000, ee, ef), ee, ef) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(ty_[], ec), ba, cf) -> new_compare(zwu43000, zwu44000, ec) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_primCompAux(zwu43000, zwu44000, zwu265, app(ty_[], bab)) -> new_compare(zwu43000, zwu44000, bab) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), app(app(app(ty_@3, df), dg), dh), ba, cf) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 4, 3 > 5, 3 > 6 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(app(app(ty_@3, df), dg), dh)), ba), cf)) -> new_compare2(zwu43000, zwu44000, new_esEs4(zwu43000, zwu44000, df, dg, dh), df, dg, dh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 4, 4 > 5, 4 > 6 *new_primCompAux(zwu43000, zwu44000, zwu265, app(app(ty_@2, hh), baa)) -> new_compare3(zwu43000, zwu44000, hh, baa) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4 *new_primCompAux(zwu43000, zwu44000, zwu265, app(app(ty_Either, bad), bae)) -> new_compare5(zwu43000, zwu44000, bad, bae) The graph contains the following edges 1 >= 1, 2 >= 2, 4 > 3, 4 > 4 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(app(app(ty_@3, cc), cd), ce), cf) -> new_lt(zwu43001, zwu44001, cc, cd, ce) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(app(app(ty_@3, gb), gc), gd), ge) -> new_lt(zwu43000, zwu44000, gb, gc, gd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(ty_[], db), cf) -> new_lt1(zwu43001, zwu44001, db) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs(@3(zwu43000, zwu43001, zwu43002), @3(zwu44000, zwu44001, zwu44002), h, app(app(ty_@2, cg), da), cf) -> new_lt0(zwu43001, zwu44001, cg, da) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(ty_[], gh), ge) -> new_lt1(zwu43000, zwu44000, gh) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs0(@2(zwu43000, zwu43001), @2(zwu44000, zwu44001), app(app(ty_@2, gf), gg), ge) -> new_lt0(zwu43000, zwu44000, gf, gg) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(app(app(ty_@3, bdb), bdc), bdd)) -> new_ltEs(zwu43000, zwu44000, bdb, bdc, bdd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs3(Left(zwu43000), Left(zwu44000), app(app(app(ty_@3, bbg), bbh), bca), bcb) -> new_ltEs(zwu43000, zwu44000, bbg, bbh, bca) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4, 3 > 5 *new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(app(app(ty_@3, bbg), bbh), bca)), bcb)) -> new_ltEs(zwu43000, zwu44000, bbg, bbh, bca) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(app(app(ty_@3, baf), bag), bah))) -> new_ltEs(zwu43000, zwu44000, baf, bag, bah) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(app(app(ty_@3, bdb), bdc), bdd))) -> new_ltEs(zwu43000, zwu44000, bdb, bdc, bdd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(app(app(ty_@3, eh), fa), fb))) -> new_ltEs(zwu43001, zwu44001, eh, fa, fb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(app(app(ty_@3, bb), bc), bd))) -> new_ltEs(zwu43002, zwu44002, bb, bc, bd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_ltEs3(Left(zwu43000), Left(zwu44000), app(app(ty_@2, bcc), bcd), bcb) -> new_ltEs0(zwu43000, zwu44000, bcc, bcd) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(app(ty_@2, bde), bdf)) -> new_ltEs0(zwu43000, zwu44000, bde, bdf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs3(Left(zwu43000), Left(zwu44000), app(app(ty_Either, bcg), bch), bcb) -> new_ltEs3(zwu43000, zwu44000, bcg, bch) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3, 3 > 4 *new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(app(ty_Either, bea), beb)) -> new_ltEs3(zwu43000, zwu44000, bea, beb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_ltEs3(Left(zwu43000), Left(zwu44000), app(ty_Maybe, bcf), bcb) -> new_ltEs2(zwu43000, zwu44000, bcf) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(ty_Maybe, bdh)) -> new_ltEs2(zwu43000, zwu44000, bdh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs3(Right(zwu43000), Right(zwu44000), bda, app(ty_[], bdg)) -> new_ltEs1(zwu43000, zwu44000, bdg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_ltEs3(Left(zwu43000), Left(zwu44000), app(ty_[], bce), bcb) -> new_ltEs1(zwu43000, zwu44000, bce) The graph contains the following edges 1 > 1, 2 > 2, 3 > 3 *new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(app(ty_@2, bcc), bcd)), bcb)) -> new_ltEs0(zwu43000, zwu44000, bcc, bcd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(app(ty_@2, fc), fd))) -> new_ltEs0(zwu43001, zwu44001, fc, fd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(app(ty_@2, bde), bdf))) -> new_ltEs0(zwu43000, zwu44000, bde, bdf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(app(ty_@2, bba), bbb))) -> new_ltEs0(zwu43000, zwu44000, bba, bbb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(app(ty_@2, be), bf))) -> new_ltEs0(zwu43002, zwu44002, be, bf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(app(ty_Either, bbe), bbf))) -> new_ltEs3(zwu43000, zwu44000, bbe, bbf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(app(ty_Either, bea), beb))) -> new_ltEs3(zwu43000, zwu44000, bea, beb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(app(ty_Either, fh), ga))) -> new_ltEs3(zwu43001, zwu44001, fh, ga) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(app(ty_Either, bcg), bch)), bcb)) -> new_ltEs3(zwu43000, zwu44000, bcg, bch) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(app(ty_Either, ca), cb))) -> new_ltEs3(zwu43002, zwu44002, ca, cb) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(ty_Maybe, bh))) -> new_ltEs2(zwu43002, zwu44002, bh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(ty_Maybe, bdh))) -> new_ltEs2(zwu43000, zwu44000, bdh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(ty_Maybe, fg))) -> new_ltEs2(zwu43001, zwu44001, fg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(ty_Maybe, bbd))) -> new_ltEs2(zwu43000, zwu44000, bbd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(ty_Maybe, bcf)), bcb)) -> new_ltEs2(zwu43000, zwu44000, bcf) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(app(ty_Either, dd), de)), cf)) -> new_lt3(zwu43001, zwu44001, dd, de) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(app(ty_Either, hb), hc)), ge)) -> new_lt3(zwu43000, zwu44000, hb, hc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), ba), app(ty_[], bg))) -> new_ltEs1(zwu43002, zwu44002, bg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, eg), app(ty_[], ff))) -> new_ltEs1(zwu43001, zwu44001, ff) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(Left(zwu43000)), Just(Left(zwu44000)), False, app(app(ty_Either, app(ty_[], bce)), bcb)) -> new_ltEs1(zwu43000, zwu44000, bce) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(Right(zwu43000)), Just(Right(zwu44000)), False, app(app(ty_Either, bda), app(ty_[], bdg))) -> new_ltEs1(zwu43000, zwu44000, bdg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(Just(zwu43000)), Just(Just(zwu44000)), False, app(ty_Maybe, app(ty_[], bbc))) -> new_ltEs1(zwu43000, zwu44000, bbc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(ty_Maybe, dc)), cf)) -> new_lt2(zwu43001, zwu44001, dc) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(ty_Maybe, ha)), ge)) -> new_lt2(zwu43000, zwu44000, ha) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(:(zwu43000, zwu43001)), Just(:(zwu44000, zwu44001)), False, app(ty_[], hd)) -> new_compare(zwu43001, zwu44001, hd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, app(ty_[], ec)), ba), cf)) -> new_compare(zwu43000, zwu44000, ec) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(app(app(ty_@3, cc), cd), ce)), cf)) -> new_lt(zwu43001, zwu44001, cc, cd, ce) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(app(app(ty_@3, gb), gc), gd)), ge)) -> new_lt(zwu43000, zwu44000, gb, gc, gd) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4, 