/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could not be shown: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) CR [EQUIVALENT, 0 ms] (4) HASKELL (5) IFR [EQUIVALENT, 0 ms] (6) HASKELL (7) BR [EQUIVALENT, 0 ms] (8) HASKELL (9) COR [EQUIVALENT, 0 ms] (10) HASKELL (11) LetRed [EQUIVALENT, 0 ms] (12) HASKELL (13) NumRed [SOUND, 25 ms] (14) HASKELL ---------------------------------------- (0) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C (\old new ->new) fm key elt; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM (\key elt rest ->(key,elt) : rest) [] fm; foldFM :: (b -> c -> a -> a) -> a -> FiniteMap b c -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord a => FiniteMap a b -> a -> Maybe b; lookupFM EmptyFM key = Nothing; lookupFM (Branch key elt _ fm_l fm_r) key_to_find | key_to_find < key = lookupFM fm_l key_to_find | key_to_find > key = lookupFM fm_r key_to_find | otherwise = Just elt; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; plusFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 _ left right) = mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; new_elt = case lookupFM fm1 split_key of { Nothing-> elt2; Just elt1-> combiner elt1 elt2; } ; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt _ fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt _ fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\oldnew->new" is transformed to "addToFM0 old new = new; " The following Lambda expression "\keyeltrest->(key,elt) : rest" is transformed to "fmToList0 key elt rest = (key,elt) : rest; " ---------------------------------------- (2) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> c -> a -> a) -> a -> FiniteMap b c -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord b => FiniteMap b a -> b -> Maybe a; lookupFM EmptyFM key = Nothing; lookupFM (Branch key elt _ fm_l fm_r) key_to_find | key_to_find < key = lookupFM fm_l key_to_find | key_to_find > key = lookupFM fm_r key_to_find | otherwise = Just elt; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = case fm_R of { Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R | otherwise -> double_L fm_L fm_R; } | size_l > sIZE_RATIO * size_r = case fm_L of { Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R | otherwise -> double_R fm_L fm_R; } | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = case fm_l of { EmptyFM-> True; Branch left_key _ _ _ _-> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; } ; left_size = sizeFM fm_l; right_ok = case fm_r of { EmptyFM-> True; Branch right_key _ _ _ _-> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; } ; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; plusFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 _ left right) = mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; new_elt = case lookupFM fm1 split_key of { Nothing-> elt2; Just elt1-> combiner elt1 elt2; } ; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt _ fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt _ fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) CR (EQUIVALENT) Case Reductions: The following Case expression "case compare x y of { EQ -> o; LT -> LT; GT -> GT} " is transformed to "primCompAux0 o EQ = o; primCompAux0 o LT = LT; primCompAux0 o GT = GT; " The following Case expression "case lookupFM fm1 split_key of { Nothing -> elt2; Just elt1 -> combiner elt1 elt2} " is transformed to "new_elt0 elt2 combiner Nothing = elt2; new_elt0 elt2 combiner (Just elt1) = combiner elt1 elt2; " The following Case expression "case fm_r of { EmptyFM -> True; Branch right_key _ _ _ _ -> let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key} " is transformed to "right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; " The following Case expression "case fm_l of { EmptyFM -> True; Branch left_key _ _ _ _ -> let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key} " is transformed to "left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; " The following Case expression "case fm_R of { Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} " is transformed to "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " The following Case expression "case fm_L of { Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} " is transformed to "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " ---------------------------------------- (4) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (b -> a -> c -> c) -> c -> FiniteMap b a -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord b => FiniteMap b a -> b -> Maybe a; lookupFM EmptyFM key = Nothing; lookupFM (Branch key elt _ fm_l fm_r) key_to_find | key_to_find < key = lookupFM fm_l key_to_find | key_to_find > key = lookupFM fm_r key_to_find | otherwise = Just elt; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; plusFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 _ left right) = mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; new_elt = new_elt0 elt2 combiner (lookupFM fm1 split_key); new_elt0 elt2 combiner Nothing = elt2; new_elt0 elt2 combiner (Just elt1) = combiner elt1 elt2; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; splitGT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt _ fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt _ fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) IFR (EQUIVALENT) If Reductions: The following If expression "if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero" is transformed to "primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y)); primDivNatS0 x y False = Zero; " The following If expression "if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x" is transformed to "primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y); primModNatS0 x y False = Succ x; " ---------------------------------------- (6) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt _ _ EmptyFM) = (key,elt); findMax (Branch key elt _ _ fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt _ EmptyFM _) = (key,elt); findMin (Branch key elt _ fm_l _) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> a -> b -> b) -> b -> FiniteMap c a -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt _ fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord b => FiniteMap b a -> b -> Maybe a; lookupFM EmptyFM key = Nothing; lookupFM (Branch key elt _ fm_l fm_r) key_to_find | key_to_find < key = lookupFM fm_l key_to_find | key_to_find > key = lookupFM fm_r key_to_find | otherwise = Just elt; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key _ _ _ _) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key _ _ _ _) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) fm_r@(Branch key_r elt_r _ fm_rl fm_rr) | sIZE_RATIO * size_l < size_r = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr | sIZE_RATIO * size_r < size_l = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) | otherwise = mkBranch 13 key elt fm_l fm_r where { size_l = sizeFM fm_l; size_r = sizeFM fm_r; }; plusFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 _ left right) = mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; new_elt = new_elt0 elt2 combiner (lookupFM fm1 split_key); new_elt0 elt2 combiner Nothing = elt2; new_elt0 elt2 combiner (Just elt1) = combiner elt1 elt2; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch _ _ size _ _) = size; splitGT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt _ fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt _ fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. Binding Reductions: The bind variable of the following binding Pattern "fm_l@(Branch vuv vuw vux vuy vuz)" is replaced by the following term "Branch vuv vuw vux vuy vuz" The bind variable of the following binding Pattern "fm_r@(Branch vvv vvw vvx vvy vvz)" is replaced by the following term "Branch vvv vvw vvx vvy vvz" ---------------------------------------- (8) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vxy vxz EmptyFM) = (key,elt); findMax (Branch key elt vyu vyv fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt wvw EmptyFM wvx) = (key,elt); findMin (Branch key elt wvy fm_l wvz) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> b -> c -> c) -> c -> FiniteMap a b -> c; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wuw fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord a => FiniteMap a b -> a -> Maybe b; lookupFM EmptyFM key = Nothing; lookupFM (Branch key elt wvv fm_l fm_r) key_to_find | key_to_find < key = lookupFM fm_l key_to_find | key_to_find > key = lookupFM fm_r key_to_find | otherwise = Just elt; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L | otherwise = mkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R | otherwise = double_L fm_L fm_R; mkBalBranch1 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R | otherwise = double_R fm_L fm_R; single_L fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vww vwx vwy vwz) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vxu vxv vxw vxx) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) | sIZE_RATIO * size_l < size_r = mkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz | sIZE_RATIO * size_r < size_l = mkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz)) | otherwise = mkBranch 13 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) where { size_l = sizeFM (Branch vuv vuw vux vuy vuz); size_r = sizeFM (Branch vvv vvw vvx vvy vvz); }; plusFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 zz left right) = mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; new_elt = new_elt0 elt2 combiner (lookupFM fm1 split_key); new_elt0 elt2 combiner Nothing = elt2; new_elt0 elt2 combiner (Just elt1) = combiner elt1 elt2; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wux wuy size wuz wvu) = size; splitGT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt vwu fm_l fm_r) split_key | split_key > key = splitGT fm_r split_key | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r | otherwise = fm_r; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt vwv fm_l fm_r) split_key | split_key < key = splitLT fm_l split_key | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key) | otherwise = fm_l; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (9) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "absReal x|x >= 0x|otherwise`negate` x; " is transformed to "absReal x = absReal2 x; " "absReal0 x True = `negate` x; " "absReal1 x True = x; absReal1 x False = absReal0 x otherwise; " "absReal2 x = absReal1 x (x >= 0); " The following Function with conditions "gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); " is transformed to "gcd' x wwu = gcd'2 x wwu; gcd' x y = gcd'0 x y; " "gcd'0 x y = gcd' y (x `rem` y); " "gcd'1 True x wwu = x; gcd'1 wwv www wwx = gcd'0 www wwx; " "gcd'2 x wwu = gcd'1 (wwu == 0) x wwu; gcd'2 wwy wwz = gcd'0 wwy wwz; " The following Function with conditions "gcd 0 0 = error []; gcd x y = gcd' (abs x) (abs y) where { gcd' x 0 = x; gcd' x y = gcd' y (x `rem` y); } ; " is transformed to "gcd wxu wxv = gcd3 wxu wxv; gcd x y = gcd0 x y; " "gcd0 x y = gcd' (abs x) (abs y) where { gcd' x wwu = gcd'2 x wwu; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x wwu = x; gcd'1 wwv www wwx = gcd'0 www wwx; ; gcd'2 x wwu = gcd'1 (wwu == 0) x wwu; gcd'2 wwy wwz = gcd'0 wwy wwz; } ; " "gcd1 True wxu wxv = error []; gcd1 wxw wxx wxy = gcd0 wxx wxy; " "gcd2 True wxu wxv = gcd1 (wxv == 0) wxu wxv; gcd2 wxz wyu wyv = gcd0 wyu wyv; " "gcd3 wxu wxv = gcd2 (wxu == 0) wxu wxv; gcd3 wyw wyx = gcd0 wyw wyx; " The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "reduce x y|y == 0error []|otherwisex `quot` d :% (y `quot` d) where { d = gcd x y; } ; " is transformed to "reduce x y = reduce2 x y; " "reduce2 x y = reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } ; " The following Function with conditions "compare x y|x == yEQ|x <= yLT|otherwiseGT; " is transformed to "compare x y = compare3 x y; " "compare2 x y True = EQ; compare2 x y False = compare1 x y (x <= y); " "compare1 x y True = LT; compare1 x y False = compare0 x y otherwise; " "compare0 x y True = GT; " "compare3 x y = compare2 x y (x == y); " The following Function with conditions "addToFM_C combiner EmptyFM key elt = unitFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; " is transformed to "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; " "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; " "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; " "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); " "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); " "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 wzu wzv wzw wzx = addToFM_C3 wzu wzv wzw wzx; " The following Function with conditions "mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz)|sIZE_RATIO * size_l < size_rmkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz|sIZE_RATIO * size_r < size_lmkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz))|otherwisemkBranch 13 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) where { size_l = sizeFM (Branch vuv vuw vux vuy vuz); ; size_r = sizeFM (Branch vvv vvw vvx vvy vvz); } ; " is transformed to "mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); " "mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBranch 13 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); ; mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz)); mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch0 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz otherwise; ; mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz; mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch vuv vuw vux vuy vuz); ; size_r = sizeFM (Branch vvv vvw vvx vvy vvz); } ; " "mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xuv xuw xux xuy = mkVBalBranch3 xuv xuw xux xuy; " "mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xvu xvv xvw xvx = mkVBalBranch4 xvu xvv xvw xvx; " The following Function with conditions "splitGT EmptyFM split_key = emptyFM; splitGT (Branch key elt vwu fm_l fm_r) split_key|split_key > keysplitGT fm_r split_key|split_key < keymkVBalBranch key elt (splitGT fm_l split_key) fm_r|otherwisefm_r; " is transformed to "splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt vwu fm_l fm_r) split_key = splitGT3 (Branch key elt vwu fm_l fm_r) split_key; " "splitGT1 key elt vwu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt vwu fm_l fm_r split_key False = splitGT0 key elt vwu fm_l fm_r split_key otherwise; " "splitGT0 key elt vwu fm_l fm_r split_key True = fm_r; " "splitGT2 key elt vwu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt vwu fm_l fm_r split_key False = splitGT1 key elt vwu fm_l fm_r split_key (split_key < key); " "splitGT3 (Branch key elt vwu fm_l fm_r) split_key = splitGT2 key elt vwu fm_l fm_r split_key (split_key > key); " "splitGT4 EmptyFM split_key = emptyFM; splitGT4 xwu xwv = splitGT3 xwu xwv; " The following Function with conditions "splitLT EmptyFM split_key = emptyFM; splitLT (Branch key elt vwv fm_l fm_r) split_key|split_key < keysplitLT fm_l split_key|split_key > keymkVBalBranch key elt fm_l (splitLT fm_r split_key)|otherwisefm_l; " is transformed to "splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt vwv fm_l fm_r) split_key = splitLT3 (Branch key elt vwv fm_l fm_r) split_key; " "splitLT2 key elt vwv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt vwv fm_l fm_r split_key False = splitLT1 key elt vwv fm_l fm_r split_key (split_key > key); " "splitLT1 key elt vwv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt vwv fm_l fm_r split_key False = splitLT0 key elt vwv fm_l fm_r split_key otherwise; " "splitLT0 key elt vwv fm_l fm_r split_key True = fm_l; " "splitLT3 (Branch key elt vwv fm_l fm_r) split_key = splitLT2 key elt vwv fm_l fm_r split_key (split_key < key); " "splitLT4 EmptyFM split_key = emptyFM; splitLT4 xwy xwz = splitLT3 xwy xwz; " The following Function with conditions "mkBalBranch1 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; " is transformed to "mkBalBranch1 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr); " "mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = double_R fm_L fm_R; " "mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr otherwise; " "mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " The following Function with conditions "mkBalBranch0 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; " is transformed to "mkBalBranch0 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr); " "mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr otherwise; " "mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = double_L fm_L fm_R; " "mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " The following Function with conditions "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { double_L fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; ; mkBalBranch1 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; ; single_L fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " is transformed to "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; " "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } ; " The following Function with conditions "lookupFM EmptyFM key = Nothing; lookupFM (Branch key elt wvv fm_l fm_r) key_to_find|key_to_find < keylookupFM fm_l key_to_find|key_to_find > keylookupFM fm_r key_to_find|otherwiseJust elt; " is transformed to "lookupFM EmptyFM key = lookupFM4 EmptyFM key; lookupFM (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find; " "lookupFM2 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_l key_to_find; lookupFM2 key elt wvv fm_l fm_r key_to_find False = lookupFM1 key elt wvv fm_l fm_r key_to_find (key_to_find > key); " "lookupFM0 key elt wvv fm_l fm_r key_to_find True = Just elt; " "lookupFM1 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_r key_to_find; lookupFM1 key elt wvv fm_l fm_r key_to_find False = lookupFM0 key elt wvv fm_l fm_r key_to_find otherwise; " "lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM2 key elt wvv fm_l fm_r key_to_find (key_to_find < key); " "lookupFM4 EmptyFM key = Nothing; lookupFM4 xxy xxz = lookupFM3 xxy xxz; " ---------------------------------------- (10) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 wzu wzv wzw wzx = addToFM_C3 wzu wzv wzw wzx; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vxy vxz EmptyFM) = (key,elt); findMax (Branch key elt vyu vyv fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wvw EmptyFM wvx) = (key,elt); findMin (Branch key elt wvy fm_l wvz) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (a -> c -> b -> b) -> b -> FiniteMap a c -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wuw fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord b => FiniteMap b a -> b -> Maybe a; lookupFM EmptyFM key = lookupFM4 EmptyFM key; lookupFM (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find; lookupFM0 key elt wvv fm_l fm_r key_to_find True = Just elt; lookupFM1 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_r key_to_find; lookupFM1 key elt wvv fm_l fm_r key_to_find False = lookupFM0 key elt wvv fm_l fm_r key_to_find otherwise; lookupFM2 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_l key_to_find; lookupFM2 key elt wvv fm_l fm_r key_to_find False = lookupFM1 key elt wvv fm_l fm_r key_to_find (key_to_find > key); lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM2 key elt wvv fm_l fm_r key_to_find (key_to_find < key); lookupFM4 EmptyFM key = Nothing; lookupFM4 xxy xxz = lookupFM3 xxy xxz; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); double_R (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); mkBalBranch0 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr); mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = double_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr otherwise; mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch1 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr); mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = double_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr otherwise; mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); single_L fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; single_R (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); size_l = sizeFM fm_L; size_r = sizeFM fm_R; }; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; left_ok = left_ok0 fm_l key fm_l; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vww vwx vwy vwz) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; left_size = sizeFM fm_l; right_ok = right_ok0 fm_r key fm_r; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vxu vxv vxw vxx) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; right_size = sizeFM fm_r; unbox :: Int -> Int; unbox x = x; }; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBranch 13 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz)); mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch0 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz otherwise; mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz; mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * size_r < size_l); size_l = sizeFM (Branch vuv vuw vux vuy vuz); size_r = sizeFM (Branch vvv vvw vvx vvy vvz); }; mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xuv xuw xux xuy = mkVBalBranch3 xuv xuw xux xuy; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xvu xvv xvw xvx = mkVBalBranch4 xvu xvv xvw xvx; plusFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 zz left right) = mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where { gts = splitGT fm1 split_key; lts = splitLT fm1 split_key; new_elt = new_elt0 elt2 combiner (lookupFM fm1 split_key); new_elt0 elt2 combiner Nothing = elt2; new_elt0 elt2 combiner (Just elt1) = combiner elt1 elt2; }; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap a b -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wux wuy size wuz wvu) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt vwu fm_l fm_r) split_key = splitGT3 (Branch key elt vwu fm_l fm_r) split_key; splitGT0 key elt vwu fm_l fm_r split_key True = fm_r; splitGT1 key elt vwu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt vwu fm_l fm_r split_key False = splitGT0 key elt vwu fm_l fm_r split_key otherwise; splitGT2 key elt vwu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt vwu fm_l fm_r split_key False = splitGT1 key elt vwu fm_l fm_r split_key (split_key < key); splitGT3 (Branch key elt vwu fm_l fm_r) split_key = splitGT2 key elt vwu fm_l fm_r split_key (split_key > key); splitGT4 EmptyFM split_key = emptyFM; splitGT4 xwu xwv = splitGT3 xwu xwv; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt vwv fm_l fm_r) split_key = splitLT3 (Branch key elt vwv fm_l fm_r) split_key; splitLT0 key elt vwv fm_l fm_r split_key True = fm_l; splitLT1 key elt vwv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt vwv fm_l fm_r split_key False = splitLT0 key elt vwv fm_l fm_r split_key otherwise; splitLT2 key elt vwv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt vwv fm_l fm_r split_key False = splitLT1 key elt vwv fm_l fm_r split_key (split_key > key); splitLT3 (Branch key elt vwv fm_l fm_r) split_key = splitLT2 key elt vwv fm_l fm_r split_key (split_key < key); splitLT4 EmptyFM split_key = emptyFM; splitLT4 xwy xwz = splitLT3 xwy xwz; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (11) LetRed (EQUIVALENT) Let/Where Reductions: The bindings of the following Let/Where expression "gcd' (abs x) (abs y) where { gcd' x wwu = gcd'2 x wwu; gcd' x y = gcd'0 x y; ; gcd'0 x y = gcd' y (x `rem` y); ; gcd'1 True x wwu = x; gcd'1 wwv www wwx = gcd'0 www wwx; ; gcd'2 x wwu = gcd'1 (wwu == 0) x wwu; gcd'2 wwy wwz = gcd'0 wwy wwz; } " are unpacked to the following functions on top level "gcd0Gcd'1 True x wwu = x; gcd0Gcd'1 wwv www wwx = gcd0Gcd'0 www wwx; " "gcd0Gcd'2 x wwu = gcd0Gcd'1 (wwu == 0) x wwu; gcd0Gcd'2 wwy wwz = gcd0Gcd'0 wwy wwz; " "gcd0Gcd'0 x y = gcd0Gcd' y (x `rem` y); " "gcd0Gcd' x wwu = gcd0Gcd'2 x wwu; gcd0Gcd' x y = gcd0Gcd'0 x y; " The bindings of the following Let/Where expression "reduce1 x y (y == 0) where { d = gcd x y; ; reduce0 x y True = x `quot` d :% (y `quot` d); ; reduce1 x y True = error []; reduce1 x y False = reduce0 x y otherwise; } " are unpacked to the following functions on top level "reduce2D xyu xyv = gcd xyu xyv; " "reduce2Reduce0 xyu xyv x y True = x `quot` reduce2D xyu xyv :% (y `quot` reduce2D xyu xyv); " "reduce2Reduce1 xyu xyv x y True = error []; reduce2Reduce1 xyu xyv x y False = reduce2Reduce0 xyu xyv x y otherwise; " The bindings of the following Let/Where expression "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { double_L fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); ; double_R (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); ; mkBalBranch0 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr); ; mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = double_L fm_L fm_R; ; mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr True = single_L fm_L fm_R; mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vzy vzz wuu fm_rl fm_rr otherwise; ; mkBalBranch02 fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vzy vzz wuu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); ; mkBalBranch1 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr); ; mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = double_R fm_L fm_R; ; mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr True = single_R fm_L fm_R; mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr False = mkBalBranch10 fm_L fm_R vyz vzu vzv fm_ll fm_lr otherwise; ; mkBalBranch12 fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch11 fm_L fm_R vyz vzu vzv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); ; mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; ; mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; ; mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); ; mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); ; single_L fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; ; single_R (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); ; size_l = sizeFM fm_L; ; size_r = sizeFM fm_R; } " are unpacked to the following functions on top level "mkBalBranch6MkBalBranch0 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch6MkBalBranch02 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr); " "mkBalBranch6Single_R