/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) AND (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) QDPSizeChangeProof [EQUIVALENT, 0 ms] (26) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM5 :: Monad b => (a -> g -> d -> e -> c -> f) -> b a -> b g -> b d -> b e -> b c -> b f; liftM5 f m1 m2 m3 m4 m5 = m1 >>= (\x1 ->m2 >>= (\x2 ->m3 >>= (\x3 ->m4 >>= (\x4 ->m5 >>= (\x5 ->return (f x1 x2 x3 x4 x5)))))); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\x5->return (f x1 x2 x3 x4 x5)" is transformed to "liftM50 f x1 x2 x3 x4 x5 = return (f x1 x2 x3 x4 x5); " The following Lambda expression "\x4->m5 >>= liftM50 f x1 x2 x3 x4" is transformed to "liftM51 m5 f x1 x2 x3 x4 = m5 >>= liftM50 f x1 x2 x3 x4; " The following Lambda expression "\x3->m4 >>= liftM51 m5 f x1 x2 x3" is transformed to "liftM52 m4 m5 f x1 x2 x3 = m4 >>= liftM51 m5 f x1 x2 x3; " The following Lambda expression "\x2->m3 >>= liftM52 m4 m5 f x1 x2" is transformed to "liftM53 m3 m4 m5 f x1 x2 = m3 >>= liftM52 m4 m5 f x1 x2; " The following Lambda expression "\x1->m2 >>= liftM53 m3 m4 m5 f x1" is transformed to "liftM54 m2 m3 m4 m5 f x1 = m2 >>= liftM53 m3 m4 m5 f x1; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM5 :: Monad b => (e -> f -> g -> a -> c -> d) -> b e -> b f -> b g -> b a -> b c -> b d; liftM5 f m1 m2 m3 m4 m5 = m1 >>= liftM54 m2 m3 m4 m5 f; liftM50 f x1 x2 x3 x4 x5 = return (f x1 x2 x3 x4 x5); liftM51 m5 f x1 x2 x3 x4 = m5 >>= liftM50 f x1 x2 x3 x4; liftM52 m4 m5 f x1 x2 x3 = m4 >>= liftM51 m5 f x1 x2 x3; liftM53 m3 m4 m5 f x1 x2 = m3 >>= liftM52 m4 m5 f x1 x2; liftM54 m2 m3 m4 m5 f x1 = m2 >>= liftM53 m3 m4 m5 f x1; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM5 :: Monad a => (g -> d -> e -> b -> f -> c) -> a g -> a d -> a e -> a b -> a f -> a c; liftM5 f m1 m2 m3 m4 m5 = m1 >>= liftM54 m2 m3 m4 m5 f; liftM50 f x1 x2 x3 x4 x5 = return (f x1 x2 x3 x4 x5); liftM51 m5 f x1 x2 x3 x4 = m5 >>= liftM50 f x1 x2 x3 x4; liftM52 m4 m5 f x1 x2 x3 = m4 >>= liftM51 m5 f x1 x2 x3; liftM53 m3 m4 m5 f x1 x2 = m3 >>= liftM52 m4 m5 f x1 x2; liftM54 m2 m3 m4 m5 f x1 = m2 >>= liftM53 m3 m4 m5 f x1; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM5 :: Monad a => (d -> c -> e -> g -> f -> b) -> a d -> a c -> a e -> a g -> a f -> a b; liftM5 f m1 m2 m3 m4 m5 = m1 >>= liftM54 m2 m3 m4 m5 f; liftM50 f x1 x2 x3 x4 x5 = return (f x1 x2 x3 x4 x5); liftM51 m5 f x1 x2 x3 x4 = m5 >>= liftM50 f x1 x2 x3 x4; liftM52 m4 m5 f x1 x2 x3 = m4 >>= liftM51 m5 f x1 x2 x3; liftM53 m3 m4 m5 f x1 x2 = m3 >>= liftM52 m4 m5 f x1 x2; liftM54 m2 m3 m4 m5 f x1 = m2 >>= liftM53 m3 m4 m5 f x1; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.liftM5",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.liftM5 vy3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.liftM5 vy3 vy4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="Monad.liftM5 vy3 vy4 vy5",fontsize=16,color="grey",shape="box"];5 -> 6[label="",style="dashed", color="grey", weight=3]; 6[label="Monad.liftM5 vy3 vy4 vy5 vy6",fontsize=16,color="grey",shape="box"];6 -> 7[label="",style="dashed", color="grey", weight=3]; 7[label="Monad.liftM5 vy3 vy4 vy5 vy6 vy7",fontsize=16,color="grey",shape="box"];7 -> 8[label="",style="dashed", color="grey", weight=3]; 8[label="Monad.liftM5 vy3 vy4 vy5 vy6 vy7 vy8",fontsize=16,color="black",shape="triangle"];8 -> 9[label="",style="solid", color="black", weight=3]; 9[label="vy4 >>= Monad.liftM54 vy5 vy6 vy7 vy8 vy3",fontsize=16,color="burlywood",shape="triangle"];87[label="vy4/vy40 : vy41",fontsize=10,color="white",style="solid",shape="box"];9 -> 87[label="",style="solid", color="burlywood", weight=9]; 87 -> 10[label="",style="solid", color="burlywood", weight=3]; 88[label="vy4/[]",fontsize=10,color="white",style="solid",shape="box"];9 -> 88[label="",style="solid", color="burlywood", weight=9]; 88 -> 11[label="",style="solid", color="burlywood", weight=3]; 10[label="vy40 : vy41 >>= Monad.liftM54 vy5 vy6 vy7 vy8 vy3",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 11[label="[] >>= Monad.liftM54 vy5 vy6 vy7 vy8 vy3",fontsize=16,color="black",shape="box"];11 -> 13[label="",style="solid", color="black", weight=3]; 12 -> 29[label="",style="dashed", color="red", weight=0]; 12[label="Monad.liftM54 vy5 vy6 vy7 vy8 vy3 vy40 ++ (vy41 >>= Monad.liftM54 vy5 vy6 vy7 vy8 vy3)",fontsize=16,color="magenta"];12 -> 30[label="",style="dashed", color="magenta", weight=3]; 12 -> 31[label="",style="dashed", color="magenta", weight=3]; 13[label="[]",fontsize=16,color="green",shape="box"];30[label="Monad.liftM54 vy5 vy6 vy7 vy8 vy3 vy40",fontsize=16,color="black",shape="box"];30 -> 40[label="",style="solid", color="black", weight=3]; 31 -> 9[label="",style="dashed", color="red", weight=0]; 31[label="vy41 >>= Monad.liftM54 vy5 vy6 vy7 vy8 vy3",fontsize=16,color="magenta"];31 -> 41[label="",style="dashed", color="magenta", weight=3]; 29[label="vy10 ++ vy9",fontsize=16,color="burlywood",shape="triangle"];89[label="vy10/vy100 : vy101",fontsize=10,color="white",style="solid",shape="box"];29 -> 89[label="",style="solid", color="burlywood", weight=9]; 89 -> 42[label="",style="solid", color="burlywood", weight=3]; 90[label="vy10/[]",fontsize=10,color="white",style="solid",shape="box"];29 -> 90[label="",style="solid", color="burlywood", weight=9]; 90 -> 43[label="",style="solid", color="burlywood", weight=3]; 40[label="vy5 >>= Monad.liftM53 vy6 vy7 vy8 vy3 vy40",fontsize=16,color="burlywood",shape="triangle"];91[label="vy5/vy50 : vy51",fontsize=10,color="white",style="solid",shape="box"];40 -> 91[label="",style="solid", color="burlywood", weight=9]; 91 -> 44[label="",style="solid", color="burlywood", weight=3]; 92[label="vy5/[]",fontsize=10,color="white",style="solid",shape="box"];40 -> 92[label="",style="solid", color="burlywood", weight=9]; 92 -> 45[label="",style="solid", color="burlywood", weight=3]; 41[label="vy41",fontsize=16,color="green",shape="box"];42[label="(vy100 : vy101) ++ vy9",fontsize=16,color="black",shape="box"];42 -> 46[label="",style="solid", color="black", weight=3]; 43[label="[] ++ vy9",fontsize=16,color="black",shape="box"];43 -> 47[label="",style="solid", color="black", weight=3]; 44[label="vy50 : vy51 >>= Monad.liftM53 vy6 vy7 vy8 vy3 vy40",fontsize=16,color="black",shape="box"];44 -> 48[label="",style="solid", color="black", weight=3]; 45[label="[] >>= Monad.liftM53 vy6 vy7 vy8 vy3 