4 > 5 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(ty_[], gh)), ge)) -> new_lt1(zwu43000, zwu44000, gh) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(ty_[], db)), cf)) -> new_lt1(zwu43001, zwu44001, db) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3 *new_compare21(Just(@3(zwu43000, zwu43001, zwu43002)), Just(@3(zwu44000, zwu44001, zwu44002)), False, app(app(app(ty_@3, h), app(app(ty_@2, cg), da)), cf)) -> new_lt0(zwu43001, zwu44001, cg, da) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 *new_compare21(Just(@2(zwu43000, zwu43001)), Just(@2(zwu44000, zwu44001)), False, app(app(ty_@2, app(app(ty_@2, gf), gg)), ge)) -> new_lt0(zwu43000, zwu44000, gf, gg) The graph contains the following edges 1 > 1, 2 > 2, 4 > 3, 4 > 4 ---------------------------------------- (55) YES ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt202(zwu288, zwu289, zwu290, zwu291, zwu292, zwu293, zwu294, zwu295, zwu296, zwu297, zwu298, zwu299, zwu300, Branch(zwu3010, zwu3011, zwu3012, zwu3013, zwu3014), zwu302, h, ba) -> new_glueBal2Mid_elt202(zwu288, zwu289, zwu290, zwu291, zwu292, zwu293, zwu294, zwu295, zwu296, zwu297, zwu3010, zwu3011, zwu3012, zwu3013, zwu3014, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt202(zwu288, zwu289, zwu290, zwu291, zwu292, zwu293, zwu294, zwu295, zwu296, zwu297, zwu298, zwu299, zwu300, Branch(zwu3010, zwu3011, zwu3012, zwu3013, zwu3014), zwu302, h, ba) -> new_glueBal2Mid_elt202(zwu288, zwu289, zwu290, zwu291, zwu292, zwu293, zwu294, zwu295, zwu296, zwu297, zwu3010, zwu3011, zwu3012, zwu3013, zwu3014, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 14 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (58) YES ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: new_primMulNat(Succ(zwu400100), Succ(zwu600000)) -> new_primMulNat(zwu400100, Succ(zwu600000)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primMulNat(Succ(zwu400100), Succ(zwu600000)) -> new_primMulNat(zwu400100, Succ(zwu600000)) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (61) YES ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt20(zwu382, zwu383, zwu384, zwu385, zwu386, zwu387, zwu388, zwu389, zwu390, zwu391, zwu392, zwu393, Branch(zwu3940, zwu3941, zwu3942, zwu3943, zwu3944), zwu395, h, ba) -> new_glueBal2Mid_elt20(zwu382, zwu383, zwu384, zwu385, zwu386, zwu387, zwu388, zwu389, zwu390, zwu3940, zwu3941, zwu3942, zwu3943, zwu3944, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt20(zwu382, zwu383, zwu384, zwu385, zwu386, zwu387, zwu388, zwu389, zwu390, zwu391, zwu392, zwu393, Branch(zwu3940, zwu3941, zwu3942, zwu3943, zwu3944), zwu395, h, ba) -> new_glueBal2Mid_elt20(zwu382, zwu383, zwu384, zwu385, zwu386, zwu387, zwu388, zwu389, zwu390, zwu3940, zwu3941, zwu3942, zwu3943, zwu3944, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 13 > 10, 13 > 11, 13 > 12, 13 > 13, 13 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (64) YES ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt102(zwu412, zwu413, zwu414, zwu415, zwu416, zwu417, zwu418, zwu419, zwu420, zwu421, zwu422, zwu423, zwu424, zwu425, Branch(zwu4260, zwu4261, zwu4262, zwu4263, zwu4264), h, ba) -> new_glueBal2Mid_elt102(zwu412, zwu413, zwu414, zwu415, zwu416, zwu417, zwu418, zwu419, zwu420, zwu421, zwu4260, zwu4261, zwu4262, zwu4263, zwu4264, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt102(zwu412, zwu413, zwu414, zwu415, zwu416, zwu417, zwu418, zwu419, zwu420, zwu421, zwu422, zwu423, zwu424, zwu425, Branch(zwu4260, zwu4261, zwu4262, zwu4263, zwu4264), h, ba) -> new_glueBal2Mid_elt102(zwu412, zwu413, zwu414, zwu415, zwu416, zwu417, zwu418, zwu419, zwu420, zwu421, zwu4260, zwu4261, zwu4262, zwu4263, zwu4264, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 15 > 11, 15 > 12, 15 > 13, 15 > 14, 15 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (67) YES ---------------------------------------- (68) Obligation: Q DP problem: The TRS P consists of the following rules: new_primMinusNat(Succ(zwu51200), Succ(zwu18900)) -> new_primMinusNat(zwu51200, zwu18900) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (69) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primMinusNat(Succ(zwu51200), Succ(zwu18900)) -> new_primMinusNat(zwu51200, zwu18900) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (70) YES ---------------------------------------- (71) Obligation: Q DP problem: The TRS P consists of the following rules: new_primPlusNat(Succ(zwu51200), Succ(zwu18900)) -> new_primPlusNat(zwu51200, zwu18900) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (72) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primPlusNat(Succ(zwu51200), Succ(zwu18900)) -> new_primPlusNat(zwu51200, zwu18900) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (73) YES ---------------------------------------- (74) Obligation: Q DP problem: The TRS P consists of the following rules: new_deleteMax(zwu940, zwu941, zwu942, zwu943, Branch(zwu9440, zwu9441, zwu9442, zwu9443, zwu9444), h, ba) -> new_deleteMax(zwu9440, zwu9441, zwu9442, zwu9443, zwu9444, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (75) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_deleteMax(zwu940, zwu941, zwu942, zwu943, Branch(zwu9440, zwu9441, zwu9442, zwu9443, zwu9444), h, ba) -> new_deleteMax(zwu9440, zwu9441, zwu9442, zwu9443, zwu9444, h, ba) The graph contains the following edges 5 > 1, 5 > 2, 5 > 3, 5 > 4, 5 > 5, 6 >= 6, 7 >= 7 ---------------------------------------- (76) YES ---------------------------------------- (77) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key200(zwu366, zwu367, zwu368, zwu369, zwu370, zwu371, zwu372, zwu373, zwu374, zwu375, zwu376, zwu377, zwu378, Branch(zwu3790, zwu3791, zwu3792, zwu3793, zwu3794), zwu380, h, ba) -> new_glueBal2Mid_key200(zwu366, zwu367, zwu368, zwu369, zwu370, zwu371, zwu372, zwu373, zwu374, zwu375, zwu3790, zwu3791, zwu3792, zwu3793, zwu3794, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (78) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key200(zwu366, zwu367, zwu368, zwu369, zwu370, zwu371, zwu372, zwu373, zwu374, zwu375, zwu376, zwu377, zwu378, Branch(zwu3790, zwu3791, zwu3792, zwu3793, zwu3794), zwu380, h, ba) -> new_glueBal2Mid_key200(zwu366, zwu367, zwu368, zwu369, zwu370, zwu371, zwu372, zwu373, zwu374, zwu375, zwu3790, zwu3791, zwu3792, zwu3793, zwu3794, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 14 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (79) YES ---------------------------------------- (80) Obligation: Q DP problem: The TRS P consists of the following rules: new_filterFM1(zwu3, zwu40, zwu41, zwu42, zwu43, zwu44, h, ba) -> new_filterFM(zwu3, zwu44, h, ba) new_filterFM1(zwu3, zwu40, zwu41, zwu42, zwu43, zwu44, h, ba) -> new_filterFM(zwu3, zwu43, h, ba) new_filterFM(zwu3, Branch(zwu40, zwu41, zwu42, zwu43, zwu44), h, ba) -> new_filterFM1(zwu3, zwu40, zwu41, zwu42, zwu43, zwu44, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (81) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_filterFM(zwu3, Branch(zwu40, zwu41, zwu42, zwu43, zwu44), h, ba) -> new_filterFM1(zwu3, zwu40, zwu41, zwu42, zwu43, zwu44, h, ba) The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3, 2 > 4, 2 > 5, 2 > 6, 3 >= 7, 4 >= 8 *new_filterFM1(zwu3, zwu40, zwu41, zwu42, zwu43, zwu44, h, ba) -> new_filterFM(zwu3, zwu44, h, ba) The graph contains the following edges 1 >= 1, 6 >= 2, 7 >= 3, 8 >= 4 *new_filterFM1(zwu3, zwu40, zwu41, zwu42, zwu43, zwu44, h, ba) -> new_filterFM(zwu3, zwu43, h, ba) The graph contains the following edges 1 >= 1, 5 >= 2, 7 >= 3, 8 >= 4 ---------------------------------------- (82) YES ---------------------------------------- (83) Obligation: Q DP problem: The TRS P consists of the following rules: new_primEqNat(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat(zwu40000, zwu60000) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (84) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primEqNat(Succ(zwu40000), Succ(zwu60000)) -> new_primEqNat(zwu40000, zwu60000) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (85) YES ---------------------------------------- (86) Obligation: Q DP problem: The TRS P consists of the following rules: new_primCmpNat(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat(zwu43000, zwu44000) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (87) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_primCmpNat(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat(zwu43000, zwu44000) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (88) YES ---------------------------------------- (89) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key101(zwu459, zwu460, zwu461, zwu462, zwu463, zwu464, zwu465, zwu466, zwu467, zwu468, zwu469, zwu470, zwu471, Branch(zwu4720, zwu4721, zwu4722, zwu4723, zwu4724), h, ba) -> new_glueBal2Mid_key101(zwu459, zwu460, zwu461, zwu462, zwu463, zwu464, zwu465, zwu466, zwu467, zwu4720, zwu4721, zwu4722, zwu4723, zwu4724, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (90) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key101(zwu459, zwu460, zwu461, zwu462, zwu463, zwu464, zwu465, zwu466, zwu467, zwu468, zwu469, zwu470, zwu471, Branch(zwu4720, zwu4721, zwu4722, zwu4723, zwu4724), h, ba) -> new_glueBal2Mid_key101(zwu459, zwu460, zwu461, zwu462, zwu463, zwu464, zwu465, zwu466, zwu467, zwu4720, zwu4721, zwu4722, zwu4723, zwu4724, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 14 > 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (91) YES ---------------------------------------- (92) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt10(zwu506, zwu507, zwu508, zwu509, zwu510, zwu511, zwu512, zwu513, zwu514, zwu515, zwu516, zwu517, zwu518, Branch(zwu5190, zwu5191, zwu5192, zwu5193, zwu5194), h, ba) -> new_glueBal2Mid_elt10(zwu506, zwu507, zwu508, zwu509, zwu510, zwu511, zwu512, zwu513, zwu514, zwu5190, zwu5191, zwu5192, zwu5193, zwu5194, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (93) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt10(zwu506, zwu507, zwu508, zwu509, zwu510, zwu511, zwu512, zwu513, zwu514, zwu515, zwu516, zwu517, zwu518, Branch(zwu5190, zwu5191, zwu5192, zwu5193, zwu5194), h, ba) -> new_glueBal2Mid_elt10(zwu506, zwu507, zwu508, zwu509, zwu510, zwu511, zwu512, zwu513, zwu514, zwu5190, zwu5191, zwu5192, zwu5193, zwu5194, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 14 > 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (94) YES ---------------------------------------- (95) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key100(zwu490, zwu491, zwu492, zwu493, zwu494, zwu495, zwu496, zwu497, zwu498, zwu499, zwu500, zwu501, zwu502, zwu503, Branch(zwu5040, zwu5041, zwu5042, zwu5043, zwu5044), h, ba) -> new_glueBal2Mid_key100(zwu490, zwu491, zwu492, zwu493, zwu494, zwu495, zwu496, zwu497, zwu498, zwu499, zwu5040, zwu5041, zwu5042, zwu5043, zwu5044, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (96) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key100(zwu490, zwu491, zwu492, zwu493, zwu494, zwu495, zwu496, zwu497, zwu498, zwu499, zwu500, zwu501, zwu502, zwu503, Branch(zwu5040, zwu5041, zwu5042, zwu5043, zwu5044), h, ba) -> new_glueBal2Mid_key100(zwu490, zwu491, zwu492, zwu493, zwu494, zwu495, zwu496, zwu497, zwu498, zwu499, zwu5040, zwu5041, zwu5042, zwu5043, zwu5044, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 15 > 11, 15 > 12, 15 > 13, 15 > 14, 15 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (97) YES ---------------------------------------- (98) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key102(zwu428, zwu429, zwu430, zwu431, zwu432, zwu433, zwu434, zwu435, zwu436, zwu437, zwu438, zwu439, zwu440, zwu441, Branch(zwu4420, zwu4421, zwu4422, zwu4423, zwu4424), h, ba) -> new_glueBal2Mid_key102(zwu428, zwu429, zwu430, zwu431, zwu432, zwu433, zwu434, zwu435, zwu436, zwu437, zwu4420, zwu4421, zwu4422, zwu4423, zwu4424, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (99) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key102(zwu428, zwu429, zwu430, zwu431, zwu432, zwu433, zwu434, zwu435, zwu436, zwu437, zwu438, zwu439, zwu440, zwu441, Branch(zwu4420, zwu4421, zwu4422, zwu4423, zwu4424), h, ba) -> new_glueBal2Mid_key102(zwu428, zwu429, zwu430, zwu431, zwu432, zwu433, zwu434, zwu435, zwu436, zwu437, zwu4420, zwu4421, zwu4422, zwu4423, zwu4424, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 15 > 11, 15 > 12, 15 > 13, 15 > 14, 15 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (100) YES ---------------------------------------- (101) Obligation: Q DP problem: The TRS P consists of the following rules: new_mkVBalBranch3MkVBalBranch11(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt8(new_sr(new_sIZE_RATIO, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt1(zwu7200, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt9(new_sr(new_sIZE_RATIO, new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch11(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt10(new_sr(new_sIZE_RATIO, new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch3MkVBalBranch12(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt4(zwu62), LT), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt2(zwu62), LT), h, ba) new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt3(zwu7200, new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch12(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt11(new_sr(new_sIZE_RATIO, new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba), LT), h, ba) The TRS R consists of the following rules: new_primCmpInt9(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt10(Neg(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt2(Pos(Zero)) -> EQ new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt8(Neg(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt11(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt11(Pos(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt13(zwu14700, zwu165) -> new_primCmpInt(Neg(Succ(zwu14700)), zwu165) new_primCmpInt10(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_primCmpInt10(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpInt8(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primCmpNat0(zwu4300, Zero) -> GT new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt9(Neg(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt10(Pos(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt8(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt12(zwu14700, zwu164) -> new_primCmpInt(Pos(Succ(zwu14700)), zwu164) new_primCmpInt2(Neg(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_esEs8(GT, GT) -> True new_primCmpInt11(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_esEs8(EQ, EQ) -> True