/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) AND (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) AND (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) QDPSizeChangeProof [EQUIVALENT, 0 ms] (26) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\xs->return (x : xs)" is transformed to "sequence0 x xs = return (x : xs); " The following Lambda expression "\x->sequence cs >>= sequence0 x" is transformed to "sequence1 cs x = sequence cs >>= sequence0 x; " ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="sequence",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="sequence vx3",fontsize=16,color="burlywood",shape="triangle"];96[label="vx3/vx30 : vx31",fontsize=10,color="white",style="solid",shape="box"];3 -> 96[label="",style="solid", color="burlywood", weight=9]; 96 -> 4[label="",style="solid", color="burlywood", weight=3]; 97[label="vx3/[]",fontsize=10,color="white",style="solid",shape="box"];3 -> 97[label="",style="solid", color="burlywood", weight=9]; 97 -> 5[label="",style="solid", color="burlywood", weight=3]; 4[label="sequence (vx30 : vx31)",fontsize=16,color="black",shape="box"];4 -> 6[label="",style="solid", color="black", weight=3]; 5[label="sequence []",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="vx30 >>= sequence1 vx31",fontsize=16,color="blue",shape="box"];98[label=">>= :: (Maybe a) -> (a -> Maybe ([] a)) -> Maybe ([] a)",fontsize=10,color="white",style="solid",shape="box"];6 -> 98[label="",style="solid", color="blue", weight=9]; 98 -> 8[label="",style="solid", color="blue", weight=3]; 99[label=">>= :: ([] a) -> (a -> [] ([] a)) -> [] ([] a)",fontsize=10,color="white",style="solid",shape="box"];6 -> 99[label="",style="solid", color="blue", weight=9]; 99 -> 9[label="",style="solid", color="blue", weight=3]; 100[label=">>= :: (IO a) -> (a -> IO ([] a)) -> IO ([] a)",fontsize=10,color="white",style="solid",shape="box"];6 -> 100[label="",style="solid", color="blue", weight=9]; 100 -> 10[label="",style="solid", color="blue", weight=3]; 7[label="return []",fontsize=16,color="blue",shape="box"];101[label="return :: ([] a) -> Maybe ([] a)",fontsize=10,color="white",style="solid",shape="box"];7 -> 101[label="",style="solid", color="blue", weight=9]; 101 -> 11[label="",style="solid", color="blue", weight=3]; 102[label="return :: ([] a) -> [] ([] a)",fontsize=10,color="white",style="solid",shape="box"];7 -> 102[label="",style="solid", color="blue", weight=9]; 102 -> 12[label="",style="solid", color="blue", weight=3]; 103[label="return :: ([] a) -> IO ([] a)",fontsize=10,color="white",style="solid",shape="box"];7 -> 103[label="",style="solid", color="blue", weight=9]; 103 -> 13[label="",style="solid", color="blue", weight=3]; 8[label="vx30 >>= sequence1 vx31",fontsize=16,color="burlywood",shape="box"];104[label="vx30/Nothing",fontsize=10,color="white",style="solid",shape="box"];8 -> 104[label="",style="solid", color="burlywood", weight=9]; 104 -> 14[label="",style="solid", color="burlywood", weight=3]; 105[label="vx30/Just vx300",fontsize=10,color="white",style="solid",shape="box"];8 -> 105[label="",style="solid", color="burlywood", weight=9]; 105 -> 15[label="",style="solid", color="burlywood", weight=3]; 9[label="vx30 >>= sequence1 vx31",fontsize=16,color="burlywood",shape="triangle"];106[label="vx30/vx300 : vx301",fontsize=10,color="white",style="solid",shape="box"];9 -> 106[label="",style="solid", color="burlywood", weight=9]; 106 -> 16[label="",style="solid", color="burlywood", weight=3]; 107[label="vx30/[]",fontsize=10,color="white",style="solid",shape="box"];9 -> 107[label="",style="solid", color="burlywood", weight=9]; 107 -> 17[label="",style="solid", color="burlywood", weight=3]; 10[label="vx30 >>= sequence1 vx31",fontsize=16,color="black",shape="box"];10 -> 18[label="",style="solid", color="black", weight=3]; 11[label="return []",fontsize=16,color="black",shape="box"];11 -> 19[label="",style="solid", color="black", weight=3]; 