vy40",fontsize=16,color="black",shape="box"];45 -> 49[label="",style="solid", color="black", weight=3]; 46[label="vy100 : vy101 ++ vy9",fontsize=16,color="green",shape="box"];46 -> 50[label="",style="dashed", color="green", weight=3]; 47[label="vy9",fontsize=16,color="green",shape="box"];48 -> 29[label="",style="dashed", color="red", weight=0]; 48[label="Monad.liftM53 vy6 vy7 vy8 vy3 vy40 vy50 ++ (vy51 >>= Monad.liftM53 vy6 vy7 vy8 vy3 vy40)",fontsize=16,color="magenta"];48 -> 51[label="",style="dashed", color="magenta", weight=3]; 48 -> 52[label="",style="dashed", color="magenta", weight=3]; 49[label="[]",fontsize=16,color="green",shape="box"];50 -> 29[label="",style="dashed", color="red", weight=0]; 50[label="vy101 ++ vy9",fontsize=16,color="magenta"];50 -> 53[label="",style="dashed", color="magenta", weight=3]; 51[label="Monad.liftM53 vy6 vy7 vy8 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];51 -> 54[label="",style="solid", color="black", weight=3]; 52 -> 40[label="",style="dashed", color="red", weight=0]; 52[label="vy51 >>= Monad.liftM53 vy6 vy7 vy8 vy3 vy40",fontsize=16,color="magenta"];52 -> 55[label="",style="dashed", color="magenta", weight=3]; 53[label="vy101",fontsize=16,color="green",shape="box"];54[label="vy6 >>= Monad.liftM52 vy7 vy8 vy3 vy40 vy50",fontsize=16,color="burlywood",shape="triangle"];93[label="vy6/vy60 : vy61",fontsize=10,color="white",style="solid",shape="box"];54 -> 93[label="",style="solid", color="burlywood", weight=9]; 93 -> 56[label="",style="solid", color="burlywood", weight=3]; 94[label="vy6/[]",fontsize=10,color="white",style="solid",shape="box"];54 -> 94[label="",style="solid", color="burlywood", weight=9]; 94 -> 57[label="",style="solid", color="burlywood", weight=3]; 55[label="vy51",fontsize=16,color="green",shape="box"];56[label="vy60 : vy61 >>= Monad.liftM52 vy7 vy8 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];56 -> 58[label="",style="solid", color="black", weight=3]; 57[label="[] >>= Monad.liftM52 vy7 vy8 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];57 -> 59[label="",style="solid", color="black", weight=3]; 58 -> 29[label="",style="dashed", color="red", weight=0]; 58[label="Monad.liftM52 vy7 vy8 vy3 vy40 vy50 vy60 ++ (vy61 >>= Monad.liftM52 vy7 vy8 vy3 vy40 vy50)",fontsize=16,color="magenta"];58 -> 60[label="",style="dashed", color="magenta", weight=3]; 58 -> 61[label="",style="dashed", color="magenta", weight=3]; 59[label="[]",fontsize=16,color="green",shape="box"];60[label="Monad.liftM52 vy7 vy8 vy3 vy40 vy50 vy60",fontsize=16,color="black",shape="box"];60 -> 62[label="",style="solid", color="black", weight=3]; 61 -> 54[label="",style="dashed", color="red", weight=0]; 61[label="vy61 >>= Monad.liftM52 vy7 vy8 vy3 vy40 vy50",fontsize=16,color="magenta"];61 -> 63[label="",style="dashed", color="magenta", weight=3]; 62[label="vy7 >>= Monad.liftM51 vy8 vy3 vy40 vy50 vy60",fontsize=16,color="burlywood",shape="triangle"];95[label="vy7/vy70 : vy71",fontsize=10,color="white",style="solid",shape="box"];62 -> 95[label="",style="solid", color="burlywood", weight=9]; 95 -> 64[label="",style="solid", color="burlywood", weight=3]; 96[label="vy7/[]",fontsize=10,color="white",style="solid",shape="box"];62 -> 96[label="",style="solid", color="burlywood", weight=9]; 96 -> 65[label="",style="solid", color="burlywood", weight=3]; 63[label="vy61",fontsize=16,color="green",shape="box"];64[label="vy70 : vy71 >>= Monad.liftM51 vy8 vy3 vy40 vy50 vy60",fontsize=16,color="black",shape="box"];64 -> 66[label="",style="solid", color="black", weight=3]; 65[label="[] >>= Monad.liftM51 vy8 vy3 vy40 vy50 vy60",fontsize=16,color="black",shape="box"];65 -> 67[label="",style="solid", color="black", weight=3]; 66 -> 29[label="",style="dashed", color="red", weight=0]; 66[label="Monad.liftM51 vy8 vy3 vy40 vy50 vy60 vy70 ++ (vy71 >>= Monad.liftM51 vy8 vy3 vy40 vy50 vy60)",fontsize=16,color="magenta"];66 -> 68[label="",style="dashed", color="magenta", weight=3]; 66 -> 69[label="",style="dashed", color="magenta", weight=3]; 67[label="[]",fontsize=16,color="green",shape="box"];68[label="Monad.liftM51 vy8 vy3 vy40 vy50 vy60 vy70",fontsize=16,color="black",shape="box"];68 -> 70[label="",style="solid", color="black", weight=3]; 69 -> 62[label="",style="dashed", color="red", weight=0]; 69[label="vy71 >>= Monad.liftM51 vy8 vy3 vy40 vy50 vy60",fontsize=16,color="magenta"];69 -> 71[label="",style="dashed", color="magenta", weight=3]; 70[label="vy8 >>= Monad.liftM50 vy3 vy40 vy50 vy60 vy70",fontsize=16,color="burlywood",shape="triangle"];97[label="vy8/vy80 : vy81",fontsize=10,color="white",style="solid",shape="box"];70 -> 97[label="",style="solid", color="burlywood", weight=9]; 97 -> 72[label="",style="solid", color="burlywood", weight=3]; 98[label="vy8/[]",fontsize=10,color="white",style="solid",shape="box"];70 -> 98[label="",style="solid", color="burlywood", weight=9]; 98 -> 73[label="",style="solid", color="burlywood", weight=3]; 71[label="vy71",fontsize=16,color="green",shape="box"];72[label="vy80 : vy81 >>= Monad.liftM50 vy3 vy40 vy50 vy60 vy70",fontsize=16,color="black",shape="box"];72 -> 74[label="",style="solid", color="black", weight=3]; 73[label="[] >>= Monad.liftM50 vy3 vy40 vy50 vy60 vy70",fontsize=16,color="black",shape="box"];73 -> 75[label="",style="solid", color="black", weight=3]; 74 -> 29[label="",style="dashed", color="red", weight=0]; 74[label="Monad.liftM50 vy3 vy40 vy50 vy60 vy70 vy80 ++ (vy81 >>= Monad.liftM50 vy3 vy40 vy50 vy60 vy70)",fontsize=16,color="magenta"];74 -> 76[label="",style="dashed", color="magenta", weight=3]; 74 -> 77[label="",style="dashed", color="magenta", weight=3]; 75[label="[]",fontsize=16,color="green",shape="box"];76[label="Monad.liftM50 vy3 vy40 vy50 vy60 vy70 vy80",fontsize=16,color="black",shape="box"];76 -> 78[label="",style="solid", color="black", weight=3]; 77 -> 70[label="",style="dashed", color="red", weight=0]; 77[label="vy81 >>= Monad.liftM50 vy3 vy40 vy50 vy60 vy70",fontsize=16,color="magenta"];77 -> 79[label="",style="dashed", color="magenta", weight=3]; 78[label="return (vy3 vy40 vy50 vy60 vy70 vy80)",fontsize=16,color="black",shape="box"];78 -> 80[label="",style="solid", color="black", weight=3]; 79[label="vy81",fontsize=16,color="green",shape="box"];80[label="vy3 vy40 vy50 vy60 vy70 vy80 : []",fontsize=16,color="green",shape="box"];80 -> 81[label="",style="dashed", color="green", weight=3]; 