new_primCmpInt11(Neg(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpInt8(Pos(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_primCmpInt11(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_primCmpInt10(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(EmptyFM, x0, x1) new_primCmpInt10(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primCmpInt10(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primMulNat0(Zero, Succ(x0)) new_primCmpInt10(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primPlusNat2(Zero) new_primPlusNat1(Zero, x0) new_primCmpInt9(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_mkVBalBranch3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt8(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_primCmpInt11(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sr(x0, x1) new_primCmpInt8(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt1(x0, x1) new_primCmpInt9(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt9(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt9(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primCmpInt11(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primPlusNat0(Succ(x0), Succ(x1)) new_mkVBalBranch3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt13(x0, x1) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt12(x0, x1) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt8(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt11(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt8(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (102) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch11(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt10(new_sr(new_sIZE_RATIO, new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch12(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt11(new_sr(new_sIZE_RATIO, new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba), LT), h, ba) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(Branch(x_1, x_2, x_3, x_4, x_5)) = x_1 + x_2 + x_3 + x_4 + x_5 POL(EQ) = 0 POL(False) = 0 POL(GT) = 1 POL(LT) = 0 POL(Neg(x_1)) = 1 POL(Pos(x_1)) = 0 POL(Succ(x_1)) = 0 POL(True) = 0 POL(Zero) = 0 POL(new_esEs8(x_1, x_2)) = 0 POL(new_mkVBalBranch(x_1, x_2, x_3, x_4, x_5, x_6)) = x_3 + x_5 + x_6 POL(new_mkVBalBranch3MkVBalBranch1(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15)) = x_10 + x_14 + x_15 + x_6 + x_7 + x_9 POL(new_mkVBalBranch3MkVBalBranch10(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14)) = x_13 + x_14 + x_6 + x_7 + x_8 + x_9 POL(new_mkVBalBranch3MkVBalBranch11(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15)) = x_10 + x_14 + x_15 + x_6 + x_7 + x_9 POL(new_mkVBalBranch3MkVBalBranch12(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14)) = x_13 + x_14 + x_6 + x_7 + x_8 + x_9 POL(new_mkVBalBranch3MkVBalBranch2(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15)) = x_10 + x_14 + x_15 + x_6 + x_7 + x_9 POL(new_mkVBalBranch3MkVBalBranch20(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14)) = x_13 + x_14 + x_6 + x_7 + x_8 + x_9 POL(new_mkVBalBranch3MkVBalBranch21(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15)) = 1 + x_10 + x_14 + x_15 + x_6 + x_7 + x_9 POL(new_mkVBalBranch3MkVBalBranch22(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14)) = 1 + x_13 + x_14 + x_6 + x_7 + x_8 + x_9 POL(new_mkVBalBranch3Size_r(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_mkVBalBranch3Size_r0(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = 1 + x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt(x_1, x_2)) = 0 POL(new_primCmpInt1(x_1, x_2)) = 1 + x_1 POL(new_primCmpInt10(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = x_10 + x_11 + x_12 + x_13 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt11(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt12(x_1, x_2)) = x_1 POL(new_primCmpInt13(x_1, x_2)) = x_1 POL(new_primCmpInt2(x_1)) = 0 POL(new_primCmpInt3(x_1, x_2)) = 1 + x_1 + x_2 POL(new_primCmpInt4(x_1)) = 0 POL(new_primCmpInt8(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = x_10 + x_12 + x_13 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt9(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpNat0(x_1, x_2)) = x_1 POL(new_primCmpNat1(x_1, x_2)) = x_2 POL(new_primCmpNat2(x_1, x_2)) = 1 POL(new_primMulInt(x_1, x_2)) = 0 POL(new_primMulNat0(x_1, x_2)) = 0 POL(new_primPlusNat0(x_1, x_2)) = 0 POL(new_primPlusNat1(x_1, x_2)) = 0 POL(new_primPlusNat2(x_1)) = 0 POL(new_sIZE_RATIO) = 0 POL(new_sizeFM(x_1, x_2, x_3, x_4, x_5, x_6, x_7)) = 1 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 POL(new_sizeFM0(x_1, x_2, x_3)) = x_2 + x_3 POL(new_sr(x_1, x_2)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (103) Obligation: Q DP problem: The TRS P consists of the following rules: new_mkVBalBranch3MkVBalBranch11(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt8(new_sr(new_sIZE_RATIO, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt1(zwu7200, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt9(new_sr(new_sIZE_RATIO, new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch3MkVBalBranch12(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt4(zwu62), LT), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt2(zwu62), LT), h, ba) new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt3(zwu7200, new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) The TRS R consists of the following rules: new_primCmpInt9(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt10(Neg(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt2(Pos(Zero)) -> EQ new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt8(Neg(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt11(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt11(Pos(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt13(zwu14700, zwu165) -> new_primCmpInt(Neg(Succ(zwu14700)), zwu165) new_primCmpInt10(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_primCmpInt10(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpInt8(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primCmpNat0(zwu4300, Zero) -> GT new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt9(Neg(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt10(Pos(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt8(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt12(zwu14700, zwu164) -> new_primCmpInt(Pos(Succ(zwu14700)), zwu164) new_primCmpInt2(Neg(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_esEs8(GT, GT) -> True new_primCmpInt11(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_esEs8(EQ, EQ) -> True new_primCmpInt11(Neg(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpInt8(Pos(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_primCmpInt11(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_primCmpInt10(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(EmptyFM, x0, x1) new_primCmpInt10(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primCmpInt10(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primMulNat0(Zero, Succ(x0)) new_primCmpInt10(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primPlusNat2(Zero) new_primPlusNat1(Zero, x0) new_primCmpInt9(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_mkVBalBranch3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt8(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_primCmpInt11(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sr(x0, x1) new_primCmpInt8(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt1(x0, x1) new_primCmpInt9(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt9(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt9(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primCmpInt11(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primPlusNat0(Succ(x0), Succ(x1)) new_mkVBalBranch3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt13(x0, x1) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt12(x0, x1) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt8(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt11(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt8(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (104) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes. ---------------------------------------- (105) Complex