xyw xyx xyy xyz (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 xyw xyx fm_lr fm_r); " "mkBalBranch6MkBalBranch2 xyw xyx xyy xyz key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; " "mkBalBranch6Size_l xyw xyx xyy xyz = sizeFM xyy; " "mkBalBranch6MkBalBranch02 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); " "mkBalBranch6MkBalBranch00 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr True = mkBalBranch6Double_L xyw xyx xyy xyz fm_L fm_R; " "mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 xyw xyx xyy xyz fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R (mkBalBranch6Size_l xyw xyx xyy xyz > sIZE_RATIO * mkBalBranch6Size_r xyw xyx xyy xyz); " "mkBalBranch6Double_L xyw xyx xyy xyz fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 xyw xyx fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); " "mkBalBranch6MkBalBranch5 xyw xyx xyy xyz key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R (mkBalBranch6Size_r xyw xyx xyy xyz > sIZE_RATIO * mkBalBranch6Size_l xyw xyx xyy xyz); " "mkBalBranch6Single_L xyw xyx xyy xyz fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 xyw xyx fm_l fm_rl) fm_rr; " "mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr True = mkBalBranch6Single_R xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr False = mkBalBranch6MkBalBranch10 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr otherwise; " "mkBalBranch6MkBalBranch1 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch6MkBalBranch12 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr); " "mkBalBranch6MkBalBranch10 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr True = mkBalBranch6Double_R xyw xyx xyy xyz fm_L fm_R; " "mkBalBranch6Double_R xyw xyx xyy xyz (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 xyw xyx fm_lrr fm_r); " "mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 xyw xyx xyy xyz fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 xyw xyx xyy xyz key elt fm_L fm_R otherwise; " "mkBalBranch6MkBalBranch12 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); " "mkBalBranch6Size_r xyw xyx xyy xyz = sizeFM xyz; " "mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr True = mkBalBranch6Single_L xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr False = mkBalBranch6MkBalBranch00 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr otherwise; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result where { balance_ok = True; ; left_ok = left_ok0 fm_l key fm_l; ; left_ok0 fm_l key EmptyFM = True; left_ok0 fm_l key (Branch left_key vww vwx vwy vwz) = let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key; ; left_size = sizeFM fm_l; ; right_ok = right_ok0 fm_r key fm_r; ; right_ok0 fm_r key EmptyFM = True; right_ok0 fm_r key (Branch right_key vxu vxv vxw vxx) = let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key; ; right_size = sizeFM fm_r; ; unbox x = x; } " are unpacked to the following functions on top level "mkBranchLeft_size xzu xzv xzw = sizeFM xzu; " "mkBranchRight_size xzu xzv xzw = sizeFM xzv; " "mkBranchLeft_ok xzu xzv xzw = mkBranchLeft_ok0 xzu xzv xzw xzu xzw xzu; " "mkBranchUnbox xzu xzv xzw x = x; " "mkBranchLeft_ok0 xzu xzv xzw fm_l key EmptyFM = True; mkBranchLeft_ok0 xzu xzv xzw fm_l key (Branch left_key vww vwx vwy vwz) = mkBranchLeft_ok0Biggest_left_key fm_l < key; " "mkBranchBalance_ok xzu xzv xzw = True; " "mkBranchRight_ok xzu xzv xzw = mkBranchRight_ok0 xzu xzv xzw xzv xzw xzv; " "mkBranchRight_ok0 xzu xzv xzw fm_r key EmptyFM = True; mkBranchRight_ok0 xzu xzv xzw fm_r key (Branch right_key vxu vxv vxw vxx) = key < mkBranchRight_ok0Smallest_right_key fm_r; " The bindings of the following Let/Where expression "let { result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; } in result" are unpacked to the following functions on top level "mkBranchResult xzx xzy xzz yuu = Branch xzx xzy (mkBranchUnbox xzz yuu xzx (1 + mkBranchLeft_size xzz yuu xzx + mkBranchRight_size xzz yuu xzx)) xzz yuu; " The bindings of the following Let/Where expression "mkVBalBranch split_key new_elt (plusFM_C combiner lts left) (plusFM_C combiner gts right) where { gts = splitGT fm1 split_key; ; lts = splitLT fm1 split_key; ; new_elt = new_elt0 elt2 combiner (lookupFM fm1 split_key); ; new_elt0 elt2 combiner Nothing = elt2; new_elt0 elt2 combiner (Just elt1) = combiner elt1 elt2; } " are unpacked to the following functions on top level "plusFM_CLts yuv yuw yux yuy = splitLT yuv yuw; " "plusFM_CNew_elt0 yuv yuw yux yuy elt2 combiner Nothing = elt2; plusFM_CNew_elt0 yuv yuw yux yuy elt2 combiner (Just elt1) = combiner elt1 elt2; " "plusFM_CGts yuv yuw yux yuy = splitGT yuv yuw; " "plusFM_CNew_elt yuv yuw yux yuy = plusFM_CNew_elt0 yuv yuw yux yuy yux yuy (lookupFM yuv yuw); " The bindings of the following Let/Where expression "mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * size_l < size_r) where { mkVBalBranch0 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBranch 13 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); ; mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz)); mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch0 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz otherwise; ; mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz; mkVBalBranch2 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch1 key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * size_r < size_l); ; size_l = sizeFM (Branch vuv vuw vux vuy vuz); ; size_r = sizeFM (Branch vvv vvw vvx vvy vvz); } " are unpacked to the following functions on top level "mkVBalBranch3Size_r yuz yvu yvv yvw yvx yvy yvz ywu ywv yww = sizeFM (Branch yuz yvu yvv yvw yvx); " "mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz)); mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch3MkVBalBranch0 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz otherwise; " "mkVBalBranch3Size_l yuz yvu yvv yvw yvx yvy yvz ywu ywv yww = sizeFM (Branch yvy yvz ywu ywv yww); " "mkVBalBranch3MkVBalBranch0 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBranch 13 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); " "mkVBalBranch3MkVBalBranch2 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz; mkVBalBranch3MkVBalBranch2 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * mkVBalBranch3Size_r yuz yvu yvv yvw yvx yvy yvz ywu ywv yww < mkVBalBranch3Size_l yuz yvu yvv yvw yvx yvy yvz ywu ywv yww); " The bindings of the following Let/Where expression "let { biggest_left_key = fst (findMax fm_l); } in biggest_left_key < key" are unpacked to the following functions on top level "mkBranchLeft_ok0Biggest_left_key