/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) IFR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 22 ms] (6) HASKELL (7) LetRed [EQUIVALENT, 0 ms] (8) HASKELL (9) Narrow [SOUND, 0 ms] (10) AND (11) QDP (12) TransformationProof [EQUIVALENT, 0 ms] (13) QDP (14) UsableRulesProof [EQUIVALENT, 0 ms] (15) QDP (16) QReductionProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) DependencyGraphProof [EQUIVALENT, 0 ms] (25) TRUE (26) QDP (27) QDPSizeChangeProof [EQUIVALENT, 0 ms] (28) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]; deleteBy _ _ [] = []; deleteBy eq x (y : ys) = if x `eq` y then ys else y : deleteBy eq x ys; elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool; elem_by _ _ [] = False; elem_by eq y (x : xs) = x `eq` y || elem_by eq y xs; nubBy :: (a -> a -> Bool) -> [a] -> [a]; nubBy eq l = nubBy' l [] where { nubBy' [] _ = []; nubBy' (y : ys) xs | elem_by eq y xs = nubBy' ys xs | otherwise = y : nubBy' ys (y : xs); }; union :: Eq a => [a] -> [a] -> [a]; union = unionBy (==); unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]; unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) IFR (EQUIVALENT) If Reductions: The following If expression "if eq x y then ys else y : deleteBy eq x ys" is transformed to "deleteBy0 ys y eq x True = ys; deleteBy0 ys y eq x False = y : deleteBy eq x ys; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]; deleteBy _ _ [] = []; deleteBy eq x (y : ys) = deleteBy0 ys y eq x (x `eq` y); deleteBy0 ys y eq x True = ys; deleteBy0 ys y eq x False = y : deleteBy eq x ys; elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool; elem_by _ _ [] = False; elem_by eq y (x : xs) = x `eq` y || elem_by eq y xs; nubBy :: (a -> a -> Bool) -> [a] -> [a]; nubBy eq l = nubBy' l [] where { nubBy' [] _ = []; nubBy' (y : ys) xs | elem_by eq y xs = nubBy' ys xs | otherwise = y : nubBy' ys (y : xs); }; union :: Eq a => [a] -> [a] -> [a]; union = unionBy (==); unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]; unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]; deleteBy wv ww [] = []; deleteBy eq x (y : ys) = deleteBy0 ys y eq x (x `eq` y); deleteBy0 ys y eq x True = ys; deleteBy0 ys y eq x False = y : deleteBy eq x ys; elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool; elem_by vy vz [] = False; elem_by eq y (x : xs) = x `eq` y || elem_by eq y xs; nubBy :: (a -> a -> Bool) -> [a] -> [a]; nubBy eq l = nubBy' l [] where { nubBy' [] wu = []; nubBy' (y : ys) xs | elem_by eq y xs = nubBy' ys xs | otherwise = y : nubBy' ys (y : xs); }; union :: Eq a => [a] -> [a] -> [a]; union = unionBy (==); unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]; unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "nubBy' [] wu = []; nubBy' (y : ys) xs|elem_by eq y xsnubBy' ys xs|otherwisey : nubBy' ys (y : xs); " is transformed to "nubBy' [] wu = nubBy'3 [] wu; nubBy' (y : ys) xs = nubBy'2 (y : ys) xs; " "nubBy'1 y ys xs True = nubBy' ys xs; nubBy'1 y ys xs False = nubBy'0 y ys xs otherwise; " "nubBy'0 y ys xs True = y : nubBy' ys (y : xs); " "nubBy'2 (y : ys) xs = nubBy'1 y ys xs (elem_by eq y xs); " "nubBy'3 [] wu = []; nubBy'3 wz xu = nubBy'2 wz xu; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]; deleteBy wv ww [] = []; deleteBy eq x (y : ys) = deleteBy0 ys y eq x (x `eq` y); deleteBy0 ys y eq x True = ys; deleteBy0 ys y eq x False = y : deleteBy eq x ys; elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool; elem_by vy vz [] = False; elem_by eq y (x : xs) = x `eq` y || elem_by eq y xs; nubBy :: (a -> a -> Bool) -> [a] -> [a]; nubBy eq l = nubBy' l [] where { nubBy' [] wu = nubBy'3 [] wu; nubBy' (y : ys) xs = nubBy'2 (y : ys) xs; nubBy'0 y ys xs True = y : nubBy' ys (y : xs); nubBy'1 y ys xs True = nubBy' ys xs; nubBy'1 y ys xs False = nubBy'0 y ys xs otherwise; nubBy'2 (y : ys) xs = nubBy'1 y ys xs (elem_by eq y xs); nubBy'3 [] wu = []; nubBy'3 wz xu = nubBy'2 wz xu; }; union :: Eq a => [a] -> [a] -> [a]; union = unionBy (==); unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]; unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "nubBy' l [] where { nubBy' [] wu = nubBy'3 [] wu; nubBy' (y : ys) xs = nubBy'2 (y : ys) xs; ; nubBy'0 y ys xs True = y : nubBy' ys (y : xs); ; nubBy'1 y ys xs True = nubBy' ys xs; nubBy'1 y ys xs False = nubBy'0 y ys xs otherwise; ; nubBy'2 (y : ys) xs = nubBy'1 y ys xs (elem_by eq y xs); ; nubBy'3 [] wu = []; nubBy'3 wz xu = nubBy'2 wz xu; } " are unpacked to the following functions on top level "nubByNubBy' xv [] wu = nubByNubBy'3 xv [] wu; nubByNubBy' xv (y : ys) xs = nubByNubBy'2 xv (y : ys) xs; " "nubByNubBy'0 xv y ys xs True = y : nubByNubBy' xv ys (y : xs); " "nubByNubBy'3 xv [] wu = []; nubByNubBy'3 xv wz xu = nubByNubBy'2 xv wz xu; " "nubByNubBy'2 xv (y : ys) xs = nubByNubBy'1 xv y ys xs (elem_by xv y xs); " "nubByNubBy'1 xv y ys xs True = nubByNubBy' xv ys xs; nubByNubBy'1 xv y ys xs False = nubByNubBy'0 xv y ys xs otherwise; " ---------------------------------------- (8) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]; deleteBy wv ww [] = []; deleteBy eq x (y : ys) = deleteBy0 ys y eq x (x `eq` y); deleteBy0 ys y eq x True = ys; deleteBy0 ys y eq x False = y : deleteBy eq x ys; elem_by :: (a -> a -> Bool) -> a -> [a] -> Bool; elem_by vy vz [] = False; elem_by eq y (x : xs) = x `eq` y || elem_by eq y xs; nubBy :: (a -> a -> Bool) -> [a] -> [a]; nubBy eq l = nubByNubBy' eq l []; nubByNubBy' xv [] wu = nubByNubBy'3 xv [] wu; nubByNubBy' xv (y : ys) xs = nubByNubBy'2 xv (y : ys) xs; nubByNubBy'0 xv y ys xs True = y : nubByNubBy' xv ys (y : xs); nubByNubBy'1 xv y ys xs True = nubByNubBy' xv ys xs; nubByNubBy'1 xv y ys xs False = nubByNubBy'0 xv y ys xs otherwise; nubByNubBy'2 xv (y : ys) xs = nubByNubBy'1 xv y ys xs (elem_by xv y xs); nubByNubBy'3 xv [] wu = []; nubByNubBy'3 xv wz xu = nubByNubBy'2 xv wz xu; union :: Eq a => [a] -> [a] -> [a]; union = unionBy (==); unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]; unionBy eq xs ys = xs ++ foldl (flip (deleteBy eq)) (nubBy eq ys) xs; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (9) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="List.union",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="List.union xw3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="List.union xw3 xw4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="List.unionBy (==) xw3 xw4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="xw3 ++ foldl (flip (List.deleteBy (==))) (List.nubBy (==) xw4) xw3",fontsize=16,color="burlywood",shape="box"];185[label="xw3/xw30 : xw31",fontsize=10,color="white",style="solid",shape="box"];6 -> 185[label="",style="solid", color="burlywood", weight=9]; 185 -> 7[label="",style="solid", color="burlywood", weight=3]; 186[label="xw3/[]",fontsize=10,color="white",style="solid",shape="box"];6 -> 186[label="",style="solid", color="burlywood", weight=9]; 186 -> 8[label="",style="solid", color="burlywood", weight=3]; 7[label="(xw30 : xw31) ++ foldl (flip (List.deleteBy (==))) (List.nubBy (==) xw4) (xw30 : xw31)",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="[] ++ foldl (flip (List.deleteBy (==))) (List.nubBy (==) xw4) []",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="xw30 : xw31 ++ foldl (flip (List.deleteBy (==))) (List.nubBy (==) xw4) (xw30 : xw31)",fontsize=16,color="green",shape="box"];9 -> 11[label="",style="dashed", color="green", weight=3]; 10[label="foldl (flip (List.deleteBy (==))) (List.nubBy (==) xw4) []",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 11 -> 91[label="",style="dashed", color="red", weight=0]; 11[label="xw31 ++ foldl (flip (List.deleteBy (==))) (List.nubBy (==) xw4) (xw30 : xw31)",fontsize=16,color="magenta"];11 -> 92[label="",style="dashed", color="magenta", weight=3]; 11 -> 93[label="",style="dashed", color="magenta", weight=3]; 11 -> 94[label="",style="dashed", color="magenta", weight=3]; 11 -> 95[label="",style="dashed", color="magenta", weight=3]; 12[label="List.nubBy (==) xw4",fontsize=16,color="black",shape="triangle"];12 -> 15[label="",style="solid", color="black", weight=3]; 92[label="xw31",fontsize=16,color="green",shape="box"];93[label="xw31",fontsize=16,color="green",shape="box"];94[label="xw30",fontsize=16,color="green",shape="box"];95 -> 12[label="",style="dashed", color="red", weight=0]; 95[label="List.nubBy (==) xw4",fontsize=16,color="magenta"];91[label="xw8 ++ foldl (flip (List.deleteBy (==))) xw9 (xw10 : xw11)",fontsize=16,color="burlywood",shape="triangle"];187[label="xw8/xw80 : xw81",fontsize=10,color="white",style="solid",shape="box"];91 -> 187[label="",style="solid", color="burlywood", weight=9]; 187 -> 120[label="",style="solid", color="burlywood", weight=3]; 188[label="xw8/[]",fontsize=10,color="white",style="solid",shape="box"];91 -> 