Obligation (AND) ---------------------------------------- (106) Obligation: Q DP problem: The TRS P consists of the following rules: new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt3(zwu7200, new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) The TRS R consists of the following rules: new_primCmpInt9(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt10(Neg(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt2(Pos(Zero)) -> EQ new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt8(Neg(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt11(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt11(Pos(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt13(zwu14700, zwu165) -> new_primCmpInt(Neg(Succ(zwu14700)), zwu165) new_primCmpInt10(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_primCmpInt10(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpInt8(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primCmpNat0(zwu4300, Zero) -> GT new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt9(Neg(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt10(Pos(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt8(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt12(zwu14700, zwu164) -> new_primCmpInt(Pos(Succ(zwu14700)), zwu164) new_primCmpInt2(Neg(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_esEs8(GT, GT) -> True new_primCmpInt11(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_esEs8(EQ, EQ) -> True new_primCmpInt11(Neg(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpInt8(Pos(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_primCmpInt11(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_primCmpInt10(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(EmptyFM, x0, x1) new_primCmpInt10(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primCmpInt10(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primMulNat0(Zero, Succ(x0)) new_primCmpInt10(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primPlusNat2(Zero) new_primPlusNat1(Zero, x0) new_primCmpInt9(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_mkVBalBranch3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt8(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_primCmpInt11(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sr(x0, x1) new_primCmpInt8(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt1(x0, x1) new_primCmpInt9(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt9(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt9(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primCmpInt11(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primPlusNat0(Succ(x0), Succ(x1)) new_mkVBalBranch3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt13(x0, x1) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt12(x0, x1) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt8(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt11(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt8(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (107) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt3(zwu7200, new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) The graph contains the following edges 4 > 1, 4 > 2, 4 > 3, 4 > 4, 4 > 5, 3 > 6, 3 > 7, 3 > 8, 3 > 9, 3 > 10, 1 >= 11, 2 >= 12, 5 >= 14, 6 >= 15 *new_mkVBalBranch3MkVBalBranch21(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) The graph contains the following edges 11 >= 1, 12 >= 2, 4 >= 4, 14 >= 5, 15 >= 6 ---------------------------------------- (108) YES ---------------------------------------- (109) Obligation: Q DP problem: The TRS P consists of the following rules: new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt4(zwu62), LT), h, ba) The TRS R consists of the following rules: new_primCmpInt9(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt10(Neg(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt2(Pos(Zero)) -> EQ new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt8(Neg(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt11(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt11(Pos(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt13(zwu14700, zwu165) -> new_primCmpInt(Neg(Succ(zwu14700)), zwu165) new_primCmpInt10(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_primCmpInt10(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpInt8(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primCmpNat0(zwu4300, Zero) -> GT new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt9(Neg(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt10(Pos(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt8(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt12(zwu14700, zwu164) -> new_primCmpInt(Pos(Succ(zwu14700)), zwu164) new_primCmpInt2(Neg(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_esEs8(GT, GT) -> True new_primCmpInt11(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_esEs8(EQ, EQ) -> True new_primCmpInt11(Neg(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpInt8(Pos(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_primCmpInt11(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_primCmpInt10(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(EmptyFM, x0, x1) new_primCmpInt10(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primCmpInt10(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primMulNat0(Zero, Succ(x0)) new_primCmpInt10(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primPlusNat2(Zero) new_primPlusNat1(Zero, x0) new_primCmpInt9(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_mkVBalBranch3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt8(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_primCmpInt11(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sr(x0, x1) new_primCmpInt8(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt1(x0, x1) new_primCmpInt9(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt9(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt9(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primCmpInt11(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primPlusNat0(Succ(x0), Succ(x1)) new_mkVBalBranch3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt13(x0, x1) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt12(x0, x1) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt8(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt11(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt8(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (110) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt4(zwu62), LT), h, ba) The graph contains the following edges 4 > 1, 4 > 2, 4 > 3, 4 > 4, 4 > 5, 3 > 6, 3 > 7, 3 > 8, 3 > 9, 1 >= 10, 2 >= 11, 