/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) LetRed [EQUIVALENT, 4 ms] (8) HASKELL (9) NumRed [SOUND, 0 ms] (10) HASKELL (11) Narrow [SOUND, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; replicateM :: Monad b => Int -> b a -> b [a]; replicateM n x = sequence (replicate n x); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\xs->return (x : xs)" is transformed to "sequence0 x xs = return (x : xs); " The following Lambda expression "\x->sequence cs >>= sequence0 x" is transformed to "sequence1 cs x = sequence cs >>= sequence0 x; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; replicateM :: Monad b => Int -> b a -> b [a]; replicateM n x = sequence (replicate n x); } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; replicateM :: Monad b => Int -> b a -> b [a]; replicateM n x = sequence (replicate n x); } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "take n vx|n <= 0[]; take vy [] = []; take n (x : xs) = x : take (n - 1) xs; " is transformed to "take n vx = take3 n vx; take vy [] = take1 vy []; take n (x : xs) = take0 n (x : xs); " "take0 n (x : xs) = x : take (n - 1) xs; " "take1 vy [] = []; take1 ww wx = take0 ww wx; " "take2 n vx True = []; take2 n vx False = take1 n vx; " "take3 n vx = take2 n vx (n <= 0); take3 wy wz = take1 wy wz; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; replicateM :: Monad b => Int -> b a -> b [a]; replicateM n x = sequence (replicate n x); } ---------------------------------------- (7) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "xs where { xs = x : xs; } " are unpacked to the following functions on top level "repeatXs xu = xu : repeatXs xu; " ---------------------------------------- (8) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; replicateM :: Monad b => Int -> b a -> b [a]; replicateM n x = sequence (replicate n x); } ---------------------------------------- (9) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (10) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; replicateM :: Monad b => Int -> b a -> b [a]; replicateM n x = sequence (replicate n x); } ---------------------------------------- (11) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.replicateM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.replicateM xv3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.replicateM xv3 xv4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="sequence (replicate xv3 xv4)",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="sequence (take xv3 (repeat xv4))",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="sequence (take3 xv3 (repeat xv4))",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 8[label="sequence (take2 xv3 (repeat xv4) (xv3 <= Pos Zero))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="sequence (take2 xv3 (repeat xv4) (compare xv3 (Pos Zero) /= GT))",fontsize=16,color="black",shape="box"];9 -> 10[label="",style="solid", color="black", weight=3]; 10[label="sequence (take2 xv3 (repeat xv4) (not (compare xv3 (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];10 -> 11[label="",style="solid", color="black", weight=3]; 11[label="sequence (take2 xv3 (repeat xv4) (not (primCmpInt xv3 (Pos Zero) == GT)))",fontsize=16,color="burlywood",shape="box"];118[label="xv3/Pos xv30",fontsize=10,color="white",style="solid",shape="box"];11 -> 118[label="",style="solid", color="burlywood", weight=9]; 118 -> 12[label="",style="solid", color="burlywood", weight=3]; 119[label="xv3/Neg xv30",fontsize=10,color="white",style="solid",shape="box"];11 -> 119[label="",style="solid", color="burlywood", weight=9]; 119 -> 13[label="",style="solid", color="burlywood", weight=3]; 12[label="sequence (take2 (Pos xv30) (repeat xv4) (not (primCmpInt (Pos xv30) (Pos Zero) == GT)))",fontsize=16,color="burlywood",shape="box"];120[label="xv30/Succ xv300",fontsize=10,color="white",style="solid",shape="box"];12 -> 120[label="",style="solid", color="burlywood", weight=9]; 120 -> 14[label="",style="solid", color="burlywood", weight=3]; 121[label="xv30/Zero",fontsize=10,color="white",style="solid",shape="box"];12 -> 121[label="",style="solid", color="burlywood", weight=9]; 121 -> 15[label="",style="solid", color="burlywood", weight=3]; 13[label="sequence (take2 (Neg xv30) (repeat xv4) (not (primCmpInt (Neg xv30) (Pos Zero) == GT)))",fontsize=16,color="burlywood",shape="box"];122[label="xv30/Succ xv300",fontsize=10,color="white",style="solid",shape="box"];13 -> 122[label="",style="solid", color="burlywood", weight=9]; 122 -> 16[label="",style="solid", color="burlywood", weight=3]; 123[label="xv30/Zero",fontsize=10,color="white",style="solid",shape="box"];13 -> 123[label="",style="solid", color="burlywood", weight=9]; 123 -> 17[label="",style="solid", color="burlywood", weight=3]; 14[label="sequence (take2 (Pos (Succ xv300)) (repeat xv4) (not (primCmpInt (Pos (Succ xv300)) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];14 -> 18[label="",style="solid", color="black", weight=3]; 15[label="sequence (take2 (Pos Zero) (repeat xv4) (not (primCmpInt (Pos Zero) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];15 -> 19[label="",style="solid", color="black", weight=3]; 16[label="sequence (take2 (Neg (Succ xv300)) (repeat xv4) (not (primCmpInt (Neg (Succ xv300)) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 17[label="sequence (take2 (Neg Zero) (repeat xv4) (not (primCmpInt (Neg Zero) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];17 -> 21[label="",style="solid", color="black", weight=3]; 18[label="sequence (take2 (Pos (Succ xv300)) (repeat xv4) (not (primCmpNat (Succ xv300) Zero == GT)))",fontsize=16,color="black",shape="box"];18 -> 22[label="",style="solid", color="black", weight=3]; 19[label="sequence (take2 (Pos Zero) (repeat xv4) (not (EQ == GT)))",fontsize=16,color="black",shape="box"];19 -> 23[label="",style="solid", color="black", weight=3]; 20[label="sequence (take2 (Neg (Succ xv300)) (repeat xv4) (not (LT == GT)))",fontsize=16,color="black",shape="box"];20 -> 24[label="",style="solid", color="black", weight=3]; 21[label="sequence (take2 (Neg Zero) (repeat xv4) (not (EQ == GT)))",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 22[label="sequence (take2 (Pos (Succ xv300)) (repeat xv4) (not (GT == GT)))",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 23[label="sequence (take2 (Pos Zero) (repeat xv4) (not False))",fontsize=16,color="black",shape="box"];23 -> 27[label="",style="solid", color="black", weight=3]; 24[label="sequence (take2 (Neg (Succ xv300)) (repeat xv4) (not False))",fontsize=16,color="black",shape="box"];24 -> 28[label="",style="solid", color="black", weight=3]; 25[label="sequence (take2 (Neg Zero) (repeat xv4) (not False))",fontsize=16,color="black",shape="box"];25 -> 29[label="",style="solid", color="black", weight=3]; 26[label="sequence (take2 (Pos (Succ xv300)) (repeat xv4) (not True))",fontsize=16,color="black",shape="box"];26 -> 30[label="",style="solid", color="black", weight=3]; 27[label="sequence (take2 (Pos Zero) (repeat xv4) True)",fontsize=16,color="black",shape="box"];27 -> 31[label="",style="solid", color="black", weight=3]; 28[label="sequence (take2 (Neg (Succ xv300)) (repeat xv4) True)",fontsize=16,color="black",shape="box"];28 -> 32[label="",style="solid", color="black", weight=3]; 29[label="sequence (take2 (Neg Zero) (repeat xv4) True)",fontsize=16,color="black",shape="box"];29 -> 33[label="",style="solid", color="black", weight=3]; 30[label="sequence (take2 (Pos (Succ xv300)) (repeat xv4) False)",fontsize=16,color="black",shape="box"];30 -> 34[label="",style="solid", color="black", weight=3]; 31[label="sequence []",fontsize=16,color="black",shape="triangle"];31 -> 35[label="",style="solid", color="black", weight=3]; 32 -> 31[label="",style="dashed", color="red", weight=0]; 32[label="sequence []",fontsize=16,color="magenta"];33 -> 31[label="",style="dashed", color="red", weight=0]; 33[label="sequence []",fontsize=16,color="magenta"];34[label="sequence (take1 (Pos (Succ xv300)) (repeat xv4))",fontsize=16,color="black",shape="box"];34 -> 36[label="",style="solid", color="black", weight=3]; 35[label="return []",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 36[label="sequence (take1 (Pos (Succ xv300)) (repeatXs xv4))",fontsize=16,color="black",shape="triangle"];36 -> 38[label="",style="solid", color="black", weight=3]; 37[label="Just []",fontsize=16,color="green",shape="box"];38[label="sequence (take1 (Pos (Succ xv300)) (xv4 : repeatXs xv4))",fontsize=16,color="black",shape="box"];38 -> 39[label="",style="solid", color="black", weight=3]; 