/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) CR [EQUIVALENT, 0 ms] (4) HASKELL (5) BR [EQUIVALENT, 0 ms] (6) HASKELL (7) COR [EQUIVALENT, 23 ms] (8) HASKELL (9) LetRed [EQUIVALENT, 0 ms] (10) HASKELL (11) NumRed [SOUND, 0 ms] (12) HASKELL (13) Narrow [SOUND, 0 ms] (14) QDP (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C (\old new ->new) fm key_elt_pairs; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; listToFM :: Ord b => [(b,a)] -> FiniteMap b a; listToFM = addListToFM emptyFM; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\oldnew->new" is transformed to "addListToFM0 old new = new; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; listToFM :: Ord a => [(a,b)] -> FiniteMap a b; listToFM = addListToFM emptyFM; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) CR (EQUIVALENT) Case Reductions: The following Case expression "case fm_r of { EmptyFM -> True; Branch right_key _ _ _ _ -> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key} " is transformed to "right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; " The following Case expression "case fm_l of { EmptyFM -> True; Branch left_key _ _ _ _ -> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key} " is transformed to "left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; " The following Case expression "case fm_R of { Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} " is transformed to "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " The following Case expression "case fm_L of { Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} " is transformed to "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; listToFM :: Ord b => [(b,a)] -> FiniteMap b a; listToFM = addListToFM emptyFM; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { } addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt xv xw EmptyFM) = (key,elt); findMax (Branch key elt xx xy fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vux EmptyFM vuy) = (key,elt); findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; listToFM :: Ord a => [(a,b)] -> FiniteMap a b; listToFM = addListToFM emptyFM; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vz wu wv ww) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key wx wy wz xu) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch zz vuu size vuv vuw) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; " is transformed to "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; " "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); " "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; " "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; " "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); " "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; " The following Function with conditions "mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " is transformed to "mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); " "mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; " "mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; " "mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " The following Function with conditions "mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " is transformed to "mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); " "mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; " "mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; " "mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " The following Function with conditions "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; ; mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; ; single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " is transformed to "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; " "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " ---------------------------------------- (8) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; }; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt xv xw EmptyFM) = (key,elt); findMax (Branch key elt xx xy fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vux EmptyFM vuy) = (key,elt); findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; listToFM :: Ord b => [(b,a)] -> FiniteMap b a; listToFM = addListToFM emptyFM; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vz wu wv ww) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key wx wy wz xu) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch zz vuu size vuv vuw) = size; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (9) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } " are unpacked to the following functions on top level "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; " "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); " "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; " "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; " "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwx; " "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; " "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr); " "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwy; " "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwz vxu fm_lrr fm_r); " "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwz vxu fm_lr fm_r); " "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr); " "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); " "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwz vxu fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); " "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwz vxu fm_l fm_rl) fm_rr; " "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr otherwise; " "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr otherwise; " The bindings of the following Let/Where expression "foldl add fm key_elt_pairs where { add fmap (key,elt) = addToFM_C combiner fmap key elt; } " are unpacked to the following functions on top level "addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; ; left_ok = left_ok0 fm_l key fm_l; ; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vz wu wv ww) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; ; left_size = sizeFM fm_l; ; right_ok = right_ok0 fm_r key fm_r; ; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key wx wy wz xu) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; ; right_size = sizeFM fm_r; ; unbox x = x; } " are unpacked to the following functions on top level "mkBranchBalance_ok vxw vxx vxy = True; " "mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key vz wu wv ww) = mkBranchLeft_ok0Biggest_left_key fm_l < key; " "mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key wx wy wz xu) = key < mkBranchRight_ok0Smallest_right_key fm_r; " "mkBranchUnbox vxw vxx vxy x = x; " "mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxx vxw; " "mkBranchLeft_size vxw vxx vxy = sizeFM vxw; " "mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxy vxx vxy; " "mkBranchRight_size vxw vxx vxy = sizeFM vxy; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result" are unpacked to the following functions on top level "mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vxz vyw (1 + mkBranchLeft_size vyv vxz vyw + mkBranchRight_size vyv vxz vyw)) vyv vyw; " The bindings of the following Let/Where expression "let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key" are unpacked to the following functions on top level "mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); " The bindings of the following Let/Where expression "let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key" are unpacked to the following functions on top level "mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); " ---------------------------------------- (10) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt xv xw EmptyFM) = (key,elt); findMax (Branch key elt xx xy fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt vux EmptyFM vuy) = (key,elt); findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; listToFM :: Ord b => [(b,a)] -> FiniteMap b a; listToFM = addListToFM emptyFM; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 fm_L fm_R key elt key elt fm_L fm_R (mkBalBranch6Size_l fm_L fm_R key elt + mkBalBranch6Size_r fm_L fm_R key elt < 2); mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwz vxu fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwz vxu fm_lrr fm_r); mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr); mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr); mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwz vxu fm_l fm_rl) fm_rr; mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwz vxu fm_lr fm_r); mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwx; mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwy; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok vxw vxx vxy = True; mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxx vxw; mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key vz wu wv ww) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); mkBranchLeft_size vxw vxx vxy = sizeFM vxw; mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vxz vyw (1 + mkBranchLeft_size vyv vxz vyw + mkBranchRight_size vyv vxz vyw)) vyv vyw; mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxy vxx vxy; mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key wx wy wz xu) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); mkBranchRight_size vxw vxx vxy = sizeFM vxy; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox vxw vxx vxy x = x; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch zz vuu size vuv vuw) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (11) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (12) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { } addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; addListToFM0 old new = new; addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt xv xw EmptyFM) = (key,elt); findMax (Branch key elt xx xy fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt vux EmptyFM vuy) = (key,elt); findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; listToFM :: Ord b => [(b,a)] -> FiniteMap b a; listToFM = addListToFM emptyFM; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 