5 >= 13, 6 >= 14 *new_mkVBalBranch3MkVBalBranch22(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), zwu63, h, ba) The graph contains the following edges 10 >= 1, 11 >= 2, 4 >= 4, 13 >= 5, 14 >= 6 ---------------------------------------- (111) YES ---------------------------------------- (112) Obligation: Q DP problem: The TRS P consists of the following rules: new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt1(zwu7200, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt8(new_sr(new_sIZE_RATIO, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt2(zwu62), LT), h, ba) new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt9(new_sr(new_sIZE_RATIO, new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) The TRS R consists of the following rules: new_primCmpInt9(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt10(Neg(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt2(Pos(Zero)) -> EQ new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt8(Neg(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt11(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt11(Pos(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt13(zwu14700, zwu165) -> new_primCmpInt(Neg(Succ(zwu14700)), zwu165) new_primCmpInt10(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_primCmpInt10(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpInt8(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primCmpNat0(zwu4300, Zero) -> GT new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt9(Neg(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt10(Pos(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt8(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt12(zwu14700, zwu164) -> new_primCmpInt(Pos(Succ(zwu14700)), zwu164) new_primCmpInt2(Neg(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_esEs8(GT, GT) -> True new_primCmpInt11(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_esEs8(EQ, EQ) -> True new_primCmpInt11(Neg(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpInt8(Pos(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_primCmpInt11(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_primCmpInt10(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(EmptyFM, x0, x1) new_primCmpInt10(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primCmpInt10(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primMulNat0(Zero, Succ(x0)) new_primCmpInt10(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primPlusNat2(Zero) new_primPlusNat1(Zero, x0) new_primCmpInt9(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_mkVBalBranch3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt8(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_primCmpInt11(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sr(x0, x1) new_primCmpInt8(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt1(x0, x1) new_primCmpInt9(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt9(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt9(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primCmpInt11(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primPlusNat0(Succ(x0), Succ(x1)) new_mkVBalBranch3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt13(x0, x1) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt12(x0, x1) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt8(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt11(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt8(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (113) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), zwu63, h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), zwu63, h, ba) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(Branch(x_1, x_2, x_3, x_4, x_5)) = 1 + x_1 + x_2 + x_4 + x_5 POL(EQ) = 0 POL(False) = 0 POL(GT) = 0 POL(LT) = 0 POL(Neg(x_1)) = 0 POL(Pos(x_1)) = 0 POL(Succ(x_1)) = 0 POL(True) = 0 POL(Zero) = 0 POL(new_esEs8(x_1, x_2)) = 0 POL(new_mkVBalBranch(x_1, x_2, x_3, x_4, x_5, x_6)) = x_4 + x_5 + x_6 POL(new_mkVBalBranch3MkVBalBranch1(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15)) = 1 + x_1 + x_14 + x_15 + x_2 + x_4 + x_5 POL(new_mkVBalBranch3MkVBalBranch10(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14)) = 1 + x_1 + x_13 + x_14 + x_2 + x_4 + x_5 POL(new_mkVBalBranch3MkVBalBranch2(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15)) = 1 + x_1 + x_14 + x_15 + x_2 + x_4 + x_5 POL(new_mkVBalBranch3MkVBalBranch20(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13, x_14)) = 1 + x_1 + x_13 + x_14 + x_2 + x_4 + x_5 POL(new_mkVBalBranch3Size_r(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = 1 + x_1 + x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt(x_1, x_2)) = 0 POL(new_primCmpInt1(x_1, x_2)) = 1 + x_1 POL(new_primCmpInt12(x_1, x_2)) = x_1 POL(new_primCmpInt13(x_1, x_2)) = x_1 POL(new_primCmpInt2(x_1)) = 0 POL(new_primCmpInt4(x_1)) = 0 POL(new_primCmpInt8(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12, x_13)) = x_10 + x_11 + x_12 + x_13 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpInt9(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_10, x_11, x_12)) = x_10 + x_11 + x_12 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 POL(new_primCmpNat0(x_1, x_2)) = 1 + x_1 + x_2 POL(new_primCmpNat1(x_1, x_2)) = x_2 POL(new_primCmpNat2(x_1, x_2)) = 1 POL(new_primMulInt(x_1, x_2)) = 0 POL(new_primMulNat0(x_1, x_2)) = 0 POL(new_primPlusNat0(x_1, x_2)) = 0 POL(new_primPlusNat1(x_1, x_2)) = 0 POL(new_primPlusNat2(x_1)) = 0 POL(new_sIZE_RATIO) = 0 POL(new_sizeFM(x_1, x_2, x_3, x_4, x_5, x_6, x_7)) = 1 + x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 POL(new_sizeFM0(x_1, x_2, x_3)) = x_2 + x_3 POL(new_sr(x_1, x_2)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (114) Obligation: Q DP problem: The TRS P consists of the following rules: new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt1(zwu7200, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt8(new_sr(new_sIZE_RATIO, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt2(zwu62), LT), h, ba) new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt9(new_sr(new_sIZE_RATIO, new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba), LT), h, ba) new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) The TRS R consists of the following rules: new_primCmpInt9(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt10(Neg(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_sIZE_RATIO -> Pos(Succ(Succ(Succ(Succ(Succ(Zero)))))) new_primPlusNat2(Zero) -> Succ(new_primPlusNat0(Succ(new_primPlusNat0(Zero, Zero)), Zero)) new_primPlusNat0(Succ(zwu51200), Zero) -> Succ(zwu51200) new_primPlusNat0(Zero, Succ(zwu18900)) -> Succ(zwu18900) new_primCmpInt(Neg(Succ(zwu4300)), Pos(zwu440)) -> LT new_primMulNat0(Zero, Zero) -> Zero new_primPlusNat0(Zero, Zero) -> Zero new_sizeFM0(Branch(zwu510, zwu511, zwu512, zwu513, zwu514), h, ba) -> zwu512 new_primCmpNat1(Succ(zwu4400), zwu4300) -> new_primCmpNat2(zwu4400, zwu4300) new_primMulInt(Pos(zwu40010), Neg(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primMulInt(Neg(zwu40010), Pos(zwu60000)) -> Neg(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt2(Pos(Zero)) -> EQ new_primPlusNat1(Zero, zwu600000) -> Succ(zwu600000) new_primCmpInt1(zwu7200, zwu154) -> new_primCmpInt(Pos(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu154) new_primCmpInt4(Neg(Succ(zwu6200))) -> GT