/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could not be shown: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) IFR [EQUIVALENT, 0 ms] (4) HASKELL (5) BR [EQUIVALENT, 0 ms] (6) HASKELL (7) COR [EQUIVALENT, 0 ms] (8) HASKELL (9) Narrow [SOUND, 0 ms] (10) AND (11) QDP (12) QDPOrderProof [EQUIVALENT, 0 ms] (13) QDP (14) DependencyGraphProof [EQUIVALENT, 0 ms] (15) QDP (16) MNOCProof [EQUIVALENT, 0 ms] (17) QDP (18) NonTerminationLoopProof [COMPLETE, 0 ms] (19) NO (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) Narrow [COMPLETE, 0 ms] (27) TRUE ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; filterM :: Monad b => (a -> b Bool) -> [a] -> b [a]; filterM _ [] = return []; filterM p (x : xs) = p x >>= (\flg ->filterM p xs >>= (\ys ->return ( if flg then x : ys else ys))); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\ys->return (if flg then x : ys else ys)" is transformed to "filterM0 flg x ys = return (if flg then x : ys else ys); " The following Lambda expression "\flg->filterM p xs >>= filterM0 flg x" is transformed to "filterM1 p xs x flg = filterM p xs >>= filterM0 flg x; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; filterM :: Monad b => (a -> b Bool) -> [a] -> b [a]; filterM _ [] = return []; filterM p (x : xs) = p x >>= filterM1 p xs x; filterM0 flg x ys = return ( if flg then x : ys else ys); filterM1 p xs x flg = filterM p xs >>= filterM0 flg x; } ---------------------------------------- (3) IFR (EQUIVALENT) If Reductions: The following If expression "if flg then x : ys else ys" is transformed to "filterM00 x ys True = x : ys; filterM00 x ys False = ys; " ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; filterM :: Monad b => (a -> b Bool) -> [a] -> b [a]; filterM _ [] = return []; filterM p (x : xs) = p x >>= filterM1 p xs x; filterM0 flg x ys = return (filterM00 x ys flg); filterM00 x ys True = x : ys; filterM00 x ys False = ys; filterM1 p xs x flg = filterM p xs >>= filterM0 flg x; } ---------------------------------------- (5) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; filterM :: Monad a => (b -> a Bool) -> [b] -> a [b]; filterM vy [] = return []; filterM p (x : xs) = p x >>= filterM1 p xs x; filterM0 flg x ys = return (filterM00 x ys flg); filterM00 x ys True = x : ys; filterM00 x ys False = ys; filterM1 p xs x flg = filterM p xs >>= filterM0 flg x; } ---------------------------------------- (7) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (8) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; filterM :: Monad a => (b -> a Bool) -> [b] -> a [b]; filterM vy [] = return []; filterM p (x : xs) = p x >>= filterM1 p xs x; filterM0 flg x ys = return (filterM00 x ys flg); filterM00 x ys True = x : ys; filterM00 x ys False = ys; filterM1 p xs x flg = filterM p xs >>= filterM0 flg x; } ---------------------------------------- (9) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.filterM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.filterM vz3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.filterM vz3 vz4",fontsize=16,color="burlywood",shape="triangle"];62[label="vz4/vz40 : vz41",fontsize=10,color="white",style="solid",shape="box"];4 -> 62[label="",style="solid", color="burlywood", weight=9]; 62 -> 5[label="",style="solid", color="burlywood", weight=3]; 63[label="vz4/[]",fontsize=10,color="white",style="solid",shape="box"];4 -> 63[label="",style="solid", color="burlywood", weight=9]; 63 -> 6[label="",style="solid", color="burlywood", weight=3]; 5[label="Monad.filterM vz3 (vz40 : vz41)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="Monad.filterM vz3 []",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7 -> 9[label="",style="dashed", color="red", weight=0]; 7[label="vz3 vz40 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="magenta"];7 -> 10[label="",style="dashed", color="magenta", weight=3]; 8 -> 56[label="",style="dashed", color="red", weight=0]; 8[label="return []",fontsize=16,color="magenta"];8 -> 57[label="",style="dashed", color="magenta", weight=3]; 10[label="vz3 vz40",fontsize=16,color="green",shape="box"];10 -> 15[label="",style="dashed", color="green", weight=3]; 9[label="vz5 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="burlywood",shape="triangle"];64[label="vz5/vz50 : vz51",fontsize=10,color="white",style="solid",shape="box"];9 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 13[label="",style="solid", color="burlywood", weight=3]; 65[label="vz5/[]",fontsize=10,color="white",style="solid",shape="box"];9 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 14[label="",style="solid", color="burlywood", weight=3]; 57[label="[]",fontsize=16,color="green",shape="box"];56[label="return vz9",fontsize=16,color="black",shape="triangle"];56 -> 59[label="",style="solid", color="black", weight=3]; 15[label="vz40",fontsize=16,color="green",shape="box"];13[label="vz50 : vz51 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="black",shape="box"];13 -> 16[label="",style="solid", color="black", weight=3]; 14[label="[] >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="black",shape="box"];14 -> 17[label="",style="solid", color="black", weight=3]; 59[label="vz9 : []",fontsize=16,color="green",shape="box"];16 -> 18[label="",style="dashed", color="red", weight=0]; 16[label="Monad.filterM1 vz3 vz41 vz40 vz50 ++ (vz51 >>= Monad.filterM1 vz3 vz41 vz40)",fontsize=16,color="magenta"];16 -> 19[label="",style="dashed", color="magenta", weight=3]; 17[label="[]",fontsize=16,color="green",shape="box"];19 -> 9[label="",style="dashed", color="red", weight=0]; 19[label="vz51 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="magenta"];19 -> 20[label="",style="dashed", color="magenta", weight=3]; 18[label="Monad.filterM1 vz3 vz41 vz40 vz50 ++ vz6",fontsize=16,color="black",shape="triangle"];18 -> 21[label="",style="solid", color="black", weight=3]; 20[label="vz51",fontsize=16,color="green",shape="box"];21 -> 22[label="",style="dashed", color="red", weight=0]; 21[label="(Monad.filterM vz3 vz41 >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="magenta"];21 -> 23[label="",style="dashed", color="magenta", weight=3]; 23 -> 4[label="",style="dashed", color="red", weight=0]; 23[label="Monad.filterM vz3 vz41",fontsize=16,color="magenta"];23 -> 24[label="",style="dashed", color="magenta", weight=3]; 22[label="(vz7 >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="burlywood",shape="triangle"];66[label="vz7/vz70 : vz71",fontsize=10,color="white",style="solid",shape="box"];22 -> 66[label="",style="solid", color="burlywood", weight=9]; 66 -> 25[label="",style="solid", color="burlywood", weight=3]; 67[label="vz7/[]",fontsize=10,color="white",style="solid",shape="box"];22 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 26[label="",style="solid", color="burlywood", weight=3]; 24[label="vz41",fontsize=16,color="green",shape="box"];25[label="(vz70 : vz71 >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="black",shape="box"];25 -> 27[label="",style="solid", color="black", weight=3]; 26[label="([] >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="black",shape="box"];26 -> 28[label="",style="solid", color="black", weight=3]; 27[label="(Monad.filterM0 vz50 vz40 vz70 ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="black",shape="box"];27 -> 29[label="",style="solid", color="black", weight=3]; 28[label="[] ++ vz6",fontsize=16,color="black",shape="triangle"];28 -> 30[label="",style="solid", color="black", weight=3]; 29[label="(return (Monad.filterM00 vz40 vz70 vz50) ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="black",shape="box"];29 -> 31[label="",style="solid", color="black", weight=3]; 30[label="vz6",fontsize=16,color="green",shape="box"];31[label="((Monad.filterM00 vz40 vz70 vz50 : []) ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="black",shape="box"];31 -> 32[label="",style="solid", color="black", weight=3]; 32 -> 33[label="",style="dashed", color="red", weight=0]; 32[label="(Monad.filterM00 vz40 vz70 vz50 : [] ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="magenta"];32 -> 34[label="",style="dashed", color="magenta", weight=3]; 34 -> 28[label="",style="dashed", color="red", weight=0]; 34[label="[] ++ (vz71 >>= Monad.filterM0 vz50 vz40)",fontsize=16,color="magenta"];34 -> 35[label="",style="dashed", color="magenta", weight=3]; 33[label="(Monad.filterM00 vz40 vz70 vz50 : vz8) ++ vz6",fontsize=16,color="black",shape="triangle"];33 -> 36[label="",style="solid", color="black", weight=3]; 35[label="vz71 >>= Monad.filterM0 vz50 vz40",fontsize=16,color="burlywood",shape="triangle"];68[label="vz71/vz710 : vz711",fontsize=10,color="white",style="solid",shape="box"];35 -> 68[label="",style="solid", color="burlywood", weight=9]; 68 -> 37[label="",style="solid", color="burlywood", weight=3]; 69[label="vz71/[]",fontsize=10,color="white",style="solid",shape="box"];35 -> 69[label="",style="solid", color="burlywood", weight=9]; 69 -> 38[label="",style="solid", color="burlywood", weight=3]; 36[label="Monad.filterM00 vz40 vz70 vz50 : vz8 ++ vz6",fontsize=16,color="green",shape="box"];36 -> 39[label="",style="dashed", color="green", weight=3]; 36 -> 40[label="",style="dashed", color="green", weight=3]; 37[label="vz710 : vz711 >>= Monad.filterM0 vz50 vz40",fontsize=16,color="black",shape="box"];37 -> 41[label="",style="solid", color="black", weight=3]; 38[label="[] >>= Monad.filterM0 vz50 vz40",fontsize=16,color="black",shape="box"];38 -> 42[label="",style="solid", color="black", weight=3]; 39[label="Monad.filterM00 vz40 vz70 vz50",fontsize=16,color="burlywood",shape="triangle"];70[label="vz50/False",fontsize=10,color="white",style="solid",shape="box"];39 -> 70[label="",style="solid", color="burlywood", weight=9]; 70 -> 43[label="",style="solid", color="burlywood", weight=3]; 71[label="vz50/True",fontsize=10,color="white",style="solid",shape="box"];39 -> 71[label="",style="solid", color="burlywood", weight=9]; 71 -> 44[label="",style="solid", color="burlywood", weight=3]; 40[label="vz8 ++ vz6",fontsize=16,color="burlywood",shape="triangle"];72[label="vz8/vz80 : vz81",fontsize=10,color="white",style="solid",shape="box"];40 -> 72[label="",style="solid", color="burlywood", weight=9]; 72 -> 45[label="",style="solid", color="burlywood", weight=3]; 73[label="vz8/[]",fontsize=10,color="white",style="solid",shape="box"];40 -> 73[label="",style="solid", color="burlywood", weight=9]; 73 -> 46[label="",style="solid", color="burlywood", weight=3]; 41 -> 40[label="",style="dashed", color="red", weight=0]; 41[label="Monad.filterM0 vz50 vz40 vz710 ++ (vz711 >>= Monad.filterM0 vz50 vz40)",fontsize=16,color="magenta"];41 -> 47[label="",style="dashed", color="magenta", weight=3]; 41 -> 48[label="",style="dashed", color="magenta", weight=3]; 42[label="[]",fontsize=16,color="green",shape="box"];43[label="Monad.filterM00 vz40 vz70 False",fontsize=16,color="black",shape="box"];43 -> 49[label="",style="solid", color="black", weight=3]; 44[label="Monad.filterM00 vz40 vz70 True",fontsize=16,color="black",shape="box"];44 -> 50[label="",style="solid", color="black", weight=3]; 45[label="(vz80 : vz81) ++ vz6",fontsize=16,color="black",shape="box"];45 -> 51[label="",style="solid", color="black", weight=3]; 46[label="[] ++ vz6",fontsize=16,color="black",shape="box"];46 -> 52[label="",style="solid", color="black", weight=3]; 47 -> 