12[label="return []",fontsize=16,color="black",shape="box"];12 -> 20[label="",style="solid", color="black", weight=3]; 13[label="return []",fontsize=16,color="black",shape="box"];13 -> 21[label="",style="solid", color="black", weight=3]; 14[label="Nothing >>= sequence1 vx31",fontsize=16,color="black",shape="box"];14 -> 22[label="",style="solid", color="black", weight=3]; 15[label="Just vx300 >>= sequence1 vx31",fontsize=16,color="black",shape="box"];15 -> 23[label="",style="solid", color="black", weight=3]; 16[label="vx300 : vx301 >>= sequence1 vx31",fontsize=16,color="black",shape="box"];16 -> 24[label="",style="solid", color="black", weight=3]; 17[label="[] >>= sequence1 vx31",fontsize=16,color="black",shape="box"];17 -> 25[label="",style="solid", color="black", weight=3]; 18[label="primbindIO vx30 (sequence1 vx31)",fontsize=16,color="burlywood",shape="box"];108[label="vx30/IO vx300",fontsize=10,color="white",style="solid",shape="box"];18 -> 108[label="",style="solid", color="burlywood", weight=9]; 108 -> 26[label="",style="solid", color="burlywood", weight=3]; 109[label="vx30/AProVE_IO vx300",fontsize=10,color="white",style="solid",shape="box"];18 -> 109[label="",style="solid", color="burlywood", weight=9]; 109 -> 27[label="",style="solid", color="burlywood", weight=3]; 110[label="vx30/AProVE_Exception vx300",fontsize=10,color="white",style="solid",shape="box"];18 -> 110[label="",style="solid", color="burlywood", weight=9]; 110 -> 28[label="",style="solid", color="burlywood", weight=3]; 111[label="vx30/AProVE_Error vx300",fontsize=10,color="white",style="solid",shape="box"];18 -> 111[label="",style="solid", color="burlywood", weight=9]; 111 -> 29[label="",style="solid", color="burlywood", weight=3]; 19[label="Just []",fontsize=16,color="green",shape="box"];20[label="[] : []",fontsize=16,color="green",shape="box"];21[label="primretIO []",fontsize=16,color="black",shape="box"];21 -> 30[label="",style="solid", color="black", weight=3]; 22[label="Nothing",fontsize=16,color="green",shape="box"];23[label="sequence1 vx31 vx300",fontsize=16,color="black",shape="box"];23 -> 31[label="",style="solid", color="black", weight=3]; 24 -> 32[label="",style="dashed", color="red", weight=0]; 24[label="sequence1 vx31 vx300 ++ (vx301 >>= sequence1 vx31)",fontsize=16,color="magenta"];24 -> 33[label="",style="dashed", color="magenta", weight=3]; 25[label="[]",fontsize=16,color="green",shape="box"];26[label="primbindIO (IO vx300) (sequence1 vx31)",fontsize=16,color="black",shape="box"];26 -> 34[label="",style="solid", color="black", weight=3]; 27[label="primbindIO (AProVE_IO vx300) (sequence1 vx31)",fontsize=16,color="black",shape="box"];27 -> 35[label="",style="solid", color="black", weight=3]; 28[label="primbindIO (AProVE_Exception vx300) (sequence1 vx31)",fontsize=16,color="black",shape="box"];28 -> 36[label="",style="solid", color="black", weight=3]; 29[label="primbindIO (AProVE_Error vx300) (sequence1 vx31)",fontsize=16,color="black",shape="box"];29 -> 37[label="",style="solid", color="black", weight=3]; 30[label="AProVE_IO []",fontsize=16,color="green",shape="box"];31 -> 38[label="",style="dashed", color="red", weight=0]; 31[label="sequence vx31 >>= sequence0 vx300",fontsize=16,color="magenta"];31 -> 39[label="",style="dashed", color="magenta", weight=3]; 33 -> 9[label="",style="dashed", color="red", weight=0]; 33[label="vx301 >>= sequence1 vx31",fontsize=16,color="magenta"];33 -> 40[label="",style="dashed", color="magenta", weight=3]; 32[label="sequence1 vx31 vx300 ++ vx4",fontsize=16,color="black",shape="triangle"];32 -> 41[label="",style="solid", color="black", weight=3]; 34[label="error []",fontsize=16,color="red",shape="box"];35[label="sequence1 vx31 vx300",fontsize=16,color="black",shape="box"];35 -> 42[label="",style="solid", color="black", weight=3]; 36[label="AProVE_Exception vx300",fontsize=16,color="green",shape="box"];37[label="AProVE_Error vx300",fontsize=16,color="green",shape="box"];39 -> 3[label="",style="dashed", color="red", weight=0]; 39[label="sequence vx31",fontsize=16,color="magenta"];39 -> 43[label="",style="dashed", color="magenta", weight=3]; 38[label="vx5 >>= sequence0 vx300",fontsize=16,color="burlywood",shape="triangle"];112[label="vx5/Nothing",fontsize=10,color="white",style="solid",shape="box"];38 -> 112[label="",style="solid", color="burlywood", weight=9]; 112 -> 44[label="",style="solid", color="burlywood", weight=3]; 113[label="vx5/Just vx50",fontsize=10,color="white",style="solid",shape="box"];38 -> 113[label="",style="solid", color="burlywood", weight=9]; 113 -> 45[label="",style="solid", color="burlywood", weight=3]; 40[label="vx301",fontsize=16,color="green",shape="box"];41 -> 46[label="",style="dashed", color="red", weight=0]; 41[label="(sequence vx31 >>= sequence0 vx300) ++ vx4",fontsize=16,color="magenta"];41 -> 47[label="",style="dashed", color="magenta", weight=3]; 42 -> 48[label="",style="dashed", color="red", weight=0]; 42[label="sequence vx31 >>= sequence0 vx300",fontsize=16,color="magenta"];42 -> 49[label="",style="dashed", color="magenta", weight=3]; 43[label="vx31",fontsize=16,color="green",shape="box"];44[label="Nothing >>= sequence0 vx300",fontsize=16,color="black",shape="box"];44 -> 50[label="",style="solid", color="black", weight=3]; 45[label="Just vx50 >>= sequence0 vx300",fontsize=16,color="black",shape="box"];45 -> 51[label="",style="solid", color="black", weight=3]; 47 -> 3[label="",style="dashed", color="red", weight=0]; 47[label="sequence vx31",fontsize=16,color="magenta"];47 -> 52[label="",style="dashed", color="magenta", weight=3]; 46[label="(vx6 >>= sequence0 vx300) ++ vx4",fontsize=16,color="burlywood",shape="triangle"];114[label="vx6/vx60 : vx61",fontsize=10,color="white",style="solid",shape="box"];46 -> 114[label="",style="solid", color="burlywood", weight=9]; 114 -> 53[label="",style="solid", color="burlywood", weight=3]; 115[label="vx6/[]",fontsize=10,color="white",style="solid",shape="box"];46 -> 115[label="",style="solid", color="burlywood", weight=9]; 115 -> 54[label="",style="solid", color="burlywood", weight=3]; 49 -> 3[label="",style="dashed", color="red", weight=0]; 49[label="sequence vx31",fontsize=16,color="magenta"];49 -> 55[label="",style="dashed", color="magenta", weight=3]; 48[label="vx7 >>= sequence0 vx300",fontsize=16,color="black",shape="triangle"];48 -> 56[label="",style="solid", color="black", weight=3]; 50[label="Nothing",fontsize=16,color="green",shape="box"];51[label="sequence0 vx300 vx50",fontsize=16,color="black",shape="box"];51 -> 57[label="",style="solid", color="black", weight=3]; 52[label="vx31",fontsize=16,color="green",shape="box"];53[label="(vx60 : vx61 >>= sequence0 vx300) ++ vx4",fontsize=16,color="black",shape="box"];53 -> 58[label="",style="solid", color="black", weight=3]; 54[label="([] >>= sequence0 vx300) ++ vx4",fontsize=16,color="black",shape="box"];54 -> 59[label="",style="solid", color="black", weight=3]; 55[label="vx31",fontsize=16,color="green",shape="box"];56[label="primbindIO vx7 (sequence0 vx300)",fontsize=16,color="burlywood",shape="box"];116[label="vx7/IO vx70",fontsize=10,color="white",style="solid",shape="box"];56 -> 116[label="",style="solid", color="burlywood", weight=9]; 116 -> 60[label="",style="solid", color="burlywood", weight=3]; 117[label="vx7/AProVE_IO vx70",fontsize=10,color="white",style="solid",shape="box"];56 -> 117[label="",style="solid", color="burlywood", weight=9]; 117 -> 61[label="",style="solid", color="burlywood", weight=3]; 118[label="vx7/AProVE_Exception vx70",fontsize=10,color="white",style="solid",shape="box"];56 -> 118[label="",style="solid", color="burlywood", weight=9]; 118 -> 62[label="",style="solid", color="burlywood", weight=3]; 119[label="vx7/AProVE_Error vx70",fontsize=10,color="white",style="solid",shape="box"];56 -> 119[label="",style="solid", color="burlywood", weight=9]; 119 -> 63[label="",style="solid", color="burlywood", weight=3]; 