new_primCmpInt(Neg(Zero), Neg(Succ(zwu4400))) -> new_primCmpNat0(zwu4400, Zero) new_primCmpInt8(Neg(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt11(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt(Pos(Succ(zwu4300)), Pos(zwu440)) -> new_primCmpNat0(zwu4300, zwu440) new_esEs8(LT, LT) -> True new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt4(Neg(Zero)) -> EQ new_primCmpInt3(zwu7200, zwu155) -> new_primCmpInt(Neg(new_primPlusNat1(Succ(Succ(new_primPlusNat2(zwu7200))), zwu7200)), zwu155) new_primCmpInt(Pos(Zero), Pos(Succ(zwu4400))) -> new_primCmpNat1(Zero, zwu4400) new_primCmpNat1(Zero, zwu4300) -> LT new_primCmpInt(Neg(Zero), Neg(Zero)) -> EQ new_primCmpInt4(Pos(Succ(zwu6200))) -> LT new_primCmpInt(Pos(Zero), Neg(Succ(zwu4400))) -> GT new_primCmpInt11(Pos(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpInt13(zwu14700, zwu165) -> new_primCmpInt(Neg(Succ(zwu14700)), zwu165) new_primCmpInt10(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt4(Pos(Zero)) -> EQ new_primCmpInt10(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_esEs8(LT, EQ) -> False new_esEs8(EQ, LT) -> False new_primCmpInt8(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpNat2(Zero, Zero) -> EQ new_primCmpInt(Neg(Succ(zwu4300)), Neg(zwu440)) -> new_primCmpNat1(zwu440, zwu4300) new_esEs8(LT, GT) -> False new_esEs8(GT, LT) -> False new_primCmpNat0(zwu4300, Succ(zwu4400)) -> new_primCmpNat2(zwu4300, zwu4400) new_primPlusNat0(Succ(zwu51200), Succ(zwu18900)) -> Succ(Succ(new_primPlusNat0(zwu51200, zwu18900))) new_primCmpNat0(zwu4300, Zero) -> GT new_primMulNat0(Succ(zwu400100), Succ(zwu600000)) -> new_primPlusNat1(new_primMulNat0(zwu400100, Succ(zwu600000)), zwu600000) new_primCmpNat2(Zero, Succ(zwu44000)) -> LT new_primCmpInt9(Neg(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt2(Neg(Succ(zwu6200))) -> GT new_mkVBalBranch3Size_r0(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba) new_primCmpInt10(Pos(Succ(zwu14900)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14900, new_sizeFM0(Branch(zwu70, zwu71, Neg(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt8(Neg(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt4(new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primMulInt(Neg(zwu40010), Neg(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_primCmpInt(Neg(Zero), Pos(Succ(zwu4400))) -> LT new_primCmpInt(Pos(Succ(zwu4300)), Neg(zwu440)) -> GT new_primCmpInt12(zwu14700, zwu164) -> new_primCmpInt(Pos(Succ(zwu14700)), zwu164) new_primCmpInt2(Neg(Zero)) -> EQ new_primMulInt(Pos(zwu40010), Pos(zwu60000)) -> Pos(new_primMulNat0(zwu40010, zwu60000)) new_esEs8(GT, GT) -> True new_primCmpInt11(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Succ(zwu44000)) -> new_primCmpNat2(zwu43000, zwu44000) new_primCmpInt(Pos(Zero), Neg(Zero)) -> EQ new_primCmpInt(Neg(Zero), Pos(Zero)) -> EQ new_sizeFM(zwu80, zwu81, zwu82, zwu83, zwu84, h, ba) -> zwu82 new_esEs8(EQ, EQ) -> True new_primCmpInt11(Neg(Succ(zwu15000)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt13(zwu15000, new_sizeFM0(Branch(zwu70, zwu71, Neg(Zero), zwu73, zwu74), h, ba)) new_primMulNat0(Succ(zwu400100), Zero) -> Zero new_primMulNat0(Zero, Succ(zwu600000)) -> Zero new_esEs8(EQ, GT) -> False new_esEs8(GT, EQ) -> False new_primCmpInt2(Pos(Succ(zwu6200))) -> LT new_sizeFM0(EmptyFM, h, ba) -> Pos(Zero) new_primCmpInt8(Pos(Succ(zwu14700)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14700, new_sizeFM0(Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Zero), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt2(new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpInt9(Pos(Succ(zwu14800)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba) -> new_primCmpInt12(zwu14800, new_sizeFM0(Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), h, ba)) new_primCmpNat2(Succ(zwu43000), Zero) -> GT new_primPlusNat1(Succ(zwu1950), zwu600000) -> Succ(Succ(new_primPlusNat0(zwu1950, zwu600000))) new_primPlusNat2(Succ(zwu72000)) -> Succ(Succ(new_primPlusNat0(new_primPlusNat0(Succ(new_primPlusNat0(Succ(zwu72000), Succ(zwu72000))), Succ(zwu72000)), zwu72000))) new_primCmpInt(Pos(Zero), Pos(Zero)) -> EQ new_sr(zwu4001, zwu6000) -> new_primMulInt(zwu4001, zwu6000) The set Q consists of the following terms: new_primMulNat0(Succ(x0), Zero) new_primCmpInt(Neg(Zero), Neg(Zero)) new_primCmpInt11(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(EQ, EQ) new_sIZE_RATIO new_primCmpNat1(Zero, x0) new_primCmpInt10(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(EmptyFM, x0, x1) new_primCmpInt10(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primPlusNat0(Succ(x0), Zero) new_primCmpInt10(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primMulNat0(Zero, Succ(x0)) new_primCmpInt10(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primPlusNat2(Zero) new_primPlusNat1(Zero, x0) new_primCmpInt9(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_esEs8(LT, LT) new_primCmpInt(Pos(Zero), Neg(Zero)) new_primCmpInt(Neg(Zero), Pos(Zero)) new_mkVBalBranch3Size_r(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt8(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_esEs8(EQ, GT) new_esEs8(GT, EQ) new_primCmpInt11(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sr(x0, x1) new_primCmpInt8(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Neg(Zero)) new_primMulNat0(Zero, Zero) new_primCmpInt1(x0, x1) new_primCmpInt9(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_sizeFM0(Branch(x0, x1, x2, x3, x4), x5, x6) new_primCmpNat0(x0, Succ(x1)) new_primCmpInt9(Pos(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primCmpInt9(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt4(Neg(Succ(x0))) new_primCmpInt3(x0, x1) new_primCmpNat0(x0, Zero) new_esEs8(LT, GT) new_esEs8(GT, LT) new_primCmpInt11(Neg(Zero), x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) new_primPlusNat0(Succ(x0), Succ(x1)) new_mkVBalBranch3Size_r0(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt2(Pos(Succ(x0))) new_primCmpInt(Neg(Succ(x0)), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Neg(x1)) new_primPlusNat1(Succ(x0), x1) new_primCmpInt2(Neg(Succ(x0))) new_primCmpInt4(Pos(Zero)) new_primCmpNat2(Succ(x0), Succ(x1)) new_sizeFM(x0, x1, x2, x3, x4, x5, x6) new_primCmpNat2(Succ(x0), Zero) new_primCmpInt4(Neg(Zero)) new_primCmpInt(Neg(Succ(x0)), Neg(x1)) new_primCmpInt(Neg(Zero), Neg(Succ(x0))) new_primCmpInt13(x0, x1) new_primCmpInt2(Pos(Zero)) new_primCmpNat1(Succ(x0), x1) new_primCmpInt12(x0, x1) new_primCmpNat2(Zero, Succ(x0)) new_primMulInt(Neg(x0), Neg(x1)) new_primPlusNat2(Succ(x0)) new_primPlusNat0(Zero, Succ(x0)) new_primCmpInt8(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt4(Pos(Succ(x0))) new_primCmpNat2(Zero, Zero) new_primMulNat0(Succ(x0), Succ(x1)) new_primMulInt(Pos(x0), Neg(x1)) new_primMulInt(Neg(x0), Pos(x1)) new_primCmpInt(Pos(Zero), Pos(Succ(x0))) new_primCmpInt11(Pos(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) new_primCmpInt(Pos(Zero), Neg(Succ(x0))) new_primCmpInt(Neg(Zero), Pos(Succ(x0))) new_primMulInt(Pos(x0), Pos(x1)) new_primCmpInt(Pos(Succ(x0)), Pos(x1)) new_esEs8(GT, GT) new_primCmpInt8(Neg(Succ(x0)), x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) new_primCmpInt(Pos(Zero), Pos(Zero)) new_esEs8(LT, EQ) new_esEs8(EQ, LT) new_primPlusNat0(Zero, Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (115) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt8(new_sr(new_sIZE_RATIO, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba), LT), h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 11 >= 11, 12 >= 12, 14 >= 14, 