39[label="sequence (take0 (Pos (Succ xv300)) (xv4 : repeatXs xv4))",fontsize=16,color="black",shape="box"];39 -> 40[label="",style="solid", color="black", weight=3]; 40[label="sequence (xv4 : take (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs xv4))",fontsize=16,color="black",shape="box"];40 -> 41[label="",style="solid", color="black", weight=3]; 41[label="xv4 >>= sequence1 (take (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs xv4))",fontsize=16,color="burlywood",shape="box"];124[label="xv4/Nothing",fontsize=10,color="white",style="solid",shape="box"];41 -> 124[label="",style="solid", color="burlywood", weight=9]; 124 -> 42[label="",style="solid", color="burlywood", weight=3]; 125[label="xv4/Just xv40",fontsize=10,color="white",style="solid",shape="box"];41 -> 125[label="",style="solid", color="burlywood", weight=9]; 125 -> 43[label="",style="solid", color="burlywood", weight=3]; 42[label="Nothing >>= sequence1 (take (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs Nothing))",fontsize=16,color="black",shape="box"];42 -> 44[label="",style="solid", color="black", weight=3]; 43[label="Just xv40 >>= sequence1 (take (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40)))",fontsize=16,color="black",shape="box"];43 -> 45[label="",style="solid", color="black", weight=3]; 44[label="Nothing",fontsize=16,color="green",shape="box"];45[label="sequence1 (take (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40))) xv40",fontsize=16,color="black",shape="box"];45 -> 46[label="",style="solid", color="black", weight=3]; 46 -> 68[label="",style="dashed", color="red", weight=0]; 46[label="sequence (take (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40))) >>= sequence0 xv40",fontsize=16,color="magenta"];46 -> 69[label="",style="dashed", color="magenta", weight=3]; 69[label="sequence (take (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40)))",fontsize=16,color="black",shape="box"];69 -> 89[label="",style="solid", color="black", weight=3]; 68[label="xv5 >>= sequence0 xv40",fontsize=16,color="burlywood",shape="triangle"];126[label="xv5/Nothing",fontsize=10,color="white",style="solid",shape="box"];68 -> 126[label="",style="solid", color="burlywood", weight=9]; 126 -> 90[label="",style="solid", color="burlywood", weight=3]; 127[label="xv5/Just xv50",fontsize=10,color="white",style="solid",shape="box"];68 -> 127[label="",style="solid", color="burlywood", weight=9]; 127 -> 91[label="",style="solid", color="burlywood", weight=3]; 89[label="sequence (take3 (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40)))",fontsize=16,color="black",shape="box"];89 -> 92[label="",style="solid", color="black", weight=3]; 90[label="Nothing >>= sequence0 xv40",fontsize=16,color="black",shape="box"];90 -> 93[label="",style="solid", color="black", weight=3]; 91[label="Just xv50 >>= sequence0 xv40",fontsize=16,color="black",shape="box"];91 -> 94[label="",style="solid", color="black", weight=3]; 92[label="sequence (take2 (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40)) (Pos (Succ xv300) - Pos (Succ Zero) <= Pos Zero))",fontsize=16,color="black",shape="box"];92 -> 95[label="",style="solid", color="black", weight=3]; 93[label="Nothing",fontsize=16,color="green",shape="box"];94[label="sequence0 xv40 xv50",fontsize=16,color="black",shape="box"];94 -> 96[label="",style="solid", color="black", weight=3]; 95[label="sequence (take2 (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40)) (compare (Pos (Succ xv300) - Pos (Succ Zero)) (Pos Zero) /= GT))",fontsize=16,color="black",shape="box"];95 -> 97[label="",style="solid", color="black", weight=3]; 96[label="return (xv40 : xv50)",fontsize=16,color="black",shape="box"];96 -> 98[label="",style="solid", color="black", weight=3]; 97[label="sequence (take2 (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40)) (not (compare (Pos (Succ xv300) - Pos (Succ Zero)) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];97 -> 99[label="",style="solid", color="black", weight=3]; 98[label="Just (xv40 : xv50)",fontsize=16,color="green",shape="box"];99[label="sequence (take2 (Pos (Succ xv300) - Pos (Succ Zero)) (repeatXs (Just xv40)) (not (primCmpInt (Pos (Succ xv300) - Pos (Succ Zero)) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];99 -> 100[label="",style="solid", color="black", weight=3]; 100[label="sequence (take2 (primMinusInt (Pos (Succ xv300)) (Pos (Succ Zero))) (repeatXs (Just xv40)) (not (primCmpInt (primMinusInt (Pos (Succ xv300)) (Pos (Succ Zero))) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];100 -> 101[label="",style="solid", color="black", weight=3]; 101[label="sequence (take2 (primMinusNat (Succ xv300) (Succ Zero)) (repeatXs (Just xv40)) (not (primCmpInt (primMinusNat (Succ xv300) (Succ Zero)) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];101 -> 102[label="",style="solid", color="black", weight=3]; 102[label="sequence (take2 (primMinusNat xv300 Zero) (repeatXs (Just xv40)) (not (primCmpInt (primMinusNat xv300 Zero) (Pos Zero) == GT)))",fontsize=16,color="burlywood",shape="box"];128[label="xv300/Succ xv3000",fontsize=10,color="white",style="solid",shape="box"];102 -> 128[label="",style="solid", color="burlywood", weight=9]; 128 -> 103[label="",style="solid", color="burlywood", weight=3]; 129[label="xv300/Zero",fontsize=10,color="white",style="solid",shape="box"];102 -> 129[label="",style="solid", color="burlywood", weight=9]; 129 -> 104[label="",style="solid", color="burlywood", weight=3]; 103[label="sequence (take2 (primMinusNat (Succ xv3000) Zero) (repeatXs (Just xv40)) (not (primCmpInt (primMinusNat (Succ xv3000) Zero) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];103 -> 105[label="",style="solid", color="black", weight=3]; 104[label="sequence (take2 (primMinusNat Zero Zero) (repeatXs (Just xv40)) (not (primCmpInt (primMinusNat Zero Zero) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];104 -> 106[label="",style="solid", color="black", weight=3]; 105[label="sequence (take2 (Pos (Succ xv3000)) (repeatXs (Just xv40)) (not (primCmpInt (Pos (Succ xv3000)) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];105 -> 107[label="",style="solid", color="black", weight=3]; 106[label="sequence (take2 (Pos Zero) (repeatXs (Just xv40)) (not (primCmpInt (Pos Zero) (Pos Zero) == GT)))",fontsize=16,color="black",shape="box"];106 -> 108[label="",style="solid", color="black", weight=3]; 107[label="sequence (take2 (Pos (Succ xv3000)) (repeatXs (Just xv40)) (not (primCmpNat (Succ xv3000) Zero == GT)))",fontsize=16,color="black",shape="box"];107 -> 109[label="",style="solid", color="black", weight=3]; 108[label="sequence (take2 (Pos Zero) (repeatXs (Just xv40)) (not (EQ == GT)))",fontsize=16,color="black",shape="box"];108 -> 110[label="",style="solid", color="black", weight=3]; 109[label="sequence (take2 (Pos (Succ xv3000)) (repeatXs (Just xv40)) (not (GT == GT)))",fontsize=16,color="black",shape="box"];109 -> 111[label="",style="solid", color="black", weight=3]; 110[label="sequence (take2 (Pos Zero) (repeatXs (Just xv40)) (not False))",fontsize=16,color="black",shape="box"];110 -> 112[label="",style="solid", color="black", weight=3]; 111[label="sequence (take2 (Pos (Succ xv3000)) (repeatXs (Just xv40)) (not True))",fontsize=16,color="black",shape="box"];111 -> 113[label="",style="solid", color="black", weight=3]; 112[label="sequence (take2 (Pos Zero) (repeatXs (Just xv40)) True)",fontsize=16,color="black",shape="box"];112 -> 114[label="",style="solid", color="black", weight=3]; 113[label="sequence (take2 (Pos (Succ xv3000)) (repeatXs (Just xv40)) False)",fontsize=16,color="black",shape="box"];113 -> 115[label="",style="solid", color="black", weight=3]; 114 -> 31[label="",style="dashed", color="red", weight=0]; 114[label="sequence []",fontsize=16,color="magenta"];115 -> 36[label="",style="dashed", color="red", weight=0]; 115[label="sequence (take1 (Pos (Succ xv3000)) (repeatXs (Just xv40)))",fontsize=16,color="magenta"];115 -> 116[label="",style="dashed", color="magenta", weight=3]; 115 -> 117[label="",style="dashed", color="magenta", weight=3]; 116[label="xv3000",fontsize=16,color="green",shape="box"];117[label="Just xv40",fontsize=16,color="green",shape="box"];} ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_sequence(Succ(xv3000), Just(xv40), h) -> new_sequence(xv3000, Just(xv40), h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_sequence(Succ(xv3000), Just(xv40), h) -> new_sequence(xv3000, Just(xv40), h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (14) YES