57[label="return (vx300 : vx50)",fontsize=16,color="black",shape="box"];57 -> 64[label="",style="solid", color="black", weight=3]; 58[label="(sequence0 vx300 vx60 ++ (vx61 >>= sequence0 vx300)) ++ vx4",fontsize=16,color="black",shape="box"];58 -> 65[label="",style="solid", color="black", weight=3]; 59[label="[] ++ vx4",fontsize=16,color="black",shape="triangle"];59 -> 66[label="",style="solid", color="black", weight=3]; 60[label="primbindIO (IO vx70) (sequence0 vx300)",fontsize=16,color="black",shape="box"];60 -> 67[label="",style="solid", color="black", weight=3]; 61[label="primbindIO (AProVE_IO vx70) (sequence0 vx300)",fontsize=16,color="black",shape="box"];61 -> 68[label="",style="solid", color="black", weight=3]; 62[label="primbindIO (AProVE_Exception vx70) (sequence0 vx300)",fontsize=16,color="black",shape="box"];62 -> 69[label="",style="solid", color="black", weight=3]; 63[label="primbindIO (AProVE_Error vx70) (sequence0 vx300)",fontsize=16,color="black",shape="box"];63 -> 70[label="",style="solid", color="black", weight=3]; 64[label="Just (vx300 : vx50)",fontsize=16,color="green",shape="box"];65[label="(return (vx300 : vx60) ++ (vx61 >>= sequence0 vx300)) ++ vx4",fontsize=16,color="black",shape="box"];65 -> 71[label="",style="solid", color="black", weight=3]; 66[label="vx4",fontsize=16,color="green",shape="box"];67[label="error []",fontsize=16,color="red",shape="box"];68[label="sequence0 vx300 vx70",fontsize=16,color="black",shape="box"];68 -> 72[label="",style="solid", color="black", weight=3]; 69[label="AProVE_Exception vx70",fontsize=16,color="green",shape="box"];70[label="AProVE_Error vx70",fontsize=16,color="green",shape="box"];71[label="(((vx300 : vx60) : []) ++ (vx61 >>= sequence0 vx300)) ++ vx4",fontsize=16,color="black",shape="box"];71 -> 73[label="",style="solid", color="black", weight=3]; 72[label="return (vx300 : vx70)",fontsize=16,color="black",shape="box"];72 -> 74[label="",style="solid", color="black", weight=3]; 73 -> 75[label="",style="dashed", color="red", weight=0]; 73[label="((vx300 : vx60) : [] ++ (vx61 >>= sequence0 vx300)) ++ vx4",fontsize=16,color="magenta"];73 -> 76[label="",style="dashed", color="magenta", weight=3]; 74[label="primretIO (vx300 : vx70)",fontsize=16,color="black",shape="box"];74 -> 77[label="",style="solid", color="black", weight=3]; 76 -> 59[label="",style="dashed", color="red", weight=0]; 76[label="[] ++ (vx61 >>= sequence0 vx300)",fontsize=16,color="magenta"];76 -> 78[label="",style="dashed", color="magenta", weight=3]; 75[label="((vx300 : vx60) : vx8) ++ vx4",fontsize=16,color="black",shape="triangle"];75 -> 79[label="",style="solid", color="black", weight=3]; 77[label="AProVE_IO (vx300 : vx70)",fontsize=16,color="green",shape="box"];78[label="vx61 >>= sequence0 vx300",fontsize=16,color="burlywood",shape="triangle"];120[label="vx61/vx610 : vx611",fontsize=10,color="white",style="solid",shape="box"];78 -> 120[label="",style="solid", color="burlywood", weight=9]; 120 -> 80[label="",style="solid", color="burlywood", weight=3]; 121[label="vx61/[]",fontsize=10,color="white",style="solid",shape="box"];78 -> 121[label="",style="solid", color="burlywood", weight=9]; 121 -> 81[label="",style="solid", color="burlywood", weight=3]; 79[label="(vx300 : vx60) : vx8 ++ vx4",fontsize=16,color="green",shape="box"];79 -> 82[label="",style="dashed", color="green", weight=3]; 80[label="vx610 : vx611 >>= sequence0 vx300",fontsize=16,color="black",shape="box"];80 -> 83[label="",style="solid", color="black", weight=3]; 81[label="[] >>= sequence0 vx300",fontsize=16,color="black",shape="box"];81 -> 84[label="",style="solid", color="black", weight=3]; 82[label="vx8 ++ vx4",fontsize=16,color="burlywood",shape="triangle"];122[label="vx8/vx80 : vx81",fontsize=10,color="white",style="solid",shape="box"];82 -> 122[label="",style="solid", color="burlywood", weight=9]; 122 -> 85[label="",style="solid", color="burlywood", weight=3]; 