15 >= 15 *new_mkVBalBranch3MkVBalBranch1(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) The graph contains the following edges 11 >= 1, 12 >= 2, 10 >= 3, 14 >= 5, 15 >= 6 *new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, True, h, ba) -> new_mkVBalBranch(zwu40, zwu41, zwu74, Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) The graph contains the following edges 10 >= 1, 11 >= 2, 9 >= 3, 13 >= 5, 14 >= 6 *new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Succ(zwu7200)), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch2(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt1(zwu7200, new_mkVBalBranch3Size_r(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu7200, zwu73, zwu74, h, ba)), LT), h, ba) The graph contains the following edges 4 > 1, 4 > 2, 4 > 3, 4 > 4, 4 > 5, 3 > 6, 3 > 7, 3 > 8, 3 > 9, 3 > 10, 1 >= 11, 2 >= 12, 5 >= 14, 6 >= 15 *new_mkVBalBranch(zwu40, zwu41, Branch(zwu70, zwu71, Pos(Zero), zwu73, zwu74), Branch(zwu60, zwu61, zwu62, zwu63, zwu64), h, ba) -> new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt2(zwu62), LT), h, ba) The graph contains the following edges 4 > 1, 4 > 2, 4 > 3, 4 > 4, 4 > 5, 3 > 6, 3 > 7, 3 > 8, 3 > 9, 1 >= 10, 2 >= 11, 5 >= 13, 6 >= 14 *new_mkVBalBranch3MkVBalBranch20(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, False, h, ba) -> new_mkVBalBranch3MkVBalBranch10(zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, zwu40, zwu41, new_esEs8(new_primCmpInt9(new_sr(new_sIZE_RATIO, new_sizeFM(zwu60, zwu61, zwu62, zwu63, zwu64, h, ba)), zwu60, zwu61, zwu62, zwu63, zwu64, zwu70, zwu71, zwu73, zwu74, h, ba), LT), h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 11 >= 11, 13 >= 13, 14 >= 14 ---------------------------------------- (116) YES ---------------------------------------- (117) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key201(zwu335, zwu336, zwu337, zwu338, zwu339, zwu340, zwu341, zwu342, zwu343, zwu344, zwu345, zwu346, Branch(zwu3470, zwu3471, zwu3472, zwu3473, zwu3474), zwu348, h, ba) -> new_glueBal2Mid_key201(zwu335, zwu336, zwu337, zwu338, zwu339, zwu340, zwu341, zwu342, zwu343, zwu3470, zwu3471, zwu3472, zwu3473, zwu3474, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (118) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key201(zwu335, zwu336, zwu337, zwu338, zwu339, zwu340, zwu341, zwu342, zwu343, zwu344, zwu345, zwu346, Branch(zwu3470, zwu3471, zwu3472, zwu3473, zwu3474), zwu348, h, ba) -> new_glueBal2Mid_key201(zwu335, zwu336, zwu337, zwu338, zwu339, zwu340, zwu341, zwu342, zwu343, zwu3470, zwu3471, zwu3472, zwu3473, zwu3474, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 13 > 10, 13 > 11, 13 > 12, 13 > 13, 13 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (119) YES ---------------------------------------- (120) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key202(zwu304, zwu305, zwu306, zwu307, zwu308, zwu309, zwu310, zwu311, zwu312, zwu313, zwu314, zwu315, zwu316, Branch(zwu3170, zwu3171, zwu3172, zwu3173, zwu3174), zwu318, h, ba) -> new_glueBal2Mid_key202(zwu304, zwu305, zwu306, zwu307, zwu308, zwu309, zwu310, zwu311, zwu312, zwu313, zwu3170, zwu3171, zwu3172, zwu3173, zwu3174, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (121) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key202(zwu304, zwu305, zwu306, zwu307, zwu308, zwu309, zwu310, zwu311, zwu312, zwu313, zwu314, zwu315, zwu316, Branch(zwu3170, zwu3171, zwu3172, zwu3173, zwu3174), zwu318, h, ba) -> new_glueBal2Mid_key202(zwu304, zwu305, zwu306, zwu307, zwu308, zwu309, zwu310, zwu311, zwu312, zwu313, zwu3170, zwu3171, zwu3172, zwu3173, zwu3174, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 14 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (122) YES ---------------------------------------- (123) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key20(zwu397, zwu398, zwu399, zwu400, zwu401, zwu402, zwu403, zwu404, zwu405, zwu406, zwu407, zwu408, Branch(zwu4090, zwu4091, zwu4092, zwu4093, zwu4094), zwu410, h, ba) -> new_glueBal2Mid_key20(zwu397, zwu398, zwu399, zwu400, zwu401, zwu402, zwu403, zwu404, zwu405, zwu4090, zwu4091, zwu4092, zwu4093, zwu4094, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (124) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key20(zwu397, zwu398, zwu399, zwu400, zwu401, zwu402, zwu403, zwu404, zwu405, zwu406, zwu407, zwu408, Branch(zwu4090, zwu4091, zwu4092, zwu4093, zwu4094), zwu410, h, ba) -> new_glueBal2Mid_key20(zwu397, zwu398, zwu399, zwu400, zwu401, zwu402, zwu403, zwu404, zwu405, zwu4090, zwu4091, zwu4092, zwu4093, zwu4094, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 13 > 10, 13 > 11, 13 > 12, 13 > 13, 13 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (125) YES ---------------------------------------- (126) Obligation: Q DP problem: The TRS P consists of the following rules: new_deleteMin(zwu80, zwu81, zwu82, Branch(zwu830, zwu831, zwu832, zwu833, zwu834), zwu84, h, ba) -> new_deleteMin(zwu830, zwu831, zwu832, zwu833, zwu834, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (127) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_deleteMin(zwu80, zwu81, zwu82, Branch(zwu830, zwu831, zwu832, zwu833, zwu834), zwu84, h, ba) -> new_deleteMin(zwu830, zwu831, zwu832, zwu833, zwu834, h, ba) The graph contains the following edges 4 > 1, 4 > 2, 4 > 3, 4 > 4, 4 > 5, 6 >= 6, 7 >= 7 ---------------------------------------- (128) YES ---------------------------------------- (129) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_key10(zwu521, zwu522, zwu523, zwu524, zwu525, zwu526, zwu527, zwu528, zwu529, zwu530, zwu531, zwu532, zwu533, Branch(zwu5340, zwu5341, zwu5342, zwu5343, zwu5344), h, ba) -> new_glueBal2Mid_key10(zwu521, zwu522, zwu523, zwu524, zwu525, zwu526, zwu527, zwu528, zwu529, zwu5340, zwu5341, zwu5342, zwu5343, zwu5344, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (130) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_key10(zwu521, zwu522, zwu523, zwu524, zwu525, zwu526, zwu527, zwu528, zwu529, zwu530, zwu531, zwu532, zwu533, Branch(zwu5340, zwu5341, zwu5342, zwu5343, zwu5344), h, ba) -> new_glueBal2Mid_key10(zwu521, zwu522, zwu523, zwu524, zwu525, zwu526, zwu527, zwu528, zwu529, zwu5340, zwu5341, zwu5342, zwu5343, zwu5344, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 14 > 10, 14 > 11, 14 > 12, 14 > 13, 14 > 14, 15 >= 15, 16 >= 16 ---------------------------------------- (131) YES ---------------------------------------- (132) Obligation: Q DP problem: The TRS P consists of the following rules: new_glueBal2Mid_elt100(zwu474, zwu475, zwu476, zwu477, zwu478, zwu479, zwu480, zwu481, zwu482, zwu483, zwu484, zwu485, zwu486, zwu487, Branch(zwu4880, zwu4881, zwu4882, zwu4883, zwu4884), h, ba) -> new_glueBal2Mid_elt100(zwu474, zwu475, zwu476, zwu477, zwu478, zwu479, zwu480, zwu481, zwu482, zwu483, zwu4880, zwu4881, zwu4882, zwu4883, zwu4884, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (133) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_glueBal2Mid_elt100(zwu474, zwu475, zwu476, zwu477, zwu478, zwu479, zwu480, zwu481, zwu482, zwu483, zwu484, zwu485, zwu486, zwu487, Branch(zwu4880, zwu4881, zwu4882, zwu4883, zwu4884), h, ba) -> new_glueBal2Mid_elt100(zwu474, zwu475, zwu476, zwu477, zwu478, zwu479, zwu480, zwu481, zwu482, zwu483, zwu4880, zwu4881, zwu4882, zwu4883, zwu4884, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 15 > 11, 15 > 12, 15 > 13, 15 > 14, 15 > 15, 16 >= 16, 17 >= 17 ---------------------------------------- (134) YES