ywx = fst (findMax ywx); " The bindings of the following Let/Where expression "let { smallest_right_key = fst (findMin fm_r); } in key < smallest_right_key" are unpacked to the following functions on top level "mkBranchRight_ok0Smallest_right_key ywy = fst (findMin ywy); " ---------------------------------------- (12) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; instance (Eq a, Eq b) => Eq FiniteMap a b where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 wzu wzv wzw wzx = addToFM_C3 wzu wzv wzw wzx; emptyFM :: FiniteMap a b; emptyFM = EmptyFM; findMax :: FiniteMap a b -> (a,b); findMax (Branch key elt vxy vxz EmptyFM) = (key,elt); findMax (Branch key elt vyu vyv fm_r) = findMax fm_r; findMin :: FiniteMap a b -> (a,b); findMin (Branch key elt wvw EmptyFM wvx) = (key,elt); findMin (Branch key elt wvy fm_l wvz) = findMin fm_l; fmToList :: FiniteMap a b -> [(a,b)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> b -> a -> a) -> a -> FiniteMap c b -> a; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wuw fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord b => FiniteMap b a -> b -> Maybe a; lookupFM EmptyFM key = lookupFM4 EmptyFM key; lookupFM (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find; lookupFM0 key elt wvv fm_l fm_r key_to_find True = Just elt; lookupFM1 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_r key_to_find; lookupFM1 key elt wvv fm_l fm_r key_to_find False = lookupFM0 key elt wvv fm_l fm_r key_to_find otherwise; lookupFM2 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_l key_to_find; lookupFM2 key elt wvv fm_l fm_r key_to_find False = lookupFM1 key elt wvv fm_l fm_r key_to_find (key_to_find > key); lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM2 key elt wvv fm_l fm_r key_to_find (key_to_find < key); lookupFM4 EmptyFM key = Nothing; lookupFM4 xxy xxz = lookupFM3 xxy xxz; mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < 2); mkBalBranch6Double_L xyw xyx xyy xyz fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 xyw xyx fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R xyw xyx xyy xyz (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 xyw xyx fm_lrr fm_r); mkBalBranch6MkBalBranch0 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch6MkBalBranch02 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr); mkBalBranch6MkBalBranch00 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr True = mkBalBranch6Double_L xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr True = mkBalBranch6Single_L xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr False = mkBalBranch6MkBalBranch00 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); mkBalBranch6MkBalBranch1 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch6MkBalBranch12 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr); mkBalBranch6MkBalBranch10 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr True = mkBalBranch6Double_R xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr True = mkBalBranch6Single_R xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr False = mkBalBranch6MkBalBranch10 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); mkBalBranch6MkBalBranch2 xyw xyx xyy xyz key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 xyw xyx xyy xyz fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 xyw xyx xyy xyz key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 xyw xyx xyy xyz fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R (mkBalBranch6Size_l xyw xyx xyy xyz > sIZE_RATIO * mkBalBranch6Size_r xyw xyx xyy xyz); mkBalBranch6MkBalBranch5 xyw xyx xyy xyz key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; mkBalBranch6MkBalBranch5 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R (mkBalBranch6Size_r xyw xyx xyy xyz > sIZE_RATIO * mkBalBranch6Size_l xyw xyx xyy xyz); mkBalBranch6Single_L xyw xyx xyy xyz fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 xyw xyx fm_l fm_rl) fm_rr; mkBalBranch6Single_R xyw xyx xyy xyz (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 xyw xyx fm_lr fm_r); mkBalBranch6Size_l xyw xyx xyy xyz = sizeFM xyy; mkBalBranch6Size_r xyw xyx xyy xyz = sizeFM xyz; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok xzu xzv xzw = True; mkBranchLeft_ok xzu xzv xzw = mkBranchLeft_ok0 xzu xzv xzw xzu xzw xzu; mkBranchLeft_ok0 xzu xzv xzw fm_l key EmptyFM = True; mkBranchLeft_ok0 xzu xzv xzw fm_l key (Branch left_key vww vwx vwy vwz) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key ywx = fst (findMax ywx); mkBranchLeft_size xzu xzv xzw = sizeFM xzu; mkBranchResult xzx xzy xzz yuu = Branch xzx xzy (mkBranchUnbox xzz yuu xzx (1 + mkBranchLeft_size xzz yuu xzx + mkBranchRight_size xzz yuu xzx)) xzz yuu; mkBranchRight_ok xzu xzv xzw = mkBranchRight_ok0 xzu xzv xzw xzv xzw xzv; mkBranchRight_ok0 xzu xzv xzw fm_r key EmptyFM = True; mkBranchRight_ok0 xzu xzv xzw fm_r key (Branch right_key vxu vxv vxw vxx) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key ywy = fst (findMin ywy); mkBranchRight_size xzu xzv xzw = sizeFM xzv; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); mkBranchUnbox xzu xzv xzw x = x; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch3MkVBalBranch2 vvv vvw vvx vvy vvz vuv vuw vux vuy vuz key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * mkVBalBranch3Size_l vvv vvw vvx vvy vvz vuv vuw vux vuy vuz < mkVBalBranch3Size_r vvv vvw vvx vvy vvz vuv vuw vux vuy vuz); mkVBalBranch3MkVBalBranch0 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBranch 13 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz)); mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch3MkVBalBranch0 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz otherwise; mkVBalBranch3MkVBalBranch2 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz; mkVBalBranch3MkVBalBranch2 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * mkVBalBranch3Size_r yuz yvu yvv yvw yvx yvy yvz ywu ywv yww < mkVBalBranch3Size_l yuz yvu yvv yvw yvx yvy yvz ywu ywv yww); mkVBalBranch3Size_l yuz yvu yvv yvw yvx yvy yvz ywu ywv yww = sizeFM (Branch yvy yvz ywu ywv yww); mkVBalBranch3Size_r yuz yvu yvv yvw yvx yvy yvz ywu ywv yww = sizeFM (Branch yuz yvu yvv yvw yvx); mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xuv xuw xux xuy = mkVBalBranch3 xuv xuw xux xuy; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xvu xvv xvw xvx = mkVBalBranch4 xvu xvv xvw xvx; plusFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 zz left right) = mkVBalBranch split_key (plusFM_CNew_elt fm1 split_key elt2 combiner) (plusFM_C combiner (plusFM_CLts fm1 split_key elt2 