123[label="vx8/[]",fontsize=10,color="white",style="solid",shape="box"];82 -> 123[label="",style="solid", color="burlywood", weight=9]; 123 -> 86[label="",style="solid", color="burlywood", weight=3]; 83 -> 82[label="",style="dashed", color="red", weight=0]; 83[label="sequence0 vx300 vx610 ++ (vx611 >>= sequence0 vx300)",fontsize=16,color="magenta"];83 -> 87[label="",style="dashed", color="magenta", weight=3]; 83 -> 88[label="",style="dashed", color="magenta", weight=3]; 84[label="[]",fontsize=16,color="green",shape="box"];85[label="(vx80 : vx81) ++ vx4",fontsize=16,color="black",shape="box"];85 -> 89[label="",style="solid", color="black", weight=3]; 86[label="[] ++ vx4",fontsize=16,color="black",shape="box"];86 -> 90[label="",style="solid", color="black", weight=3]; 87 -> 78[label="",style="dashed", color="red", weight=0]; 87[label="vx611 >>= sequence0 vx300",fontsize=16,color="magenta"];87 -> 91[label="",style="dashed", color="magenta", weight=3]; 88[label="sequence0 vx300 vx610",fontsize=16,color="black",shape="box"];88 -> 92[label="",style="solid", color="black", weight=3]; 89[label="vx80 : vx81 ++ vx4",fontsize=16,color="green",shape="box"];89 -> 93[label="",style="dashed", color="green", weight=3]; 90[label="vx4",fontsize=16,color="green",shape="box"];91[label="vx611",fontsize=16,color="green",shape="box"];92[label="return (vx300 : vx610)",fontsize=16,color="black",shape="box"];92 -> 94[label="",style="solid", color="black", weight=3]; 93 -> 82[label="",style="dashed", color="red", weight=0]; 93[label="vx81 ++ vx4",fontsize=16,color="magenta"];93 -> 95[label="",style="dashed", color="magenta", weight=3]; 94[label="(vx300 : vx610) : []",fontsize=16,color="green",shape="box"];95[label="vx81",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(:(vx610, vx611), vx300, h) -> new_gtGtEs(vx611, vx300, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs(:(vx610, vx611), vx300, h) -> new_gtGtEs(vx611, vx300, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_sequence(:(:(vx300, vx301), vx31), ty_[], h) -> new_psPs0(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) new_gtGtEs1(:(vx300, vx301), vx31, h) -> new_gtGtEs1(vx301, vx31, h) new_sequence(:(:(vx300, vx301), vx31), ty_[], h) -> new_gtGtEs1(vx301, vx31, h) new_sequence(:(AProVE_IO(vx300), vx31), ty_IO, h) -> new_sequence(vx31, ty_IO, h) new_gtGtEs1(:(vx300, vx301), vx31, h) -> new_psPs0(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) new_psPs0(vx31, vx300, vx4, h) -> new_sequence(vx31, ty_[], h) new_sequence(:(Just(vx300), vx31), ty_Maybe, h) -> new_sequence(vx31, ty_Maybe, h) The TRS R consists of the following rules: new_psPs4(vx4, h) -> vx4 new_gtGtEs0([], vx31, h) -> [] new_sequence0(:(AProVE_Exception(vx300), vx31), ty_IO, h) -> AProVE_Exception(vx300) new_sequence0(:(Just(vx300), vx31), ty_Maybe, h) -> new_gtGtEs3(new_sequence0(vx31, ty_Maybe, h), vx300, h) new_sequence0([], ty_[], h) -> :([], []) new_gtGtEs2(AProVE_IO(vx70), vx300, h) -> AProVE_IO(:(vx300, vx70)) new_sequence0(:(IO(vx300), vx31), ty_IO, h) -> error([]) new_sequence0(:(AProVE_IO(vx300), vx31), ty_IO, h) -> new_gtGtEs2(new_sequence0(vx31, ty_IO, h), vx300, h) new_sequence0([], ty_Maybe, h) -> Just([]) new_gtGtEs4([], vx300, h) -> [] new_psPs1(:(vx80, vx81), vx4, h) -> :(vx80, new_psPs1(vx81, vx4, h)) new_sequence0(:(Nothing, vx31), ty_Maybe, h) -> Nothing new_psPs3(vx300, vx60, vx8, vx4, h) -> :(:(vx300, vx60), new_psPs1(vx8, vx4, h)) new_gtGtEs2(AProVE_Error(vx70), vx300, h) -> AProVE_Error(vx70) new_gtGtEs2(IO(vx70), vx300, h) -> error([]) new_gtGtEs2(AProVE_Exception(vx70), vx300, h) -> AProVE_Exception(vx70) new_sequence0(:(AProVE_Error(vx300), vx31), ty_IO, h) -> AProVE_Error(vx300) new_psPs2([], vx300, vx4, h) -> new_psPs4(vx4, h) new_psPs5(vx31, vx300, vx4, h) -> new_psPs2(new_sequence0(vx31, ty_[], h), vx300, vx4, h) new_gtGtEs4(:(vx610, vx611), vx300, h) -> new_psPs1(:(:(vx300, vx610), []), new_gtGtEs4(vx611, vx300, h), h) new_psPs2(:(vx60, vx61), vx300, vx4, h) -> new_psPs3(vx300, vx60, new_psPs4(new_gtGtEs4(vx61, vx300, h), h), vx4, h) new_psPs1([], vx4, h) -> vx4 