35[label="",style="dashed", color="red", weight=0]; 47[label="vz711 >>= Monad.filterM0 vz50 vz40",fontsize=16,color="magenta"];47 -> 53[label="",style="dashed", color="magenta", weight=3]; 48[label="Monad.filterM0 vz50 vz40 vz710",fontsize=16,color="black",shape="box"];48 -> 54[label="",style="solid", color="black", weight=3]; 49[label="vz70",fontsize=16,color="green",shape="box"];50[label="vz40 : vz70",fontsize=16,color="green",shape="box"];51[label="vz80 : vz81 ++ vz6",fontsize=16,color="green",shape="box"];51 -> 55[label="",style="dashed", color="green", weight=3]; 52[label="vz6",fontsize=16,color="green",shape="box"];53[label="vz711",fontsize=16,color="green",shape="box"];54 -> 56[label="",style="dashed", color="red", weight=0]; 54[label="return (Monad.filterM00 vz40 vz710 vz50)",fontsize=16,color="magenta"];54 -> 58[label="",style="dashed", color="magenta", weight=3]; 55 -> 40[label="",style="dashed", color="red", weight=0]; 55[label="vz81 ++ vz6",fontsize=16,color="magenta"];55 -> 60[label="",style="dashed", color="magenta", weight=3]; 58 -> 39[label="",style="dashed", color="red", weight=0]; 58[label="Monad.filterM00 vz40 vz710 vz50",fontsize=16,color="magenta"];58 -> 61[label="",style="dashed", color="magenta", weight=3]; 60[label="vz81",fontsize=16,color="green",shape="box"];61[label="vz710",fontsize=16,color="green",shape="box"];} ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs0(vz3, vz41, vz40, h) -> new_filterM(vz3, vz41, h) new_gtGtEs0(vz3, vz41, vz40, h) -> new_psPs0(vz3, vz41, vz40, h) new_filterM(vz3, :(vz40, vz41), h) -> new_gtGtEs0(vz3, vz41, vz40, h) new_gtGtEs0(vz3, vz41, vz40, h) -> new_gtGtEs0(vz3, vz41, vz40, h) The TRS R consists of the following rules: new_psPs3(vz3, vz41, vz40, vz50, vz6, h) -> new_psPs4(new_filterM0(vz3, vz41, h), vz50, vz40, vz6, h) new_gtGtEs2([], vz50, vz40, h) -> [] new_gtGtEs1(:(vz50, vz51), vz3, vz41, vz40, h) -> new_psPs3(vz3, vz41, vz40, vz50, new_gtGtEs1(vz51, vz3, vz41, vz40, h), h) new_filterM00(vz40, vz70, False, h) -> vz70 new_psPs4([], vz50, vz40, vz6, h) -> new_psPs5(vz6, h) new_gtGtEs1([], vz3, vz41, vz40, h) -> [] new_return(vz9, h) -> :(vz9, []) new_psPs2([], vz6, h) -> vz6 new_gtGtEs2(:(vz710, vz711), vz50, vz40, h) -> new_psPs2(new_return(new_filterM00(vz40, vz710, vz50, h), h), new_gtGtEs2(vz711, vz50, vz40, h), h) new_psPs2(:(vz80, vz81), vz6, h) -> :(vz80, new_psPs2(vz81, vz6, h)) new_psPs1(vz40, vz70, vz50, vz8, vz6, h) -> :(new_filterM00(vz40, vz70, vz50, h), new_psPs2(vz8, vz6, h)) new_psPs5(vz6, h) -> vz6 new_psPs4(:(vz70, vz71), vz50, vz40, vz6, h) -> new_psPs1(vz40, vz70, vz50, new_psPs5(new_gtGtEs2(vz71, vz50, vz40, h), h), vz6, h) new_filterM00(vz40, vz70, True, h) -> :(vz40, vz70) The set Q consists of the following terms: new_filterM00(x0, x1, False, x2) new_filterM00(x0, x1, True, x2) new_return(x0, x1) new_gtGtEs1([], x0, x1, x2, x3) new_psPs2([], x0, x1) new_psPs4(:(x0, x1), x2, x3, x4, x5) new_psPs4([], x0, x1, x2, x3) new_psPs1(x0, x1, x2, x3, x4, x5) new_gtGtEs2(:(x0, x1), x2, x3, x4) new_psPs3(x0, x1, x2, x3, x4, x5) new_gtGtEs2([], x0, x1, x2) new_psPs2(:(x0, x1), x2, x3) new_psPs5(x0, x1) new_gtGtEs1(:(x0, x1), x2, x3, x4, x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. new_gtGtEs0(vz3, vz41, vz40, h) -> new_psPs0(vz3, vz41, vz40, h) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(:(x_1, x_2)) = 1 + x_1 + x_2 POL(new_filterM(x_1, x_2, x_3)) = x_2 POL(new_gtGtEs0(x_1, x_2, x_3, x_4)) = 1 + x_2 POL(new_psPs0(x_1, x_2, x_3, x_4)) = x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs0(vz3, vz41, vz40, h) -> new_filterM(vz3, vz41, h) new_filterM(vz3, :(vz40, vz41), h) -> new_gtGtEs0(vz3, vz41, vz40, h) new_gtGtEs0(vz3, vz41, vz40, h) -> new_gtGtEs0(vz3, vz41, vz40, h) The TRS R consists of the following rules: new_psPs3(vz3, vz41, vz40, vz50, vz6, h) -> new_psPs4(new_filterM0(vz3, vz41, h), vz50, vz40, vz6, h) new_gtGtEs2([], vz50, vz40, h) -> [] new_gtGtEs1(:(vz50, vz51), vz3, vz41, vz40, h) -> new_psPs3(vz3, vz41, vz40, vz50, new_gtGtEs1(vz51, vz3, vz41, vz40, h), h) new_filterM00(vz40, vz70, False, h) -> vz70 new_psPs4([], vz50, vz40, vz6, h) -> new_psPs5(vz6, h) new_gtGtEs1([], vz3, vz41, vz40, h) -> [] new_return(vz9, h) -> :(vz9, []) new_psPs2([], vz6, h) -> vz6 new_gtGtEs2(:(vz710, vz711), vz50, vz40, h) -> new_psPs2(new_return(new_filterM00(vz40, vz710, vz50, h), h), new_gtGtEs2(vz711, vz50, vz40, h), h) new_psPs2(:(vz80, vz81), vz6, h) -> :(vz80, new_psPs2(vz81, vz6, h)) new_psPs1(vz40, vz70, vz50, vz8, vz6, h) -> :(new_filterM00(vz40, vz70, vz50, h), new_psPs2(vz8, vz6, h)) new_psPs5(vz6, h) -> vz6 new_psPs4(:(vz70, vz71), vz50, vz40, vz6, h) -> new_psPs1(vz40, vz70, vz50, new_psPs5(new_gtGtEs2(vz71, vz50, vz40, h), h), vz6, h) new_filterM00(vz40, vz70, True, h) -> :(vz40, vz70) The set Q consists of the following terms: new_filterM00(x0, x1, False, x2) new_filterM00(x0, x1, True, x2) new_return(x0, x1) new_gtGtEs1([], x0, x1, x2, x3) new_psPs2([], x0, x1) new_psPs4(:(x0, x1), x2, x3, x4, x5) new_psPs4([], x0, x1, x2, x3) new_psPs1(x0, x1, x2, x3, x4, x5) new_gtGtEs2(:(x0, x1), x2, x3, x4) new_psPs3(x0, x1, x2, x3, x4, x5) new_gtGtEs2([], x0, x1, x2) new_psPs2(:(x0, x1), x2, x3) new_psPs5(x0, x1) new_gtGtEs1(:(x0, x1), x2, x3, x4, x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(vz3, vz41, vz40, h) -> new_gtGtEs0(vz3, vz41, vz40, h) The TRS R consists of the following rules: new_psPs3(vz3, vz41, vz40, vz50, vz6, h) -> new_psPs4(new_filterM0(vz3, vz41, h), vz50, vz40, vz6, h) new_gtGtEs2([], vz50, vz40, h) -> [] new_gtGtEs1(:(vz50, vz51), vz3, vz41, vz40, h) -> new_psPs3(vz3, vz41, vz40, vz50, new_gtGtEs1(vz51, vz3, vz41, vz40, h), h) new_filterM00(vz40, vz70, False, h) -> vz70 new_psPs4([], vz50, vz40, vz6, h) -> new_psPs5(vz6, h) new_gtGtEs1([], vz3, vz41, vz40, h) -> [] new_return(vz9, h) -> :(vz9, []) new_psPs2([], vz6, h) -> vz6 new_gtGtEs2(:(vz710, vz711), vz50, vz40, h) -> new_psPs2(new_return(new_filterM00(vz40, vz710, vz50, h), h), new_gtGtEs2(vz711, vz50, vz40, h), h) new_psPs2(:(vz80, vz81), vz6, h) -> :(vz80, new_psPs2(vz81, vz6, h)) new_psPs1(vz40, vz70, vz50, vz8, vz6, h) -> :(new_filterM00(vz40, vz70, vz50, h), new_psPs2(vz8, vz6, h)) new_psPs5(vz6, h) -> vz6 new_psPs4(:(vz70, vz71), vz50, vz40, vz6, h) -> new_psPs1(vz40, vz70, vz50, new_psPs5(new_gtGtEs2(vz71, vz50, vz40, h), h), vz6, h) new_filterM00(vz40, vz70, True, h) -> :(vz40, vz70) The set Q consists of the following terms: new_filterM00(x0, x1, False, x2) new_filterM00(x0, x1, True, x2) new_return(x0, x1) new_gtGtEs1([], x0, x1, x2, x3) new_psPs2([], x0, x1) new_psPs4(:(x0, x1), x2, x3, x4, x5) new_psPs4([], x0, x1, x2, x3) new_psPs1(x0, x1, x2, x3, x4, x5) new_gtGtEs2(:(x0, x1), x2, x3, x4) new_psPs3(x0, x1, x2, x3, x4, x5) new_gtGtEs2([], x0, x1, x2) new_psPs2(:(x0, x1), x2, x3) new_psPs5(x0, x1) new_gtGtEs1(:(x0, x1), x2, x3, x4, x5) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(vz3, vz41, vz40, h) -> new_gtGtEs0(vz3, vz41, vz40, h) The TRS R consists of the following rules: new_psPs3(vz3, vz41, vz40, vz50, vz6, h) -> new_psPs4(new_filterM0(vz3, vz41, h), vz50, vz40, vz6, h) new_gtGtEs2([], vz50, vz40, h) -> [] new_gtGtEs1(:(vz50, vz51), vz3, vz41, vz40, h) -> new_psPs3(vz3, vz41, vz40, vz50, new_gtGtEs1(vz51, vz3, vz41, vz40, h), h) new_filterM00(vz40, vz70, False, h) -> vz70 new_psPs4([], vz50, vz40, vz6, h) -> new_psPs5(vz6, h) new_gtGtEs1([], vz3, vz41, vz40, h) -> [] new_return(vz9, h) -> :(vz9, []) new_psPs2([], vz6, h) -> vz6 