combiner) left) (plusFM_C combiner (plusFM_CGts fm1 split_key elt2 combiner) right); plusFM_CGts yuv yuw yux yuy = splitGT yuv yuw; plusFM_CLts yuv yuw yux yuy = splitLT yuv yuw; plusFM_CNew_elt yuv yuw yux yuy = plusFM_CNew_elt0 yuv yuw yux yuy yux yuy (lookupFM yuv yuw); plusFM_CNew_elt0 yuv yuw yux yuy elt2 combiner Nothing = elt2; plusFM_CNew_elt0 yuv yuw yux yuy elt2 combiner (Just elt1) = combiner elt1 elt2; sIZE_RATIO :: Int; sIZE_RATIO = 5; sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = 0; sizeFM (Branch wux wuy size wuz wvu) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt vwu fm_l fm_r) split_key = splitGT3 (Branch key elt vwu fm_l fm_r) split_key; splitGT0 key elt vwu fm_l fm_r split_key True = fm_r; splitGT1 key elt vwu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt vwu fm_l fm_r split_key False = splitGT0 key elt vwu fm_l fm_r split_key otherwise; splitGT2 key elt vwu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt vwu fm_l fm_r split_key False = splitGT1 key elt vwu fm_l fm_r split_key (split_key < key); splitGT3 (Branch key elt vwu fm_l fm_r) split_key = splitGT2 key elt vwu fm_l fm_r split_key (split_key > key); splitGT4 EmptyFM split_key = emptyFM; splitGT4 xwu xwv = splitGT3 xwu xwv; splitLT :: Ord a => FiniteMap a b -> a -> FiniteMap a b; splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt vwv fm_l fm_r) split_key = splitLT3 (Branch key elt vwv fm_l fm_r) split_key; splitLT0 key elt vwv fm_l fm_r split_key True = fm_l; splitLT1 key elt vwv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt vwv fm_l fm_r split_key False = splitLT0 key elt vwv fm_l fm_r split_key otherwise; splitLT2 key elt vwv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt vwv fm_l fm_r split_key False = splitLT1 key elt vwv fm_l fm_r split_key (split_key > key); splitLT3 (Branch key elt vwv fm_l fm_r) split_key = splitLT2 key elt vwv fm_l fm_r split_key (split_key < key); splitLT4 EmptyFM split_key = emptyFM; splitLT4 xwy xwz = splitLT3 xwy xwz; unitFM :: a -> b -> FiniteMap a b; unitFM key elt = Branch key elt 1 emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (13) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (14) Obligation: mainModule Main module FiniteMap where { import qualified Main; import qualified Maybe; import qualified Prelude; data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; instance (Eq a, Eq b) => Eq FiniteMap b a where { (==) fm_1 fm_2 = sizeFM fm_1 == sizeFM fm_2 && fmToList fm_1 == fmToList fm_2; } addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; addToFM fm key elt = addToFM_C addToFM0 fm key elt; addToFM0 old new = new; addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); addToFM_C4 combiner EmptyFM key elt = unitFM key elt; addToFM_C4 wzu wzv wzw wzx = addToFM_C3 wzu wzv wzw wzx; emptyFM :: FiniteMap b a; emptyFM = EmptyFM; findMax :: FiniteMap b a -> (b,a); findMax (Branch key elt vxy vxz EmptyFM) = (key,elt); findMax (Branch key elt vyu vyv fm_r) = findMax fm_r; findMin :: FiniteMap b a -> (b,a); findMin (Branch key elt wvw EmptyFM wvx) = (key,elt); findMin (Branch key elt wvy fm_l wvz) = findMin fm_l; fmToList :: FiniteMap b a -> [(b,a)]; fmToList fm = foldFM fmToList0 [] fm; fmToList0 key elt rest = (key,elt) : rest; foldFM :: (c -> a -> b -> b) -> b -> FiniteMap c a -> b; foldFM k z EmptyFM = z; foldFM k z (Branch key elt wuw fm_l fm_r) = foldFM k (k key elt (foldFM k z fm_r)) fm_l; lookupFM :: Ord b => FiniteMap b a -> b -> Maybe a; lookupFM EmptyFM key = lookupFM4 EmptyFM key; lookupFM (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find; lookupFM0 key elt wvv fm_l fm_r key_to_find True = Just elt; lookupFM1 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_r key_to_find; lookupFM1 key elt wvv fm_l fm_r key_to_find False = lookupFM0 key elt wvv fm_l fm_r key_to_find otherwise; lookupFM2 key elt wvv fm_l fm_r key_to_find True = lookupFM fm_l key_to_find; lookupFM2 key elt wvv fm_l fm_r key_to_find False = lookupFM1 key elt wvv fm_l fm_r key_to_find (key_to_find > key); lookupFM3 (Branch key elt wvv fm_l fm_r) key_to_find = lookupFM2 key elt wvv fm_l fm_r key_to_find (key_to_find < key); lookupFM4 EmptyFM key = Nothing; lookupFM4 xxy xxz = lookupFM3 xxy xxz; mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < Pos (Succ (Succ Zero))); mkBalBranch6Double_L xyw xyx xyy xyz fm_l (Branch key_r elt_r vzw (Branch key_rl elt_rl vzx fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) xyw xyx fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); mkBalBranch6Double_R xyw xyx xyy xyz (Branch key_l elt_l vyx fm_ll (Branch key_lr elt_lr vyy fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) xyw xyx fm_lrr fm_r); mkBalBranch6MkBalBranch0 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch6MkBalBranch02 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr); mkBalBranch6MkBalBranch00 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr True = mkBalBranch6Double_L xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr True = mkBalBranch6Single_L xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr False = mkBalBranch6MkBalBranch00 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr otherwise; mkBalBranch6MkBalBranch02 xyw xyx xyy xyz fm_L fm_R (Branch vzy vzz wuu fm_rl fm_rr) = mkBalBranch6MkBalBranch01 xyw xyx xyy xyz fm_L fm_R vzy vzz wuu fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); mkBalBranch6MkBalBranch1 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch6MkBalBranch12 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr); mkBalBranch6MkBalBranch10 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr True = mkBalBranch6Double_R xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr True = mkBalBranch6Single_R xyw xyx xyy xyz fm_L fm_R; mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr False = mkBalBranch6MkBalBranch10 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr otherwise; mkBalBranch6MkBalBranch12 xyw xyx xyy xyz fm_L fm_R (Branch vyz vzu vzv fm_ll fm_lr) = mkBalBranch6MkBalBranch11 xyw xyx xyy xyz fm_L fm_R vyz vzu vzv fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); mkBalBranch6MkBalBranch2 xyw xyx xyy xyz key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 xyw xyx xyy xyz fm_L fm_R fm_L; mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 xyw xyx xyy xyz key elt fm_L fm_R otherwise; mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 xyw xyx xyy xyz fm_L fm_R fm_R; mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 xyw xyx xyy xyz key elt fm_L fm_R (mkBalBranch6Size_l xyw xyx xyy xyz > sIZE_RATIO * mkBalBranch6Size_r