new_gtGtEs3(Nothing, vx300, h) -> Nothing new_gtGtEs0(:(vx300, vx301), vx31, h) -> new_psPs5(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) new_sequence0(:(vx30, vx31), ty_[], h) -> new_gtGtEs0(vx30, vx31, h) new_sequence0([], ty_IO, h) -> AProVE_IO([]) new_gtGtEs3(Just(vx50), vx300, h) -> Just(:(vx300, vx50)) The set Q consists of the following terms: new_gtGtEs3(Just(x0), x1, x2) new_gtGtEs2(AProVE_IO(x0), x1, x2) new_psPs4(x0, x1) new_psPs2(:(x0, x1), x2, x3, x4) new_gtGtEs2(AProVE_Exception(x0), x1, x2) new_sequence0([], ty_IO, x0) new_gtGtEs2(AProVE_Error(x0), x1, x2) new_psPs1(:(x0, x1), x2, x3) new_sequence0(:(AProVE_IO(x0), x1), ty_IO, x2) new_gtGtEs0(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Error(x0), x1), ty_IO, x2) new_gtGtEs3(Nothing, x0, x1) new_psPs3(x0, x1, x2, x3, x4) new_psPs5(x0, x1, x2, x3) new_sequence0(:(Nothing, x0), ty_Maybe, x1) new_sequence0(:(Just(x0), x1), ty_Maybe, x2) new_gtGtEs0([], x0, x1) new_gtGtEs4([], x0, x1) new_sequence0([], ty_[], x0) new_sequence0([], ty_Maybe, x0) new_sequence0(:(x0, x1), ty_[], x2) new_psPs2([], x0, x1, x2) new_sequence0(:(IO(x0), x1), ty_IO, x2) new_gtGtEs2(IO(x0), x1, x2) new_psPs1([], x0, x1) new_gtGtEs4(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Exception(x0), x1), ty_IO, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs. ---------------------------------------- (14) Complex Obligation (AND) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_sequence(:(Just(vx300), vx31), ty_Maybe, h) -> new_sequence(vx31, ty_Maybe, h) The TRS R consists of the following rules: new_psPs4(vx4, h) -> vx4 new_gtGtEs0([], vx31, h) -> [] new_sequence0(:(AProVE_Exception(vx300), vx31), ty_IO, h) -> AProVE_Exception(vx300) new_sequence0(:(Just(vx300), vx31), ty_Maybe, h) -> new_gtGtEs3(new_sequence0(vx31, ty_Maybe, h), vx300, h) new_sequence0([], ty_[], h) -> :([], []) new_gtGtEs2(AProVE_IO(vx70), vx300, h) -> AProVE_IO(:(vx300, vx70)) new_sequence0(:(IO(vx300), vx31), ty_IO, h) -> error([]) new_sequence0(:(AProVE_IO(vx300), vx31), ty_IO, h) -> new_gtGtEs2(new_sequence0(vx31, ty_IO, h), vx300, h) new_sequence0([], ty_Maybe, h) -> Just([]) new_gtGtEs4([], vx300, h) -> [] new_psPs1(:(vx80, vx81), vx4, h) -> :(vx80, new_psPs1(vx81, vx4, h)) new_sequence0(:(Nothing, vx31), ty_Maybe, h) -> Nothing new_psPs3(vx300, vx60, vx8, vx4, h) -> :(:(vx300, vx60), new_psPs1(vx8, vx4, h)) new_gtGtEs2(AProVE_Error(vx70), vx300, h) -> AProVE_Error(vx70) new_gtGtEs2(IO(vx70), vx300, h) -> error([]) new_gtGtEs2(AProVE_Exception(vx70), vx300, h) -> AProVE_Exception(vx70) new_sequence0(:(AProVE_Error(vx300), vx31), ty_IO, h) -> AProVE_Error(vx300) new_psPs2([], vx300, vx4, h) -> new_psPs4(vx4, h) new_psPs5(vx31, vx300, vx4, h) -> new_psPs2(new_sequence0(vx31, ty_[], h), vx300, vx4, h) new_gtGtEs4(:(vx610, vx611), vx300, h) -> new_psPs1(:(:(vx300, vx610), []), new_gtGtEs4(vx611, vx300, h), h) new_psPs2(:(vx60, vx61), vx300, vx4, h) -> new_psPs3(vx300, vx60, new_psPs4(new_gtGtEs4(vx61, vx300, h), h), vx4, h) new_psPs1([], vx4, h) -> vx4 new_gtGtEs3(Nothing, vx300, h) -> Nothing new_gtGtEs0(:(vx300, vx301), vx31, h) -> new_psPs5(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) new_sequence0(:(vx30, vx31), ty_[], h) -> new_gtGtEs0(vx30, vx31, h) new_sequence0([], ty_IO, h) -> AProVE_IO([]) new_gtGtEs3(Just(vx50), vx300, h) -> Just(:(vx300, vx50)) The set Q consists of the following terms: new_gtGtEs3(Just(x0), x1, x2) new_gtGtEs2(AProVE_IO(x0), x1, x2) new_psPs4(x0, x1) new_psPs2(:(x0, x1), x2, x3, x4) new_gtGtEs2(AProVE_Exception(x0), x1, x2) new_sequence0([], ty_IO, x0) new_gtGtEs2(AProVE_Error(x0), x1, x2) new_psPs1(:(x0, x1), x2, x3) new_sequence0(:(AProVE_IO(x0), x1), ty_IO, x2) new_gtGtEs0(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Error(x0), x1), ty_IO, x2) new_gtGtEs3(Nothing, x0, x1) new_psPs3(x0, x1, x2, x3, x4) new_psPs5(x0, x1, x2, x3) new_sequence0(:(Nothing, x0), ty_Maybe, x1) new_sequence0(:(Just(x0), x1), ty_Maybe, x2) new_gtGtEs0([], x0, x1) new_gtGtEs4([], x0, x1) new_sequence0([], ty_[], x0) new_sequence0([], ty_Maybe, x0) new_sequence0(:(x0, x1), ty_[], x2) new_psPs2([], x0, x1, x2) new_sequence0(:(IO(x0), x1), ty_IO, x2) new_gtGtEs2(IO(x0), x1, x2) new_psPs1([], x0, x1) new_gtGtEs4(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Exception(x0), x1), ty_IO, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_sequence(:(Just(vx300), vx31), ty_Maybe, h) -> new_sequence(vx31, ty_Maybe, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_sequence(:(AProVE_IO(vx300), vx31), ty_IO, h) -> new_sequence(vx31, ty_IO, h) The TRS R consists of the following rules: new_psPs4(vx4, h) -> vx4 new_gtGtEs0([], vx31, h) -> [] new_sequence0(:(AProVE_Exception(vx300), vx31), ty_IO, h) -> AProVE_Exception(vx300) new_sequence0(:(Just(vx300), vx31), ty_Maybe, h) -> new_gtGtEs3(new_sequence0(vx31, ty_Maybe, h), vx300, h) new_sequence0([], ty_[], h) -> :([], []) new_gtGtEs2(AProVE_IO(vx70), vx300, h) -> AProVE_IO(:(vx300, vx70)) new_sequence0(:(IO(vx300), vx31), ty_IO, h) -> error([]) new_sequence0(:(AProVE_IO(vx300), vx31), ty_IO, h) -> new_gtGtEs2(new_sequence0(vx31, ty_IO, h), vx300, h) new_sequence0([], ty_Maybe, h) -> Just([]) new_gtGtEs4([], vx300, h) -> [] new_psPs1(:(vx80, vx81), vx4, h) -> :(vx80, new_psPs1(vx81, vx4, h)) new_sequence0(:(Nothing, vx31), ty_Maybe, h) -> Nothing new_psPs3(vx300, vx60, vx8, vx4, h) -> :(:(vx300, vx60), new_psPs1(vx8, vx4, h)) new_gtGtEs2(AProVE_Error(vx70), vx300, h) -> AProVE_Error(vx70) new_gtGtEs2(IO(vx70), vx300, h) -> error([]) new_gtGtEs2(AProVE_Exception(vx70), vx300, h) -> AProVE_Exception(vx70) new_sequence0(:(AProVE_Error(vx300), vx31), ty_IO, h) -> AProVE_Error(vx300) new_psPs2([], vx300, vx4, h) -> new_psPs4(vx4, h) new_psPs5(vx31, vx300, vx4, h) -> new_psPs2(new_sequence0(vx31, ty_[], h), vx300, vx4, h) new_gtGtEs4(:(vx610, vx611), vx300, h) -> new_psPs1(:(:(vx300, vx610), []), new_gtGtEs4(vx611, vx300, h), h) new_psPs2(:(vx60, vx61), vx300, vx4, h) -> new_psPs3(vx300, vx60, new_psPs4(new_gtGtEs4(vx61, vx300, h), h), vx4, h) new_psPs1([], vx4, h) -> vx4 new_gtGtEs3(Nothing, vx300, h) -> Nothing new_gtGtEs0(:(vx300, vx301), vx31, h) -> new_psPs5(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) new_sequence0(:(vx30, vx31), ty_[], h) -> new_gtGtEs0(vx30, vx31, h) new_sequence0([], ty_IO, h) -> AProVE_IO([]) new_gtGtEs3(Just(vx50), vx300, h) -> Just(:(vx300, vx50)) The set Q consists of the following terms: new_gtGtEs3(Just(x0), x1, x2) new_gtGtEs2(AProVE_IO(x0), x1, x2) new_psPs4(x0, x1) new_psPs2(:(x0, x1), x2, x3, x4) new_gtGtEs2(AProVE_Exception(x0), x1, x2) new_sequence0([], ty_IO, x0) new_gtGtEs2(AProVE_Error(x0), x1, x2) new_psPs1(:(x0, x1), x2, x3) new_sequence0(:(AProVE_IO(x0), x1), ty_IO, x2) new_gtGtEs0(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Error(x0), x1), ty_IO, x2) new_gtGtEs3(Nothing, x0, x1) new_psPs3(x0, x1, x2, x3, x4) new_psPs5(x0, x1, x2, x3) new_sequence0(:(Nothing, x0), ty_Maybe, x1) new_sequence0(:(Just(x0), x1), ty_Maybe, x2) new_gtGtEs0([], x0, x1) new_gtGtEs4([], x0, x1) new_sequence0([], ty_[], x0) new_sequence0([], ty_Maybe, x0) new_sequence0(:(x0, x1), ty_[], x2) new_psPs2([], x0, x1, x2) new_sequence0(:(IO(x0), x1), ty_IO, x2) new_gtGtEs2(IO(x0), x1, x2) new_psPs1([], x0, x1) new_gtGtEs4(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Exception(x0), x1), ty_IO, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_sequence(:(AProVE_IO(vx300), vx31), ty_IO, h) -> new_sequence(vx31, ty_IO, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs0(vx31, vx300, vx4, h) -> new_sequence(vx31, ty_[], h) new_sequence(:(:(vx300, vx301), vx31), ty_[], h) -> new_psPs0(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) new_sequence(:(:(vx300, vx301), vx31), ty_[], h) -> new_gtGtEs1(vx301, vx31, h) new_gtGtEs1(:(vx300, vx301), vx31, h) -> new_gtGtEs1(vx301, vx31, h) new_gtGtEs1(:(vx300, vx301), vx31, h) -> new_psPs0(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) The