new_gtGtEs2(:(vz710, vz711), vz50, vz40, h) -> new_psPs2(new_return(new_filterM00(vz40, vz710, vz50, h), h), new_gtGtEs2(vz711, vz50, vz40, h), h) new_psPs2(:(vz80, vz81), vz6, h) -> :(vz80, new_psPs2(vz81, vz6, h)) new_psPs1(vz40, vz70, vz50, vz8, vz6, h) -> :(new_filterM00(vz40, vz70, vz50, h), new_psPs2(vz8, vz6, h)) new_psPs5(vz6, h) -> vz6 new_psPs4(:(vz70, vz71), vz50, vz40, vz6, h) -> new_psPs1(vz40, vz70, vz50, new_psPs5(new_gtGtEs2(vz71, vz50, vz40, h), h), vz6, h) new_filterM00(vz40, vz70, True, h) -> :(vz40, vz70) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (18) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by semiunifying a rule from P directly. s = new_gtGtEs0(vz3, vz41, vz40, h) evaluates to t =new_gtGtEs0(vz3, vz41, vz40, h) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence The DP semiunifies directly so there is only one rewrite step from new_gtGtEs0(vz3, vz41, vz40, h) to new_gtGtEs0(vz3, vz41, vz40, h). ---------------------------------------- (19) NO ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(:(vz710, vz711), vz50, vz40, h) -> new_gtGtEs(vz711, vz50, vz40, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs(:(vz710, vz711), vz50, vz40, h) -> new_gtGtEs(vz711, vz50, vz40, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(vz80, vz81), vz6, h) -> new_psPs(vz81, vz6, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(vz80, vz81), vz6, h) -> new_psPs(vz81, vz6, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (25) YES ---------------------------------------- (26) Narrow (COMPLETE) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.filterM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.filterM vz3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.filterM vz3 vz4",fontsize=16,color="burlywood",shape="triangle"];62[label="vz4/vz40 : vz41",fontsize=10,color="white",style="solid",shape="box"];4 -> 62[label="",style="solid", color="burlywood", weight=9]; 62 -> 5[label="",style="solid", color="burlywood", weight=3]; 63[label="vz4/[]",fontsize=10,color="white",style="solid",shape="box"];4 -> 63[label="",style="solid", color="burlywood", weight=9]; 63 -> 6[label="",style="solid", color="burlywood", weight=3]; 5[label="Monad.filterM vz3 (vz40 : vz41)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="Monad.filterM vz3 []",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7 -> 9[label="",style="dashed", color="red", weight=0]; 7[label="vz3 vz40 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="magenta"];7 -> 10[label="",style="dashed", color="magenta", weight=3]; 8 -> 56[label="",style="dashed", color="red", weight=0]; 8[label="return []",fontsize=16,color="magenta"];8 -> 57[label="",style="dashed", color="magenta", weight=3]; 10[label="vz3 vz40",fontsize=16,color="green",shape="box"];10 -> 15[label="",style="dashed", color="green", weight=3]; 9[label="vz5 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="burlywood",shape="triangle"];64[label="vz5/vz50 : vz51",fontsize=10,color="white",style="solid",shape="box"];9 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 13[label="",style="solid", color="burlywood", weight=3]; 65[label="vz5/[]",fontsize=10,color="white",style="solid",shape="box"];9 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 14[label="",style="solid", color="burlywood", weight=3]; 57[label="[]",fontsize=16,color="green",shape="box"];56[label="return vz9",fontsize=16,color="black",shape="triangle"];56 -> 59[label="",style="solid", color="black", weight=3]; 15[label="vz40",fontsize=16,color="green",shape="box"];13[label="vz50 : vz51 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="black",shape="box"];13 -> 16[label="",style="solid", color="black", weight=3]; 14[label="[] >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="black",shape="box"];14 -> 17[label="",style="solid", color="black", weight=3]; 59[label="vz9 : []",fontsize=16,color="green",shape="box"];16 -> 18[label="",style="dashed", color="red", weight=0]; 16[label="Monad.filterM1 vz3 vz41 vz40 vz50 ++ (vz51 >>= Monad.filterM1 vz3 vz41 vz40)",fontsize=16,color="magenta"];16 -> 19[label="",style="dashed", color="magenta", weight=3]; 17[label="[]",fontsize=16,color="green",shape="box"];19 -> 9[label="",style="dashed", color="red", weight=0]; 19[label="vz51 >>= Monad.filterM1 vz3 vz41 vz40",fontsize=16,color="magenta"];19 -> 20[label="",style="dashed", color="magenta", weight=3]; 18[label="Monad.filterM1 vz3 vz41 vz40 vz50 ++ vz6",fontsize=16,color="black",shape="triangle"];18 -> 21[label="",style="solid", color="black", weight=3]; 20[label="vz51",fontsize=16,color="green",shape="box"];21 -> 22[label="",style="dashed", color="red", weight=0]; 21[label="(Monad.filterM vz3 vz41 >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="magenta"];21 -> 23[label="",style="dashed", color="magenta", weight=3]; 23 -> 4[label="",style="dashed", color="red", weight=0]; 23[label="Monad.filterM vz3 vz41",fontsize=16,color="magenta"];23 -> 24[label="",style="dashed", color="magenta", weight=3]; 22[label="(vz7 >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="burlywood",shape="triangle"];66[label="vz7/vz70 : vz71",fontsize=10,color="white",style="solid",shape="box"];22 -> 66[label="",style="solid", color="burlywood", weight=9]; 66 -> 25[label="",style="solid", color="burlywood", weight=3]; 67[label="vz7/[]",fontsize=10,color="white",style="solid",shape="box"];22 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 26[label="",style="solid", color="burlywood", weight=3]; 24[label="vz41",fontsize=16,color="green",shape="box"];25[label="(vz70 : vz71 >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="black",shape="box"];25 -> 27[label="",style="solid", color="black", weight=3]; 26[label="([] >>= Monad.filterM0 vz50 vz40) ++ vz6",fontsize=16,color="black",shape="box"];26 -> 28[label="",style="solid", color="black", weight=3]; 27[label="(Monad.filterM0 vz50 vz40 vz70 ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="black",shape="box"];27 -> 29[label="",style="solid", color="black", weight=3]; 28[label="[] ++ vz6",fontsize=16,color="black",shape="triangle"];28 -> 30[label="",style="solid", color="black", weight=3]; 29[label="(return (Monad.filterM00 vz40 vz70 vz50) ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="black",shape="box"];29 -> 31[label="",style="solid", color="black", weight=3]; 30[label="vz6",fontsize=16,color="green",shape="box"];31[label="((Monad.filterM00 vz40 vz70 vz50 : []) ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="black",shape="box"];31 -> 32[label="",style="solid", color="black", weight=3]; 32 -> 33[label="",style="dashed", color="red", weight=0]; 32[label="(Monad.filterM00 vz40 vz70 vz50 : [] ++ (vz71 >>= Monad.filterM0 vz50 vz40)) ++ vz6",fontsize=16,color="magenta"];32 -> 34[label="",style="dashed", color="magenta", weight=3]; 34 -> 28[label="",style="dashed", color="red", weight=0]; 34[label="[] ++ (vz71 >>= Monad.filterM0 vz50 vz40)",fontsize=16,color="magenta"];34 -> 35[label="",style="dashed", color="magenta", weight=3]; 33[label="(Monad.filterM00 vz40 vz70 vz50 : vz8) ++ vz6",fontsize=16,color="black",shape="triangle"];33 -> 36[label="",style="solid", color="black", weight=3]; 35[label="vz71 >>= Monad.filterM0 vz50 vz40",fontsize=16,color="burlywood",shape="triangle"];68[label="vz71/vz710 : vz711",fontsize=10,color="white",style="solid",shape="box"];35 -> 68[label="",style="solid", color="burlywood", weight=9]; 68 -> 37[label="",style="solid", color="burlywood", weight=3]; 69[label="vz71/[]",fontsize=10,color="white",style="solid",shape="box"];35 -> 69[label="",style="solid", color="burlywood", weight=9]; 69 -> 38[label="",style="solid", color="burlywood", weight=3]; 