188[label="",style="solid", color="burlywood", weight=9]; 188 -> 121[label="",style="solid", color="burlywood", weight=3]; 15[label="List.nubByNubBy' (==) xw4 []",fontsize=16,color="burlywood",shape="box"];189[label="xw4/xw40 : xw41",fontsize=10,color="white",style="solid",shape="box"];15 -> 189[label="",style="solid", color="burlywood", weight=9]; 189 -> 18[label="",style="solid", color="burlywood", weight=3]; 190[label="xw4/[]",fontsize=10,color="white",style="solid",shape="box"];15 -> 190[label="",style="solid", color="burlywood", weight=9]; 190 -> 19[label="",style="solid", color="burlywood", weight=3]; 120[label="(xw80 : xw81) ++ foldl (flip (List.deleteBy (==))) xw9 (xw10 : xw11)",fontsize=16,color="black",shape="box"];120 -> 123[label="",style="solid", color="black", weight=3]; 121[label="[] ++ foldl (flip (List.deleteBy (==))) xw9 (xw10 : xw11)",fontsize=16,color="black",shape="box"];121 -> 124[label="",style="solid", color="black", weight=3]; 18[label="List.nubByNubBy' (==) (xw40 : xw41) []",fontsize=16,color="black",shape="box"];18 -> 23[label="",style="solid", color="black", weight=3]; 19[label="List.nubByNubBy' (==) [] []",fontsize=16,color="black",shape="box"];19 -> 24[label="",style="solid", color="black", weight=3]; 123[label="xw80 : xw81 ++ foldl (flip (List.deleteBy (==))) xw9 (xw10 : xw11)",fontsize=16,color="green",shape="box"];123 -> 126[label="",style="dashed", color="green", weight=3]; 124[label="foldl (flip (List.deleteBy (==))) xw9 (xw10 : xw11)",fontsize=16,color="black",shape="box"];124 -> 127[label="",style="solid", color="black", weight=3]; 23[label="List.nubByNubBy'2 (==) (xw40 : xw41) []",fontsize=16,color="black",shape="box"];23 -> 28[label="",style="solid", color="black", weight=3]; 24[label="List.nubByNubBy'3 (==) [] []",fontsize=16,color="black",shape="box"];24 -> 29[label="",style="solid", color="black", weight=3]; 126 -> 91[label="",style="dashed", color="red", weight=0]; 126[label="xw81 ++ foldl (flip (List.deleteBy (==))) xw9 (xw10 : xw11)",fontsize=16,color="magenta"];126 -> 130[label="",style="dashed", color="magenta", weight=3]; 127[label="foldl (flip (List.deleteBy (==))) (flip (List.deleteBy (==)) xw9 xw10) xw11",fontsize=16,color="burlywood",shape="triangle"];191[label="xw11/xw110 : xw111",fontsize=10,color="white",style="solid",shape="box"];127 -> 191[label="",style="solid", color="burlywood", weight=9]; 191 -> 131[label="",style="solid", color="burlywood", weight=3]; 192[label="xw11/[]",fontsize=10,color="white",style="solid",shape="box"];127 -> 192[label="",style="solid", color="burlywood", weight=9]; 192 -> 132[label="",style="solid", color="burlywood", weight=3]; 28[label="List.nubByNubBy'1 (==) xw40 xw41 [] (List.elem_by (==) xw40 [])",fontsize=16,color="black",shape="box"];28 -> 33[label="",style="solid", color="black", weight=3]; 29[label="[]",fontsize=16,color="green",shape="box"];130[label="xw81",fontsize=16,color="green",shape="box"];131[label="foldl (flip (List.deleteBy (==))) (flip (List.deleteBy (==)) xw9 xw10) (xw110 : xw111)",fontsize=16,color="black",shape="box"];131 -> 133[label="",style="solid", color="black", weight=3]; 132[label="foldl (flip (List.deleteBy (==))) (flip (List.deleteBy (==)) xw9 xw10) []",fontsize=16,color="black",shape="box"];132 -> 134[label="",style="solid", color="black", weight=3]; 33[label="List.nubByNubBy'1 (==) xw40 xw41 [] False",fontsize=16,color="black",shape="box"];33 -> 37[label="",style="solid", color="black", weight=3]; 133 -> 127[label="",style="dashed", color="red", weight=0]; 133[label="foldl (flip (List.deleteBy (==))) (flip (List.deleteBy (==)) (flip (List.deleteBy (==)) xw9 xw10) xw110) xw111",fontsize=16,color="magenta"];133 -> 135[label="",style="dashed", color="magenta", weight=3]; 133 -> 136[label="",style="dashed", color="magenta", weight=3]; 133 -> 137[label="",style="dashed", color="magenta", weight=3]; 134[label="flip (List.deleteBy (==)) xw9 xw10",fontsize=16,color="black",shape="triangle"];134 -> 138[label="",style="solid", color="black", weight=3]; 37[label="List.nubByNubBy'0 (==) xw40 xw41 [] otherwise",fontsize=16,color="black",shape="box"];37 -> 42[label="",style="solid", color="black", weight=3]; 135[label="xw111",fontsize=16,color="green",shape="box"];136[label="xw110",fontsize=16,color="green",shape="box"];137 -> 134[label="",style="dashed", color="red", weight=0]; 137[label="flip (List.deleteBy (==)) xw9 