xyw xyx xyy xyz); mkBalBranch6MkBalBranch5 xyw xyx xyy xyz key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; mkBalBranch6MkBalBranch5 xyw xyx xyy xyz key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 xyw xyx xyy xyz key elt fm_L fm_R (mkBalBranch6Size_r xyw xyx xyy xyz > sIZE_RATIO * mkBalBranch6Size_l xyw xyx xyy xyz); mkBalBranch6Single_L xyw xyx xyy xyz fm_l (Branch key_r elt_r wuv fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) xyw xyx fm_l fm_rl) fm_rr; mkBalBranch6Single_R xyw xyx xyy xyz (Branch key_l elt_l vyw fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) xyw xyx fm_lr fm_r); mkBalBranch6Size_l xyw xyx xyy xyz = sizeFM xyy; mkBalBranch6Size_r xyw xyx xyy xyz = sizeFM xyz; mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; mkBranchBalance_ok xzu xzv xzw = True; mkBranchLeft_ok xzu xzv xzw = mkBranchLeft_ok0 xzu xzv xzw xzu xzw xzu; mkBranchLeft_ok0 xzu xzv xzw fm_l key EmptyFM = True; mkBranchLeft_ok0 xzu xzv xzw fm_l key (Branch left_key vww vwx vwy vwz) = mkBranchLeft_ok0Biggest_left_key fm_l < key; mkBranchLeft_ok0Biggest_left_key ywx = fst (findMax ywx); mkBranchLeft_size xzu xzv xzw = sizeFM xzu; mkBranchResult xzx xzy xzz yuu = Branch xzx xzy (mkBranchUnbox xzz yuu xzx (Pos (Succ Zero) + mkBranchLeft_size xzz yuu xzx + mkBranchRight_size xzz yuu xzx)) xzz yuu; mkBranchRight_ok xzu xzv xzw = mkBranchRight_ok0 xzu xzv xzw xzv xzw xzv; mkBranchRight_ok0 xzu xzv xzw fm_r key EmptyFM = True; mkBranchRight_ok0 xzu xzv xzw fm_r key (Branch right_key vxu vxv vxw vxx) = key < mkBranchRight_ok0Smallest_right_key fm_r; mkBranchRight_ok0Smallest_right_key ywy = fst (findMin ywy); mkBranchRight_size xzu xzv xzw = sizeFM xzv; mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); mkBranchUnbox xzu xzv xzw x = x; mkVBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; mkVBalBranch key elt EmptyFM fm_r = mkVBalBranch5 key elt EmptyFM fm_r; mkVBalBranch key elt fm_l EmptyFM = mkVBalBranch4 key elt fm_l EmptyFM; mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); mkVBalBranch3 key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz) = mkVBalBranch3MkVBalBranch2 vvv vvw vvx vvy vvz vuv vuw vux vuy vuz key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * mkVBalBranch3Size_l vvv vvw vvx vvy vvz vuv vuw vux vuy vuz < mkVBalBranch3Size_r vvv vvw vvx vvy vvz vuv vuw vux vuy vuz); mkVBalBranch3MkVBalBranch0 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))))) key elt (Branch vuv vuw vux vuy vuz) (Branch vvv vvw vvx vvy vvz); mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vuv vuw vuy (mkVBalBranch key elt vuz (Branch vvv vvw vvx vvy vvz)); mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch3MkVBalBranch0 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz otherwise; mkVBalBranch3MkVBalBranch2 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz True = mkBalBranch vvv vvw (mkVBalBranch key elt (Branch vuv vuw vux vuy vuz) vvy) vvz; mkVBalBranch3MkVBalBranch2 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz False = mkVBalBranch3MkVBalBranch1 yuz yvu yvv yvw yvx yvy yvz ywu ywv yww key elt vuv vuw vux vuy vuz vvv vvw vvx vvy vvz (sIZE_RATIO * mkVBalBranch3Size_r yuz yvu yvv yvw yvx yvy yvz ywu ywv yww < mkVBalBranch3Size_l yuz yvu yvv yvw yvx yvy yvz ywu ywv yww); mkVBalBranch3Size_l yuz yvu yvv yvw yvx yvy yvz ywu ywv yww = sizeFM (Branch yvy yvz ywu ywv yww); mkVBalBranch3Size_r yuz yvu yvv yvw yvx yvy yvz ywu ywv yww = sizeFM (Branch yuz yvu yvv yvw yvx); mkVBalBranch4 key elt fm_l EmptyFM = addToFM fm_l key elt; mkVBalBranch4 xuv xuw xux xuy = mkVBalBranch3 xuv xuw xux xuy; mkVBalBranch5 key elt EmptyFM fm_r = addToFM fm_r key elt; mkVBalBranch5 xvu xvv xvw xvx = mkVBalBranch4 xvu xvv xvw xvx; plusFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; plusFM_C combiner EmptyFM fm2 = fm2; plusFM_C combiner fm1 EmptyFM = fm1; plusFM_C combiner fm1 (Branch split_key elt2 zz left right) = mkVBalBranch split_key (plusFM_CNew_elt fm1 split_key elt2 combiner) (plusFM_C combiner (plusFM_CLts fm1 split_key elt2 combiner) left) (plusFM_C combiner (plusFM_CGts fm1 split_key elt2 combiner) right); plusFM_CGts yuv yuw yux yuy = splitGT yuv yuw; plusFM_CLts yuv yuw yux yuy = splitLT yuv yuw; plusFM_CNew_elt yuv yuw yux yuy = plusFM_CNew_elt0 yuv yuw yux yuy yux yuy (lookupFM yuv yuw); plusFM_CNew_elt0 yuv yuw yux yuy elt2 combiner Nothing = elt2; plusFM_CNew_elt0 yuv yuw yux yuy elt2 combiner (Just elt1) = combiner elt1 elt2; sIZE_RATIO :: Int; sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); sizeFM :: FiniteMap b a -> Int; sizeFM EmptyFM = Pos Zero; sizeFM (Branch wux wuy size wuz wvu) = size; splitGT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitGT EmptyFM split_key = splitGT4 EmptyFM split_key; splitGT (Branch key elt vwu fm_l fm_r) split_key = splitGT3 (Branch key elt vwu fm_l fm_r) split_key; splitGT0 key elt vwu fm_l fm_r split_key True = fm_r; splitGT1 key elt vwu fm_l fm_r split_key True = mkVBalBranch key elt (splitGT fm_l split_key) fm_r; splitGT1 key elt vwu fm_l fm_r split_key False = splitGT0 key elt vwu fm_l fm_r split_key otherwise; splitGT2 key elt vwu fm_l fm_r split_key True = splitGT fm_r split_key; splitGT2 key elt vwu fm_l fm_r split_key False = splitGT1 key elt vwu fm_l fm_r split_key (split_key < key); splitGT3 (Branch key elt vwu fm_l fm_r) split_key = splitGT2 key elt vwu fm_l fm_r split_key (split_key > key); splitGT4 EmptyFM split_key = emptyFM; splitGT4 xwu xwv = splitGT3 xwu xwv; splitLT :: Ord b => FiniteMap b a -> b -> FiniteMap b a; splitLT EmptyFM split_key = splitLT4 EmptyFM split_key; splitLT (Branch key elt vwv fm_l fm_r) split_key = splitLT3 (Branch key elt vwv fm_l fm_r) split_key; splitLT0 key elt vwv fm_l fm_r split_key True = fm_l; splitLT1 key elt vwv fm_l fm_r split_key True = mkVBalBranch key elt fm_l (splitLT fm_r split_key); splitLT1 key elt vwv fm_l fm_r split_key False = splitLT0 key elt vwv fm_l fm_r split_key otherwise; splitLT2 key elt vwv fm_l fm_r split_key True = splitLT fm_l split_key; splitLT2 key elt vwv fm_l fm_r split_key False = splitLT1 key elt vwv fm_l fm_r split_key (split_key > key); splitLT3 (Branch key elt vwv fm_l fm_r) split_key = splitLT2 key elt vwv fm_l fm_r split_key (split_key < key); splitLT4 EmptyFM split_key = emptyFM; splitLT4 xwy xwz = splitLT3 xwy xwz; unitFM :: b -> a -> FiniteMap b a; unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; } module Maybe where { import qualified FiniteMap; import qualified Main; import qualified Prelude; } module Main where { import qualified FiniteMap; import qualified Maybe; import qualified Prelude; }