fm_L fm_R key elt key elt fm_L fm_R (mkBalBranch6Size_l fm_L fm_R key elt + mkBalBranch6Size_r fm_L fm_R key elt < Pos (Succ (Succ Zero))); mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwz vxu fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwz vxu fm_lrr fm_r); mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr); mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr); mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwz vxu fm_l fm_rl) fm_rr; mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwz vxu fm_lr fm_r); mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwx; mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwy; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok vxw vxx vxy = True; mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxx vxw; mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key vz wu wv ww) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); mkBranchLeft_size vxw vxx vxy = sizeFM vxw; mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vxz vyw (Pos (Succ Zero) + mkBranchLeft_size vyv vxz vyw + mkBranchRight_size vyv vxz vyw)) vyv vyw; mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxy vxx vxy; mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key wx wy wz xu) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); mkBranchRight_size vxw vxx vxy = sizeFM vxy; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); mkBranchUnbox vxw vxx vxy x = x; sIZE_RATIO :: Int; sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = Pos Zero; sizeFM (Branch zz vuu size vuv vuw) = size; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (13) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="FiniteMap.listToFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="FiniteMap.listToFM vyz3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 4[label="FiniteMap.addListToFM FiniteMap.emptyFM vyz3",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="FiniteMap.addListToFM_C FiniteMap.addListToFM0 FiniteMap.emptyFM vyz3",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6 -> 20[label="",style="dashed", color="red", weight=0]; 6[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) FiniteMap.emptyFM vyz3",fontsize=16,color="magenta"];6 -> 21[label="",style="dashed", color="magenta", weight=3]; 6 -> 22[label="",style="dashed", color="magenta", weight=3]; 21[label="FiniteMap.emptyFM",fontsize=16,color="black",shape="triangle"];21 -> 27[label="",style="solid", color="black", weight=3]; 22[label="vyz3",fontsize=16,color="green",shape="box"];20[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) vyz6 vyz311",fontsize=16,color="burlywood",shape="triangle"];59[label="vyz311/vyz3110 : vyz3111",fontsize=10,color="white",style="solid",shape="box"];20 -> 59[label="",style="solid", color="burlywood", weight=9]; 59 -> 28[label="",style="solid", color="burlywood", weight=3]; 60[label="vyz311/[]",fontsize=10,color="white",style="solid",shape="box"];20 -> 60[label="",style="solid", color="burlywood", weight=9]; 60 -> 29[label="",style="solid", color="burlywood", weight=3]; 27[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];28[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) vyz6 (vyz3110 : vyz3111)",fontsize=16,color="black",shape="box"];28 -> 30[label="",style="solid", color="black", weight=3]; 29[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) vyz6 []",fontsize=16,color="black",shape="box"];29 -> 31[label="",style="solid", color="black", weight=3]; 30 -> 20[label="",style="dashed", color="red", weight=0]; 30[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 vyz6 vyz3110) vyz3111",fontsize=16,color="magenta"];30 -> 32[label="",style="dashed", color="magenta", weight=3]; 30 -> 33[label="",style="dashed", color="magenta", weight=3]; 31[label="vyz6",fontsize=16,color="green",shape="box"];32[label="FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 vyz6 vyz3110",fontsize=16,color="burlywood",shape="box"];61[label="vyz3110/(vyz31100,vyz31101)",fontsize=10,color="white",style="solid",shape="box"];32 -> 61[label="",style="solid", color="burlywood", weight=9]; 61 -> 34[label="",style="solid", color="burlywood", weight=3]; 33[label="vyz3111",fontsize=16,color="green",shape="box"];34[label="FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 vyz6 (vyz31100,vyz31101)",fontsize=16,color="black",shape="box"];34 -> 35[label="",style="solid", color="black", weight=3]; 35[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 vyz6 vyz31100 vyz31101",fontsize=16,color="burlywood",shape="box"];62[label="vyz6/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];35 -> 62[label="",style="solid", color="burlywood", weight=9]; 62 -> 36[label="",style="solid", color="burlywood", weight=3]; 63[label="vyz6/FiniteMap.Branch vyz60 vyz61 vyz62 vyz63 vyz64",fontsize=10,color="white",style="solid",shape="box"];35 -> 63[label="",style="solid", color="burlywood", weight=9]; 63 -> 37[label="",style="solid", color="burlywood", weight=3]; 36[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 FiniteMap.EmptyFM vyz31100 vyz31101",fontsize=16,color="black",shape="box"];36 -> 38[label="",style="solid", color="black", weight=3]; 37[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 (FiniteMap.Branch vyz60 vyz61 vyz62 vyz63 vyz64) vyz31100 vyz31101",fontsize=16,color="black",shape="box"];37 -> 39[label="",style="solid", color="black", weight=3]; 38[label="FiniteMap.addToFM_C4 FiniteMap.addListToFM0 FiniteMap.EmptyFM vyz31100 vyz31101",fontsize=16,color="black",shape="box"];38 -> 40[label="",style="solid", color="black", weight=3]; 39[label="FiniteMap.addToFM_C3 FiniteMap.addListToFM0 (FiniteMap.Branch vyz60 vyz61 vyz62 vyz63 vyz64) vyz31100 vyz31101",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 40[label="FiniteMap.unitFM vyz31100 vyz31101",fontsize=16,color="black",shape="box"];40 -> 42[label="",style="solid", color="black", weight=3]; 41[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 vyz60 vyz61 vyz62 vyz63 vyz64 vyz31100 vyz31101 (vyz31100 < vyz60)",fontsize=16,color="black",shape="box"];41 -> 43[label="",style="solid", color="black", weight=3]; 42[label="FiniteMap.Branch vyz31100 vyz31101 (Pos (Succ Zero)) FiniteMap.emptyFM FiniteMap.emptyFM",fontsize=16,color="green",shape="box"];42 -> 44[label="",style="dashed", color="green", weight=3]; 42 -> 45[label="",style="dashed", color="green", weight=3]; 43[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 vyz60 vyz61 vyz62 vyz63 vyz64 vyz31100 vyz31101 (compare vyz31100 vyz60 == LT)",fontsize=16,color="burlywood",shape="box"];64[label="vyz31100/()",fontsize=10,color="white",style="solid",shape="box"];43 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 46[label="",style="solid", color="burlywood", weight=3]; 44 -> 21[label="",style="dashed", color="red", weight=0]; 44[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];45 -> 21[label="",style="dashed", color="red", weight=0]; 45[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];46[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 vyz60 vyz61 vyz62 vyz63 vyz64 () vyz31101 (compare () vyz60 == LT)",fontsize=16,color="burlywood",shape="box"];65[label="vyz60/()",fontsize=10,color="white",style="solid",shape="box"];46 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 47[label="",style="solid", color="burlywood", weight=3]; 47[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 (compare () () == LT)",fontsize=16,color="black",shape="box"];47 -> 48[label="",style="solid", color="black", weight=3]; 48[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 (EQ == LT)",fontsize=16,color="black",shape="box"];48 -> 49[label="",style="solid", color="black", weight=3]; 49[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 False",fontsize=16,color="black",shape="box"];49 -> 50[label="",style="solid", color="black", weight=3]; 50[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 (() > ())",fontsize=16,color="black",shape="box"];50 -> 51[label="",style="solid", color="black", weight=3]; 51[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 (compare () () == GT)",fontsize=16,color="black",shape="box"];51 -> 52[label="",style="solid", color="black", weight=3]; 52[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 (EQ == GT)",fontsize=16,color="black",shape="box"];52 -> 53[label="",style="solid", color="black", weight=3]; 53[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 False",fontsize=16,color="black",shape="box"];53 -> 54[label="",style="solid", color="black", weight=3]; 54[label="FiniteMap.addToFM_C0 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 otherwise",fontsize=16,color="black",shape="box"];54 -> 55[label="",style="solid", color="black", weight=3]; 55[label="FiniteMap.addToFM_C0 FiniteMap.addListToFM0 () vyz61 vyz62 vyz63 vyz64 () vyz31101 True",fontsize=16,color="black",shape="box"];55 -> 56[label="",style="solid", color="black", weight=3]; 56[label="FiniteMap.Branch () (FiniteMap.addListToFM0 vyz61 vyz31101) vyz62 vyz63 vyz64",fontsize=16,color="green",shape="box"];56 -> 57[label="",style="dashed", color="green", weight=3]; 57[label="FiniteMap.addListToFM0 vyz61 vyz31101",fontsize=16,color="black",shape="box"];57 -> 58[label="",style="solid", color="black", weight=3]; 58[label="vyz31101",fontsize=16,color="green",shape="box"];} ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: new_foldl(vyz6, :(vyz3110, vyz3111), h) -> new_foldl(new_addListToFM_CAdd(vyz6, vyz3110, h), vyz3111, h) The TRS R consists of the following rules: new_addListToFM_CAdd(Branch(@0, vyz61, vyz62, vyz63, vyz64), @2(@0, vyz31101), h) -> Branch(@0, vyz31101, vyz62, vyz63, vyz64) new_addListToFM_CAdd(EmptyFM, @2(vyz31100, vyz31101), h) -> Branch(vyz31100, vyz31101, Pos(Succ(Zero)), new_emptyFM(h), new_emptyFM(h)) new_emptyFM(h) -> EmptyFM The set Q consists of the following terms: new_addListToFM_CAdd(EmptyFM, @2(x0, x1), x2) new_emptyFM(x0) new_addListToFM_CAdd(Branch(@0, x0, x1, x2, x3), @2(@0, x4), x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_foldl(vyz6, :(vyz3110, vyz3111), h) -> new_foldl(new_addListToFM_CAdd(vyz6, vyz3110, h), vyz3111, h) The graph contains the following edges 2 > 2, 3 >= 3 ---------------------------------------- (16) YES