xw10",fontsize=16,color="magenta"];138[label="List.deleteBy (==) xw10 xw9",fontsize=16,color="burlywood",shape="triangle"];193[label="xw9/xw90 : xw91",fontsize=10,color="white",style="solid",shape="box"];138 -> 193[label="",style="solid", color="burlywood", weight=9]; 193 -> 139[label="",style="solid", color="burlywood", weight=3]; 194[label="xw9/[]",fontsize=10,color="white",style="solid",shape="box"];138 -> 194[label="",style="solid", color="burlywood", weight=9]; 194 -> 140[label="",style="solid", color="burlywood", weight=3]; 42[label="List.nubByNubBy'0 (==) xw40 xw41 [] True",fontsize=16,color="black",shape="box"];42 -> 49[label="",style="solid", color="black", weight=3]; 139[label="List.deleteBy (==) xw10 (xw90 : xw91)",fontsize=16,color="black",shape="box"];139 -> 141[label="",style="solid", color="black", weight=3]; 140[label="List.deleteBy (==) xw10 []",fontsize=16,color="black",shape="box"];140 -> 142[label="",style="solid", color="black", weight=3]; 49[label="xw40 : List.nubByNubBy' (==) xw41 (xw40 : [])",fontsize=16,color="green",shape="box"];49 -> 54[label="",style="dashed", color="green", weight=3]; 141 -> 143[label="",style="dashed", color="red", weight=0]; 141[label="List.deleteBy0 xw91 xw90 (==) xw10 ((==) xw10 xw90)",fontsize=16,color="magenta"];141 -> 144[label="",style="dashed", color="magenta", weight=3]; 141 -> 145[label="",style="dashed", color="magenta", weight=3]; 141 -> 146[label="",style="dashed", color="magenta", weight=3]; 141 -> 147[label="",style="dashed", color="magenta", weight=3]; 142[label="[]",fontsize=16,color="green",shape="box"];54[label="List.nubByNubBy' (==) xw41 (xw40 : [])",fontsize=16,color="burlywood",shape="triangle"];195[label="xw41/xw410 : xw411",fontsize=10,color="white",style="solid",shape="box"];54 -> 195[label="",style="solid", color="burlywood", weight=9]; 195 -> 58[label="",style="solid", color="burlywood", weight=3]; 196[label="xw41/[]",fontsize=10,color="white",style="solid",shape="box"];54 -> 196[label="",style="solid", color="burlywood", weight=9]; 196 -> 59[label="",style="solid", color="burlywood", weight=3]; 144[label="xw91",fontsize=16,color="green",shape="box"];145[label="xw10",fontsize=16,color="green",shape="box"];146[label="(==) xw10 xw90",fontsize=16,color="blue",shape="box"];197[label="== :: ((@3) a b c) -> ((@3) a b c) -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 197[label="",style="solid", color="blue", weight=9]; 197 -> 148[label="",style="solid", color="blue", weight=3]; 198[label="== :: Double -> Double -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 198[label="",style="solid", color="blue", weight=9]; 198 -> 149[label="",style="solid", color="blue", weight=3]; 199[label="== :: ((@2) a b) -> ((@2) a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 199[label="",style="solid", color="blue", weight=9]; 199 -> 150[label="",style="solid", color="blue", weight=3]; 200[label="== :: Float -> Float -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 200[label="",style="solid", color="blue", weight=9]; 200 -> 151[label="",style="solid", color="blue", weight=3]; 201[label="== :: (Ratio a) -> (Ratio a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 201[label="",style="solid", color="blue", weight=9]; 201 -> 152[label="",style="solid", color="blue", weight=3]; 202[label="== :: (Maybe a) -> (Maybe a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 202[label="",style="solid", color="blue", weight=9]; 202 -> 153[label="",style="solid", color="blue", weight=3]; 203[label="== :: () -> () -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 203[label="",style="solid", color="blue", weight=9]; 203 -> 154[label="",style="solid", color="blue", weight=3]; 204[label="== :: (Either a b) -> (Either a b) -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 204[label="",style="solid", color="blue", weight=9]; 204 -> 155[label="",style="solid", color="blue", weight=3]; 205[label="== :: Char -> Char -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 205[label="",style="solid", color="blue", weight=9]; 205 -> 156[label="",style="solid", color="blue", weight=3]; 206[label="== :: Integer -> Integer -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 206[label="",style="solid", color="blue", weight=9]; 206 -> 157[label="",style="solid", color="blue", weight=3]; 207[label="== :: Int -> Int -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 