36[label="Monad.filterM00 vz40 vz70 vz50 : vz8 ++ vz6",fontsize=16,color="green",shape="box"];36 -> 39[label="",style="dashed", color="green", weight=3]; 36 -> 40[label="",style="dashed", color="green", weight=3]; 37[label="vz710 : vz711 >>= Monad.filterM0 vz50 vz40",fontsize=16,color="black",shape="box"];37 -> 41[label="",style="solid", color="black", weight=3]; 38[label="[] >>= Monad.filterM0 vz50 vz40",fontsize=16,color="black",shape="box"];38 -> 42[label="",style="solid", color="black", weight=3]; 39[label="Monad.filterM00 vz40 vz70 vz50",fontsize=16,color="burlywood",shape="triangle"];70[label="vz50/False",fontsize=10,color="white",style="solid",shape="box"];39 -> 70[label="",style="solid", color="burlywood", weight=9]; 70 -> 43[label="",style="solid", color="burlywood", weight=3]; 71[label="vz50/True",fontsize=10,color="white",style="solid",shape="box"];39 -> 71[label="",style="solid", color="burlywood", weight=9]; 71 -> 44[label="",style="solid", color="burlywood", weight=3]; 40[label="vz8 ++ vz6",fontsize=16,color="burlywood",shape="triangle"];72[label="vz8/vz80 : vz81",fontsize=10,color="white",style="solid",shape="box"];40 -> 72[label="",style="solid", color="burlywood", weight=9]; 72 -> 45[label="",style="solid", color="burlywood", weight=3]; 73[label="vz8/[]",fontsize=10,color="white",style="solid",shape="box"];40 -> 73[label="",style="solid", color="burlywood", weight=9]; 73 -> 46[label="",style="solid", color="burlywood", weight=3]; 41 -> 40[label="",style="dashed", color="red", weight=0]; 41[label="Monad.filterM0 vz50 vz40 vz710 ++ (vz711 >>= Monad.filterM0 vz50 vz40)",fontsize=16,color="magenta"];41 -> 47[label="",style="dashed", color="magenta", weight=3]; 41 -> 48[label="",style="dashed", color="magenta", weight=3]; 42[label="[]",fontsize=16,color="green",shape="box"];43[label="Monad.filterM00 vz40 vz70 False",fontsize=16,color="black",shape="box"];43 -> 49[label="",style="solid", color="black", weight=3]; 44[label="Monad.filterM00 vz40 vz70 True",fontsize=16,color="black",shape="box"];44 -> 50[label="",style="solid", color="black", weight=3]; 45[label="(vz80 : vz81) ++ vz6",fontsize=16,color="black",shape="box"];45 -> 51[label="",style="solid", color="black", weight=3]; 46[label="[] ++ vz6",fontsize=16,color="black",shape="box"];46 -> 52[label="",style="solid", color="black", weight=3]; 47 -> 35[label="",style="dashed", color="red", weight=0]; 47[label="vz711 >>= Monad.filterM0 vz50 vz40",fontsize=16,color="magenta"];47 -> 53[label="",style="dashed", color="magenta", weight=3]; 48[label="Monad.filterM0 vz50 vz40 vz710",fontsize=16,color="black",shape="box"];48 -> 54[label="",style="solid", color="black", weight=3]; 49[label="vz70",fontsize=16,color="green",shape="box"];50[label="vz40 : vz70",fontsize=16,color="green",shape="box"];51[label="vz80 : vz81 ++ vz6",fontsize=16,color="green",shape="box"];51 -> 55[label="",style="dashed", color="green", weight=3]; 52[label="vz6",fontsize=16,color="green",shape="box"];53[label="vz711",fontsize=16,color="green",shape="box"];54 -> 56[label="",style="dashed", color="red", weight=0]; 54[label="return (Monad.filterM00 vz40 vz710 vz50)",fontsize=16,color="magenta"];54 -> 58[label="",style="dashed", color="magenta", weight=3]; 55 -> 40[label="",style="dashed", color="red", weight=0]; 55[label="vz81 ++ vz6",fontsize=16,color="magenta"];55 -> 60[label="",style="dashed", color="magenta", weight=3]; 58 -> 39[label="",style="dashed", color="red", weight=0]; 58[label="Monad.filterM00 vz40 vz710 vz50",fontsize=16,color="magenta"];58 -> 61[label="",style="dashed", color="magenta", weight=3]; 60[label="vz81",fontsize=16,color="green",shape="box"];61[label="vz710",fontsize=16,color="green",shape="box"];} ---------------------------------------- (27) TRUE