/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 3 ms] (4) HASKELL (5) NumRed [SOUND, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) QDP (9) TransformationProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; genericIndex :: Integral b => [a] -> b -> a; genericIndex (x : _) 0 = x; genericIndex (_ : xs) n | n > 0 = genericIndex xs (n - 1) | otherwise = error []; genericIndex _ _ = error []; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; genericIndex :: Integral b => [a] -> b -> a; genericIndex (x : xw) 0 = x; genericIndex (xx : xs) n | n > 0 = genericIndex xs (n - 1) | otherwise = error []; genericIndex xy xz = error []; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " The following Function with conditions "genericIndex (x : xw) 0 = x; genericIndex (xx : xs) n|n > 0genericIndex xs (n - 1)|otherwiseerror []; genericIndex xy xz = error []; " is transformed to "genericIndex (x : xw) yy = genericIndex5 (x : xw) yy; genericIndex (xx : xs) n = genericIndex3 (xx : xs) n; genericIndex xy xz = genericIndex0 xy xz; " "genericIndex0 xy xz = error []; " "genericIndex1 xx xs n True = error []; genericIndex1 xx xs n False = genericIndex0 (xx : xs) n; " "genericIndex2 xx xs n True = genericIndex xs (n - 1); genericIndex2 xx xs n False = genericIndex1 xx xs n otherwise; " "genericIndex3 (xx : xs) n = genericIndex2 xx xs n (n > 0); genericIndex3 yv yw = genericIndex0 yv yw; " "genericIndex4 True (x : xw) yy = x; genericIndex4 yz zu zv = genericIndex3 zu zv; " "genericIndex5 (x : xw) yy = genericIndex4 (yy == 0) (x : xw) yy; genericIndex5 zw zx = genericIndex3 zw zx; " ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; genericIndex :: Integral a => [b] -> a -> b; genericIndex (x : xw) yy = genericIndex5 (x : xw) yy; genericIndex (xx : xs) n = genericIndex3 (xx : xs) n; genericIndex xy xz = genericIndex0 xy xz; genericIndex0 xy xz = error []; genericIndex1 xx xs n True = error []; genericIndex1 xx xs n False = genericIndex0 (xx : xs) n; genericIndex2 xx xs n True = genericIndex xs (n - 1); genericIndex2 xx xs n False = genericIndex1 xx xs n otherwise; genericIndex3 (xx : xs) n = genericIndex2 xx xs n (n > 0); genericIndex3 yv yw = genericIndex0 yv yw; genericIndex4 True (x : xw) yy = x; genericIndex4 yz zu zv = genericIndex3 zu zv; genericIndex5 (x : xw) yy = genericIndex4 (yy == 0) (x : xw) yy; genericIndex5 zw zx = genericIndex3 zw zx; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (5) NumRed (SOUND) Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified List; import qualified Main; import qualified Prelude; } module List where { import qualified Main; import qualified Maybe; import qualified Prelude; genericIndex :: Integral b => [a] -> b -> a; genericIndex (x : xw) yy = genericIndex5 (x : xw) yy; genericIndex (xx : xs) n = genericIndex3 (xx : xs) n; genericIndex xy xz = genericIndex0 xy xz; genericIndex0 xy xz = error []; genericIndex1 xx xs n True = error []; genericIndex1 xx xs n False = genericIndex0 (xx : xs) n; genericIndex2 xx xs n True = genericIndex xs (n - fromInt (Pos (Succ Zero))); genericIndex2 xx xs n False = genericIndex1 xx xs n otherwise; genericIndex3 (xx : xs) n = genericIndex2 xx xs n (n > fromInt (Pos Zero)); genericIndex3 yv yw = genericIndex0 yv yw; genericIndex4 True (x : xw) yy = x; genericIndex4 yz zu zv = genericIndex3 zu zv; genericIndex5 (x : xw) yy = genericIndex4 (yy == fromInt (Pos Zero)) (x : xw) yy; genericIndex5 zw zx = genericIndex3 zw zx; } module Main where { import qualified List; import qualified Maybe; import qualified Prelude; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="List.genericIndex",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="List.genericIndex zy3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="List.genericIndex zy3 zy4",fontsize=16,color="burlywood",shape="triangle"];58[label="zy3/zy30 : zy31",fontsize=10,color="white",style="solid",shape="box"];4 -> 58[label="",style="solid", color="burlywood", weight=9]; 58 -> 5[label="",style="solid", color="burlywood", weight=3]; 59[label="zy3/[]",fontsize=10,color="white",style="solid",shape="box"];4 -> 