207[label="",style="solid", color="blue", weight=9]; 207 -> 158[label="",style="solid", color="blue", weight=3]; 208[label="== :: ([] a) -> ([] a) -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 208[label="",style="solid", color="blue", weight=9]; 208 -> 159[label="",style="solid", color="blue", weight=3]; 209[label="== :: Ordering -> Ordering -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 209[label="",style="solid", color="blue", weight=9]; 209 -> 160[label="",style="solid", color="blue", weight=3]; 210[label="== :: Bool -> Bool -> Bool",fontsize=10,color="white",style="solid",shape="box"];146 -> 210[label="",style="solid", color="blue", weight=9]; 210 -> 161[label="",style="solid", color="blue", weight=3]; 147[label="xw90",fontsize=16,color="green",shape="box"];143[label="List.deleteBy0 xw17 xw18 (==) xw19 xw20",fontsize=16,color="burlywood",shape="triangle"];211[label="xw20/False",fontsize=10,color="white",style="solid",shape="box"];143 -> 211[label="",style="solid", color="burlywood", weight=9]; 211 -> 162[label="",style="solid", color="burlywood", weight=3]; 212[label="xw20/True",fontsize=10,color="white",style="solid",shape="box"];143 -> 212[label="",style="solid", color="burlywood", weight=9]; 212 -> 163[label="",style="solid", color="burlywood", weight=3]; 58[label="List.nubByNubBy' (==) (xw410 : xw411) (xw40 : [])",fontsize=16,color="black",shape="box"];58 -> 66[label="",style="solid", color="black", weight=3]; 59[label="List.nubByNubBy' (==) [] (xw40 : [])",fontsize=16,color="black",shape="box"];59 -> 67[label="",style="solid", color="black", weight=3]; 148[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];148 -> 164[label="",style="solid", color="black", weight=3]; 149[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];149 -> 165[label="",style="solid", color="black", weight=3]; 150[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];150 -> 166[label="",style="solid", color="black", weight=3]; 151[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];151 -> 167[label="",style="solid", color="black", weight=3]; 152[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];152 -> 168[label="",style="solid", color="black", weight=3]; 153[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];153 -> 169[label="",style="solid", color="black", weight=3]; 154[label="(==) xw10 xw90",fontsize=16,color="burlywood",shape="box"];213[label="xw10/()",fontsize=10,color="white",style="solid",shape="box"];154 -> 213[label="",style="solid", color="burlywood", weight=9]; 213 -> 170[label="",style="solid", color="burlywood", weight=3]; 155[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];155 -> 171[label="",style="solid", color="black", weight=3]; 156[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];156 -> 172[label="",style="solid", color="black", weight=3]; 157[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];157 -> 173[label="",style="solid", color="black", weight=3]; 158[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];158 -> 174[label="",style="solid", color="black", weight=3]; 159[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];159 -> 175[label="",style="solid", color="black", weight=3]; 160[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];160 -> 176[label="",style="solid", color="black", weight=3]; 161[label="(==) xw10 xw90",fontsize=16,color="black",shape="box"];161 -> 177[label="",style="solid", color="black", weight=3]; 162[label="List.deleteBy0 xw17 xw18 (==) xw19 False",fontsize=16,color="black",shape="box"];162 -> 178[label="",style="solid", color="black", weight=3]; 163[label="List.deleteBy0 xw17 xw18 (==) xw19 True",fontsize=16,color="black",shape="box"];163 -> 179[label="",style="solid", color="black", weight=3]; 66[label="List.nubByNubBy'2 (==) (xw410 : xw411) (xw40 : [])",fontsize=16,color="black",shape="box"];66 -> 72[label="",style="solid", color="black", weight=3]; 67[label="List.nubByNubBy'3 (==) [] (xw40 : [])",fontsize=16,color="black",shape="box"];67 -> 73[label="",style="solid", color="black", weight=3]; 164[label="error []",fontsize=16,color="red",shape="box"];165[label="error []",fontsize=16,color="red",shape="box"];166[label="error []",fontsize=16,color="red",shape="box"];167[label="error []",fontsize=16,color="red",shape="box"];168[label="error []",fontsize=16,color="red",shape="box"];169[label="error []",fontsize=16,color="red",shape="box"];170[label="(==) () xw90",fontsize=16,color="burlywood",shape="box"];214[label="xw90/()",fontsize=10,color="white",style="solid",shape="box"];170 -> 214[label="",style="solid", color="burlywood", weight=9]; 214 -> 180[label="",style="solid", color="burlywood", weight=3]; 171[label="error []",fontsize=16,color="red",shape="box"];172[label="error []",fontsize=16,color="red",shape="box"];173[label="error []",fontsize=16,color="red",shape="box"];174[label="error []",fontsize=16,color="red",shape="box"];175[label="error []",fontsize=16,color="red",shape="box"];176[label="error []",fontsize=16,color="red",shape="box"];177[label="error []",fontsize=16,color="red",shape="box"];178[label="xw18 : List.deleteBy (==) xw19 xw17",fontsize=16,color="green",shape="box"];178 -> 181[label="",style="dashed", color="green", weight=3]; 179[label="xw17",fontsize=16,color="green",shape="box"];72[label="List.nubByNubBy'1 (==) xw410 xw411 (xw40 : []) (List.elem_by (==) xw410 (xw40 : []))",fontsize=16,color="black",shape="box"];72 -> 76[label="",style="solid", color="black", weight=3]; 73[label="[]",fontsize=16,color="green",shape="box"];180[label="(==) () ()",fontsize=16,color="black",shape="box"];180 -> 182[label="",style="solid", color="black", weight=3]; 181 -> 138[label="",style="dashed", color="red", weight=0]; 181[label="List.deleteBy (==) xw19 xw17",fontsize=16,color="magenta"];181 -> 183[label="",style="dashed", color="magenta", weight=3]; 181 -> 184[label="",style="dashed", color="magenta", weight=3]; 76[label="List.nubByNubBy'1 (==) xw410 xw411 (xw40 : []) ((==) xw40 xw410 || List.elem_by (==) xw410 [])",fontsize=16,color="burlywood",shape="box"];215[label="xw40/()",fontsize=10,color="white",style="solid",shape="box"];76 -> 215[label="",style="solid", color="burlywood", weight=9]; 215 -> 83[label="",style="solid", color="burlywood", weight=3]; 182[label="True",fontsize=16,color="green",shape="box"];183[label="xw19",fontsize=16,color="green",shape="box"];184[label="xw17",fontsize=16,color="green",shape="box"];83[label="List.nubByNubBy'1 (==) xw410 xw411 (() : []) ((==) () xw410 || List.elem_by (==) xw410 [])",fontsize=16,color="burlywood",shape="box"];216[label="xw410/()",fontsize=10,color="white",style="solid",shape="box"];83 -> 216[label="",style="solid", color="burlywood", weight=9]; 216 -> 87[label="",style="solid", color="burlywood", weight=3]; 87[label="List.nubByNubBy'1 (==) () xw411 (() : []) ((==) () () || List.elem_by (==) () [])",fontsize=16,color="black",shape="box"];87 -> 90[label="",style="solid", color="black", weight=3]; 90[label="List.nubByNubBy'1 (==) () xw411 (() : []) (True || List.elem_by (==) () [])",fontsize=16,color="black",shape="box"];90 -> 122[label="",style="solid", color="black", weight=3]; 122[label="List.nubByNubBy'1 (==) () xw411 (() : []) True",fontsize=16,color="black",shape="box"];122 -> 125[label="",style="solid", color="black", weight=3]; 125 -> 54[label="",style="dashed", color="red", weight=0]; 125[label="List.nubByNubBy' (==) xw411 (() : [])",fontsize=16,color="magenta"];125 -> 128[label="",style="dashed", color="magenta", weight=3]; 125 -> 129[label="",style="dashed", color="magenta", weight=3]; 128[label="xw411",fontsize=16,color="green",shape="box"];129[label="()",fontsize=16,color="green",shape="box"];} ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_flip(xw9, xw10, ba), xw110, xw111, ba) The TRS R consists of the following rules: new_deleteBy1(xw10, :(xw90, xw91), ba) -> new_deleteBy00(xw91, xw90, xw10, new_esEs(xw10, xw90, ba), ba) new_deleteBy00(xw17, xw18, xw19, True, bb) -> xw17 new_esEs(xw10, xw90, app(ty_Ratio, bh)) -> error([]) new_esEs(xw10, xw90, app(app(app(ty_@3, bc), bd), be)) -> error([]) new_esEs(xw10, xw90, ty_Integer) -> error([]) new_flip(xw9, xw10, ba) -> new_deleteBy1(xw10, xw9, ba) new_esEs(@0, @0, ty_@0) -> True new_esEs(xw10, xw90, app(ty_[], cd)) -> error([]) new_esEs(xw10, xw90, ty_Ordering) -> error([]) new_esEs(xw10, xw90, app(app(ty_@2, bf), bg)) -> error([]) new_esEs(xw10, xw90, ty_Float) -> error([]) new_esEs(xw10, xw90, ty_Bool) -> error([]) new_esEs(xw10, xw90, app(app(ty_Either, cb), cc)) -> error([]) new_esEs(xw10, xw90, ty_Int) -> error([]) new_esEs(xw10, xw90, ty_Char) -> error([]) new_deleteBy1(xw10, [], ba) -> [] new_esEs(xw10, xw90, app(ty_Maybe, ca)) -> error([]) new_deleteBy00(xw17, xw18, xw19, False, bb) -> :(xw18, new_deleteBy1(xw19, xw17, bb)) new_esEs(xw10, xw90, ty_Double) -> error([]) The