TRS R consists of the following rules: new_psPs4(vx4, h) -> vx4 new_gtGtEs0([], vx31, h) -> [] new_sequence0(:(AProVE_Exception(vx300), vx31), ty_IO, h) -> AProVE_Exception(vx300) new_sequence0(:(Just(vx300), vx31), ty_Maybe, h) -> new_gtGtEs3(new_sequence0(vx31, ty_Maybe, h), vx300, h) new_sequence0([], ty_[], h) -> :([], []) new_gtGtEs2(AProVE_IO(vx70), vx300, h) -> AProVE_IO(:(vx300, vx70)) new_sequence0(:(IO(vx300), vx31), ty_IO, h) -> error([]) new_sequence0(:(AProVE_IO(vx300), vx31), ty_IO, h) -> new_gtGtEs2(new_sequence0(vx31, ty_IO, h), vx300, h) new_sequence0([], ty_Maybe, h) -> Just([]) new_gtGtEs4([], vx300, h) -> [] new_psPs1(:(vx80, vx81), vx4, h) -> :(vx80, new_psPs1(vx81, vx4, h)) new_sequence0(:(Nothing, vx31), ty_Maybe, h) -> Nothing new_psPs3(vx300, vx60, vx8, vx4, h) -> :(:(vx300, vx60), new_psPs1(vx8, vx4, h)) new_gtGtEs2(AProVE_Error(vx70), vx300, h) -> AProVE_Error(vx70) new_gtGtEs2(IO(vx70), vx300, h) -> error([]) new_gtGtEs2(AProVE_Exception(vx70), vx300, h) -> AProVE_Exception(vx70) new_sequence0(:(AProVE_Error(vx300), vx31), ty_IO, h) -> AProVE_Error(vx300) new_psPs2([], vx300, vx4, h) -> new_psPs4(vx4, h) new_psPs5(vx31, vx300, vx4, h) -> new_psPs2(new_sequence0(vx31, ty_[], h), vx300, vx4, h) new_gtGtEs4(:(vx610, vx611), vx300, h) -> new_psPs1(:(:(vx300, vx610), []), new_gtGtEs4(vx611, vx300, h), h) new_psPs2(:(vx60, vx61), vx300, vx4, h) -> new_psPs3(vx300, vx60, new_psPs4(new_gtGtEs4(vx61, vx300, h), h), vx4, h) new_psPs1([], vx4, h) -> vx4 new_gtGtEs3(Nothing, vx300, h) -> Nothing new_gtGtEs0(:(vx300, vx301), vx31, h) -> new_psPs5(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) new_sequence0(:(vx30, vx31), ty_[], h) -> new_gtGtEs0(vx30, vx31, h) new_sequence0([], ty_IO, h) -> AProVE_IO([]) new_gtGtEs3(Just(vx50), vx300, h) -> Just(:(vx300, vx50)) The set Q consists of the following terms: new_gtGtEs3(Just(x0), x1, x2) new_gtGtEs2(AProVE_IO(x0), x1, x2) new_psPs4(x0, x1) new_psPs2(:(x0, x1), x2, x3, x4) new_gtGtEs2(AProVE_Exception(x0), x1, x2) new_sequence0([], ty_IO, x0) new_gtGtEs2(AProVE_Error(x0), x1, x2) new_psPs1(:(x0, x1), x2, x3) new_sequence0(:(AProVE_IO(x0), x1), ty_IO, x2) new_gtGtEs0(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Error(x0), x1), ty_IO, x2) new_gtGtEs3(Nothing, x0, x1) new_psPs3(x0, x1, x2, x3, x4) new_psPs5(x0, x1, x2, x3) new_sequence0(:(Nothing, x0), ty_Maybe, x1) new_sequence0(:(Just(x0), x1), ty_Maybe, x2) new_gtGtEs0([], x0, x1) new_gtGtEs4([], x0, x1) new_sequence0([], ty_[], x0) new_sequence0([], ty_Maybe, x0) new_sequence0(:(x0, x1), ty_[], x2) new_psPs2([], x0, x1, x2) new_sequence0(:(IO(x0), x1), ty_IO, x2) new_gtGtEs2(IO(x0), x1, x2) new_psPs1([], x0, x1) new_gtGtEs4(:(x0, x1), x2, x3) new_sequence0(:(AProVE_Exception(x0), x1), ty_IO, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_sequence(:(:(vx300, vx301), vx31), ty_[], h) -> new_psPs0(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) The graph contains the following edges 1 > 1, 1 > 2, 3 >= 4 *new_sequence(:(:(vx300, vx301), vx31), ty_[], h) -> new_gtGtEs1(vx301, vx31, h) The graph contains the following edges 1 > 1, 1 > 2, 3 >= 3 *new_gtGtEs1(:(vx300, vx301), vx31, h) -> new_psPs0(vx31, vx300, new_gtGtEs0(vx301, vx31, h), h) The graph contains the following edges 2 >= 1, 1 > 2, 3 >= 4 *new_psPs0(vx31, vx300, vx4, h) -> new_sequence(vx31, ty_[], h) The graph contains the following edges 1 >= 1, 4 >= 3 *new_gtGtEs1(:(vx300, vx301), vx31, h) -> new_gtGtEs1(vx301, vx31, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(vx80, vx81), vx4, h) -> new_psPs(vx81, vx4, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(vx80, vx81), vx4, h) -> new_psPs(vx81, vx4, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (26) YES