81[label="vy3 vy40 vy50 vy60 vy70 vy80",fontsize=16,color="green",shape="box"];81 -> 82[label="",style="dashed", color="green", weight=3]; 81 -> 83[label="",style="dashed", color="green", weight=3]; 81 -> 84[label="",style="dashed", color="green", weight=3]; 81 -> 85[label="",style="dashed", color="green", weight=3]; 81 -> 86[label="",style="dashed", color="green", weight=3]; 82[label="vy40",fontsize=16,color="green",shape="box"];83[label="vy50",fontsize=16,color="green",shape="box"];84[label="vy60",fontsize=16,color="green",shape="box"];85[label="vy70",fontsize=16,color="green",shape="box"];86[label="vy80",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(:(vy80, vy81), vy3, vy40, vy50, vy60, vy70, h, ba, bb, bc, bd, be) -> new_gtGtEs(vy81, vy3, vy40, vy50, vy60, vy70, h, ba, bb, bc, bd, be) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs(:(vy80, vy81), vy3, vy40, vy50, vy60, vy70, h, ba, bb, bc, bd, be) -> new_gtGtEs(vy81, vy3, vy40, vy50, vy60, vy70, h, ba, bb, bc, bd, be) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 11 >= 11, 12 >= 12 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs3(:(vy40, vy41), vy5, vy6, vy7, vy8, vy3, h, ba, bb, bc, bd, be) -> new_gtGtEs3(vy41, vy5, vy6, vy7, vy8, vy3, h, ba, bb, bc, bd, be) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs3(:(vy40, vy41), vy5, vy6, vy7, vy8, vy3, h, ba, bb, bc, bd, be) -> new_gtGtEs3(vy41, vy5, vy6, vy7, vy8, vy3, h, ba, bb, bc, bd, be) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 11 >= 11, 12 >= 12 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs2(:(vy50, vy51), vy6, vy7, vy8, vy3, vy40, h, ba, bb, bc, bd, be) -> new_gtGtEs2(vy51, vy6, vy7, vy8, vy3, vy40, h, ba, bb, bc, bd, be) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs2(:(vy50, vy51), vy6, vy7, vy8, vy3, vy40, h, ba, bb, bc, bd, be) -> new_gtGtEs2(vy51, vy6, vy7, vy8, vy3, vy40, h, ba, bb, bc, bd, be) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 11 >= 11, 12 >= 12 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(:(vy70, vy71), vy8, vy3, vy40, vy50, vy60, h, ba, bb, bc, bd, be) -> new_gtGtEs0(vy71, vy8, vy3, vy40, vy50, vy60, h, ba, bb, bc, bd, be) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs0(:(vy70, vy71), vy8, vy3, vy40, vy50, vy60, h, ba, bb, bc, bd, be) -> new_gtGtEs0(vy71, vy8, vy3, vy40, vy50, vy60, h, ba, bb, bc, bd, be) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 11 >= 11, 12 >= 12 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs1(:(vy60, vy61), vy7, vy8, vy3, vy40, vy50, h, ba, bb, bc, bd, be) -> new_gtGtEs1(vy61, vy7, vy8, vy3, vy40, vy50, h, ba, bb, bc, bd, be) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs1(:(vy60, vy61), vy7, vy8, vy3, vy40, vy50, h, ba, bb, bc, bd, be) -> new_gtGtEs1(vy61, vy7, vy8, vy3, vy40, vy50, h, ba, bb, bc, bd, be) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8, 9 >= 9, 10 >= 10, 11 >= 11, 12 >= 12 ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(vy100, vy101), vy9, h) -> new_psPs(vy101, vy9, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(vy100, vy101), vy9, h) -> new_psPs(vy101, vy9, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (26) YES