set Q consists of the following terms: new_esEs(x0, x1, ty_Float) new_esEs(@0, @0, ty_@0) new_esEs(x0, x1, ty_Char) new_esEs(x0, x1, ty_Int) new_deleteBy1(x0, :(x1, x2), x3) new_esEs(x0, x1, ty_Ordering) new_deleteBy1(x0, [], x1) new_esEs(x0, x1, ty_Integer) new_flip(x0, x1, x2) new_esEs(x0, x1, app(app(ty_Either, x2), x3)) new_esEs(x0, x1, ty_Double) new_deleteBy00(x0, x1, x2, True, x3) new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs(x0, x1, app(app(ty_@2, x2), x3)) new_esEs(x0, x1, app(ty_[], x2)) new_esEs(x0, x1, ty_Bool) new_esEs(x0, x1, app(ty_Ratio, x2)) new_esEs(x0, x1, app(ty_Maybe, x2)) new_deleteBy00(x0, x1, x2, False, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_flip(xw9, xw10, ba), xw110, xw111, ba) at position [0] we obtained the following new rules [LPAR04]: (new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_deleteBy1(xw10, xw9, ba), xw110, xw111, ba),new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_deleteBy1(xw10, xw9, ba), xw110, xw111, ba)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_deleteBy1(xw10, xw9, ba), xw110, xw111, ba) The TRS R consists of the following rules: new_deleteBy1(xw10, :(xw90, xw91), ba) -> new_deleteBy00(xw91, xw90, xw10, new_esEs(xw10, xw90, ba), ba) new_deleteBy00(xw17, xw18, xw19, True, bb) -> xw17 new_esEs(xw10, xw90, app(ty_Ratio, bh)) -> error([]) new_esEs(xw10, xw90, app(app(app(ty_@3, bc), bd), be)) -> error([]) new_esEs(xw10, xw90, ty_Integer) -> error([]) new_flip(xw9, xw10, ba) -> new_deleteBy1(xw10, xw9, ba) new_esEs(@0, @0, ty_@0) -> True new_esEs(xw10, xw90, app(ty_[], cd)) -> error([]) new_esEs(xw10, xw90, ty_Ordering) -> error([]) new_esEs(xw10, xw90, app(app(ty_@2, bf), bg)) -> error([]) new_esEs(xw10, xw90, ty_Float) -> error([]) new_esEs(xw10, xw90, ty_Bool) -> error([]) new_esEs(xw10, xw90, app(app(ty_Either, cb), cc)) -> error([]) new_esEs(xw10, xw90, ty_Int) -> error([]) new_esEs(xw10, xw90, ty_Char) -> error([]) new_deleteBy1(xw10, [], ba) -> [] new_esEs(xw10, xw90, app(ty_Maybe, ca)) -> error([]) new_deleteBy00(xw17, xw18, xw19, False, bb) -> :(xw18, new_deleteBy1(xw19, xw17, bb)) new_esEs(xw10, xw90, ty_Double) -> error([]) The set Q consists of the following terms: new_esEs(x0, x1, ty_Float) new_esEs(@0, @0, ty_@0) new_esEs(x0, x1, ty_Char) new_esEs(x0, x1, ty_Int) new_deleteBy1(x0, :(x1, x2), x3) new_esEs(x0, x1, ty_Ordering) new_deleteBy1(x0, [], x1) new_esEs(x0, x1, ty_Integer) new_flip(x0, x1, x2) new_esEs(x0, x1, app(app(ty_Either, x2), x3)) new_esEs(x0, x1, ty_Double) new_deleteBy00(x0, x1, x2, True, x3) new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs(x0, x1, app(app(ty_@2, x2), x3)) new_esEs(x0, x1, app(ty_[], x2)) new_esEs(x0, x1, ty_Bool) new_esEs(x0, x1, app(ty_Ratio, x2)) new_esEs(x0, x1, app(ty_Maybe, x2)) new_deleteBy00(x0, x1, x2, False, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_deleteBy1(xw10, xw9, ba), xw110, xw111, ba) The TRS R consists of the following rules: new_deleteBy1(xw10, :(xw90, xw91), ba) -> new_deleteBy00(xw91, xw90, xw10, new_esEs(xw10, xw90, ba), ba) new_deleteBy1(xw10, [], ba) -> [] new_esEs(xw10, xw90, app(ty_Ratio, bh)) -> error([]) new_esEs(xw10, xw90, app(app(app(ty_@3, bc), bd), be)) -> error([]) new_esEs(xw10, xw90, ty_Integer) -> error([]) new_esEs(@0, @0, ty_@0) -> True new_esEs(xw10, xw90, app(ty_[], cd)) -> error([]) new_esEs(xw10, xw90, ty_Ordering) -> error([]) new_esEs(xw10, xw90, app(app(ty_@2, bf), bg)) -> error([]) new_esEs(xw10, xw90, ty_Float) -> error([]) new_esEs(xw10, xw90, ty_Bool) -> error([]) new_esEs(xw10, xw90, app(app(ty_Either, cb), cc)) -> error([]) new_esEs(xw10, xw90, ty_Int) -> error([]) new_esEs(xw10, xw90, ty_Char) -> error([]) new_esEs(xw10, xw90, app(ty_Maybe, ca)) -> error([]) new_esEs(xw10, xw90, ty_Double) -> error([]) new_deleteBy00(xw17, xw18, xw19, True, bb) -> xw17 new_deleteBy00(xw17, xw18, xw19, False, bb) -> :(xw18, new_deleteBy1(xw19, xw17, bb)) The set Q consists of the following terms: new_esEs(x0, x1, ty_Float) new_esEs(@0, @0, ty_@0) new_esEs(x0, x1, ty_Char) new_esEs(x0, x1, ty_Int) new_deleteBy1(x0, :(x1, x2), x3) new_esEs(x0, x1, ty_Ordering) new_deleteBy1(x0, [], x1) new_esEs(x0, x1, ty_Integer) new_flip(x0, x1, x2) new_esEs(x0, x1, app(app(ty_Either, x2), x3)) new_esEs(x0, x1, ty_Double) new_deleteBy00(x0, x1, x2, True, x3) new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs(x0, x1, app(app(ty_@2, x2), x3)) new_esEs(x0, x1, app(ty_[], x2)) new_esEs(x0, x1, ty_Bool) new_esEs(x0, x1, app(ty_Ratio, x2)) new_esEs(x0, x1, app(ty_Maybe, x2)) new_deleteBy00(x0, x1, x2, False, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_flip(x0, x1, x2) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_deleteBy1(xw10, xw9, ba), xw110, xw111, ba) The TRS R consists of the following rules: new_deleteBy1(xw10, :(xw90, xw91), ba) -> new_deleteBy00(xw91, xw90, xw10, new_esEs(xw10, xw90, ba), ba) new_deleteBy1(xw10, [], ba) -> [] new_esEs(xw10, xw90, app(ty_Ratio, bh)) -> error([]) new_esEs(xw10, xw90, app(app(app(ty_@3, bc), bd), be)) -> error([]) new_esEs(xw10, xw90, ty_Integer) -> error([]) new_esEs(@0, @0, ty_@0) -> True new_esEs(xw10, xw90, app(ty_[], cd)) -> error([]) new_esEs(xw10, xw90, ty_Ordering) -> error([]) new_esEs(xw10, xw90, app(app(ty_@2, bf), bg)) -> error([]) new_esEs(xw10, xw90, ty_Float) -> error([]) new_esEs(xw10, xw90, ty_Bool) -> error([]) new_esEs(xw10, xw90, app(app(ty_Either, cb), cc)) -> error([]) new_esEs(xw10, xw90, ty_Int) -> error([]) new_esEs(xw10, xw90, ty_Char) -> error([]) new_esEs(xw10, xw90, app(ty_Maybe, ca)) -> error([]) new_esEs(xw10, xw90, ty_Double) -> error([]) new_deleteBy00(xw17, xw18, xw19, True, bb) -> xw17 new_deleteBy00(xw17, xw18, xw19, False, bb) -> :(xw18, new_deleteBy1(xw19, xw17, bb)) The set Q consists of the following terms: new_esEs(x0, x1, ty_Float) new_esEs(@0, @0, ty_@0) new_esEs(x0, x1, ty_Char) new_esEs(x0, x1, ty_Int) new_deleteBy1(x0, :(x1, x2), x3) new_esEs(x0, x1, ty_Ordering) new_deleteBy1(x0, [], x1) new_esEs(x0, x1, ty_Integer) new_esEs(x0, x1, app(app(ty_Either, x2), x3)) new_esEs(x0, x1, ty_Double) new_deleteBy00(x0, x1, x2, True, x3) new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs(x0, x1, app(app(ty_@2, x2), x3)) new_esEs(x0, x1, app(ty_[], x2)) new_esEs(x0, x1, ty_Bool) new_esEs(x0, x1, app(ty_Ratio, x2)) new_esEs(x0, x1, app(ty_Maybe, x2)) new_deleteBy00(x0, x1, x2, False, x3) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldl(xw9, xw10, :(xw110, xw111), ba) -> new_foldl(new_deleteBy1(xw10, xw9, ba), xw110, xw111, ba) The graph contains the following edges 3 > 2, 3 > 3, 4 >= 4 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(xw80, xw81), xw9, xw10, xw11, ba) -> new_psPs(xw81, xw9, xw10, xw11, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(xw80, xw81), xw9, xw10, xw11, ba) -> new_psPs(xw81, xw9, xw10, xw11, ba) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: new_deleteBy0(xw17, xw18, xw19, False, ba) -> new_deleteBy(xw19, xw17, ba) new_deleteBy(xw10, :(xw90, xw91), bb) -> new_deleteBy0(xw91, xw90, xw10, new_esEs(xw10, xw90, bb), bb) The TRS R consists of the following rules: new_esEs(xw10, xw90, app(ty_Ratio, bh)) -> error([]) new_esEs(xw10, xw90, app(app(app(ty_@3, bc), bd), be)) -> error([]) new_esEs(xw10, xw90, ty_Integer) -> error([]) new_esEs(@0, @0, ty_@0) -> True new_esEs(xw10, xw90, app(ty_[], cd)) -> error([]) new_esEs(xw10, xw90, ty_Ordering) -> error([]) new_esEs(xw10, xw90, app(app(ty_@2, bf), bg)) -> error([]) new_esEs(xw10, xw90, ty_Float) -> error([]) new_esEs(xw10, xw90, ty_Bool) -> error([]) new_esEs(xw10, xw90, app(app(ty_Either, cb), cc)) -> error([]) new_esEs(xw10, xw90, ty_Int) -> error([]) new_esEs(xw10, xw90, ty_Char) -> error([]) new_esEs(xw10, xw90, app(ty_Maybe, ca)) -> error([]) new_esEs(xw10, xw90, ty_Double) -> error([]) The set Q consists of the following terms: new_esEs(x0, x1, ty_Float) new_esEs(@0, @0, ty_@0) new_esEs(x0, x1, ty_Char) new_esEs(x0, x1, ty_Int) new_esEs(x0, x1, ty_Ordering) new_esEs(x0, x1, ty_Integer) new_esEs(x0, x1, app(app(ty_Either, x2), x3)) new_esEs(x0, x1, ty_Double) new_esEs(x0, x1, app(app(app(ty_@3, x2), x3), x4)) new_esEs(x0, x1, app(app(ty_@2, x2), x3)) new_esEs(x0, x1, app(ty_[], x2)) new_esEs(x0, x1, ty_Bool) new_esEs(x0, x1, app(ty_Ratio, x2)) new_esEs(x0, x1, app(ty_Maybe, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (25) TRUE ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: new_nubByNubBy'(:(@0, xw411), @0) -> new_nubByNubBy'(xw411, @0) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_nubByNubBy'(:(@0, xw411), @0) -> new_nubByNubBy'(xw411, @0) The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2 ---------------------------------------- (28) YES