59[label="",style="solid", color="burlywood", weight=9]; 59 -> 6[label="",style="solid", color="burlywood", weight=3]; 5[label="List.genericIndex (zy30 : zy31) zy4",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 6[label="List.genericIndex [] zy4",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 7[label="List.genericIndex5 (zy30 : zy31) zy4",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="List.genericIndex0 [] zy4",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="List.genericIndex4 (zy4 == fromInt (Pos Zero)) (zy30 : zy31) zy4",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10[label="error []",fontsize=16,color="black",shape="triangle"];10 -> 12[label="",style="solid", color="black", weight=3]; 11[label="List.genericIndex4 (primEqInt zy4 (fromInt (Pos Zero))) (zy30 : zy31) zy4",fontsize=16,color="burlywood",shape="box"];60[label="zy4/Pos zy40",fontsize=10,color="white",style="solid",shape="box"];11 -> 60[label="",style="solid", color="burlywood", weight=9]; 60 -> 13[label="",style="solid", color="burlywood", weight=3]; 61[label="zy4/Neg zy40",fontsize=10,color="white",style="solid",shape="box"];11 -> 61[label="",style="solid", color="burlywood", weight=9]; 61 -> 14[label="",style="solid", color="burlywood", weight=3]; 12[label="error []",fontsize=16,color="red",shape="box"];13[label="List.genericIndex4 (primEqInt (Pos zy40) (fromInt (Pos Zero))) (zy30 : zy31) (Pos zy40)",fontsize=16,color="burlywood",shape="box"];62[label="zy40/Succ zy400",fontsize=10,color="white",style="solid",shape="box"];13 -> 62[label="",style="solid", color="burlywood", weight=9]; 62 -> 15[label="",style="solid", color="burlywood", weight=3]; 63[label="zy40/Zero",fontsize=10,color="white",style="solid",shape="box"];13 -> 63[label="",style="solid", color="burlywood", weight=9]; 63 -> 16[label="",style="solid", color="burlywood", weight=3]; 14[label="List.genericIndex4 (primEqInt (Neg zy40) (fromInt (Pos Zero))) (zy30 : zy31) (Neg zy40)",fontsize=16,color="burlywood",shape="box"];64[label="zy40/Succ zy400",fontsize=10,color="white",style="solid",shape="box"];14 -> 64[label="",style="solid", color="burlywood", weight=9]; 64 -> 17[label="",style="solid", color="burlywood", weight=3]; 65[label="zy40/Zero",fontsize=10,color="white",style="solid",shape="box"];14 -> 65[label="",style="solid", color="burlywood", weight=9]; 65 -> 18[label="",style="solid", color="burlywood", weight=3]; 15[label="List.genericIndex4 (primEqInt (Pos (Succ zy400)) (fromInt (Pos Zero))) (zy30 : zy31) (Pos (Succ zy400))",fontsize=16,color="black",shape="box"];15 -> 19[label="",style="solid", color="black", weight=3]; 16[label="List.genericIndex4 (primEqInt (Pos Zero) (fromInt (Pos Zero))) (zy30 : zy31) (Pos Zero)",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 17[label="List.genericIndex4 (primEqInt (Neg (Succ zy400)) (fromInt (Pos Zero))) (zy30 : zy31) (Neg (Succ zy400))",fontsize=16,color="black",shape="box"];17 -> 21[label="",style="solid", color="black", weight=3]; 18[label="List.genericIndex4 (primEqInt (Neg Zero) (fromInt (Pos Zero))) (zy30 : zy31) (Neg Zero)",fontsize=16,color="black",shape="box"];18 -> 22[label="",style="solid", color="black", weight=3]; 19[label="List.genericIndex4 (primEqInt (Pos (Succ zy400)) (Pos Zero)) (zy30 : zy31) (Pos (Succ zy400))",fontsize=16,color="black",shape="box"];19 -> 23[label="",style="solid", color="black", weight=3]; 20[label="List.genericIndex4 (primEqInt (Pos Zero) (Pos Zero)) (zy30 : zy31) (Pos Zero)",fontsize=16,color="black",shape="box"];20 -> 24[label="",style="solid", color="black", weight=3]; 21[label="List.genericIndex4 (primEqInt (Neg (Succ zy400)) (Pos Zero)) (zy30 : zy31) (Neg (Succ zy400))",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 22[label="List.genericIndex4 (primEqInt (Neg Zero) (Pos Zero)) (zy30 : zy31) (Neg Zero)",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 23[label="List.genericIndex4 False (zy30 : zy31) (Pos (Succ zy400))",fontsize=16,color="black",shape="box"];23 -> 27[label="",style="solid", color="black", weight=3]; 24[label="List.genericIndex4 True (zy30 : zy31) (Pos Zero)",fontsize=16,color="black",shape="box"];24 -> 28[label="",style="solid", color="black", weight=3]; 25[label="List.genericIndex4 False (zy30 : zy31) (Neg (Succ zy400))",fontsize=16,color="black",shape="box"];25 -> 29[label="",style="solid", color="black", weight=3]; 26[label="List.genericIndex4 True (zy30 : zy31) (Neg Zero)",fontsize=16,color="black",shape="box"];26 -> 30[label="",style="solid", color="black", weight=3]; 27[label="List.genericIndex3 (zy30 : zy31) (Pos (Succ zy400))",fontsize=16,color="black",shape="box"];27 -> 31[label="",style="solid", color="black", weight=3]; 28[label="zy30",fontsize=16,color="green",shape="box"];29[label="List.genericIndex3 (zy30 : zy31) (Neg (Succ zy400))",fontsize=16,color="black",shape="box"];29 -> 32[label="",style="solid", color="black", weight=3]; 30[label="zy30",fontsize=16,color="green",shape="box"];31[label="List.genericIndex2 zy30 zy31 (Pos (Succ zy400)) (Pos (Succ zy400) > fromInt (Pos Zero))",fontsize=16,color="black",shape="box"];31 -> 33[label="",style="solid", color="black", weight=3]; 32[label="List.genericIndex2 zy30 zy31 (Neg (Succ zy400)) (Neg (Succ zy400) > fromInt (Pos Zero))",fontsize=16,color="black",shape="box"];32 -> 34[label="",style="solid", color="black", weight=3]; 33[label="List.genericIndex2 zy30 zy31 (Pos (Succ zy400)) (compare (Pos (Succ zy400)) (fromInt (Pos Zero)) == GT)",fontsize=16,color="black",shape="box"];33 -> 35[label="",style="solid", color="black", weight=3]; 34[label="List.genericIndex2 zy30 zy31 (Neg (Succ zy400)) (compare (Neg (Succ zy400)) (fromInt (Pos Zero)) == GT)",fontsize=16,color="black",shape="box"];34 -> 36[label="",style="solid", color="black", weight=3]; 35[label="List.genericIndex2 zy30 zy31 (Pos (Succ zy400)) (primCmpInt (Pos (Succ zy400)) (fromInt (Pos Zero)) == GT)",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 36[label="List.genericIndex2 zy30 zy31 (Neg (Succ zy400)) (primCmpInt (Neg (Succ zy400)) (fromInt (Pos Zero)) == GT)",fontsize=16,color="black",shape="box"];36 -> 38[label="",style="solid", color="black", weight=3]; 37[label="List.genericIndex2 zy30 zy31 (Pos (Succ zy400)) (primCmpInt (Pos (Succ zy400)) (Pos Zero) == GT)",fontsize=16,color="black",shape="box"];37 -> 39[label="",style="solid", color="black", weight=3]; 38[label="List.genericIndex2 zy30 zy31 (Neg (Succ zy400)) (primCmpInt (Neg (Succ zy400)) (Pos Zero) == GT)",fontsize=16,color="black",shape="box"];38 -> 40[label="",style="solid", color="black", weight=3]; 39[label="List.genericIndex2 zy30 zy31 (Pos (Succ zy400)) (primCmpNat (Succ zy400) Zero == GT)",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 40[label="List.genericIndex2 zy30 zy31 (Neg (Succ zy400)) (LT == GT)",fontsize=16,color="black",shape="box"];40 -> 42[label="",style="solid", color="black", weight=3]; 41[label="List.genericIndex2 zy30 zy31 (Pos (Succ zy400)) (GT == GT)",fontsize=16,color="black",shape="box"];41 -> 43[label="",style="solid", color="black", weight=3]; 42[label="List.genericIndex2 zy30 zy31 (Neg (Succ zy400)) False",fontsize=16,color="black",shape="box"];42 -> 44[label="",style="solid", color="black", weight=3]; 43[label="List.genericIndex2 zy30 zy31 (Pos (Succ zy400)) True",fontsize=16,color="black",shape="box"];43 -> 45[label="",style="solid", color="black", weight=3]; 44[label="List.genericIndex1 zy30 zy31 (Neg (Succ zy400)) otherwise",fontsize=16,color="black",shape="box"];44 -> 46[label="",style="solid", color="black", weight=3]; 45 -> 4[label="",style="dashed", color="red", weight=0]; 45[label="List.genericIndex zy31 (Pos (Succ zy400) - fromInt (Pos (Succ Zero)))",fontsize=16,color="magenta"];45 -> 47[label="",style="dashed", color="magenta", weight=3]; 45 -> 48[label="",style="dashed", color="magenta", weight=3]; 46[label="List.genericIndex1 zy30 zy31 (Neg (Succ zy400)) True",fontsize=16,color="black",shape="box"];46 -> 49[label="",style="solid", color="black", weight=3]; 47[label="zy31",fontsize=16,color="green",shape="box"];48[label="Pos (Succ zy400) - fromInt (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];48 -> 50[label="",style="solid", color="black", weight=3]; 49 -> 10[label="",style="dashed", color="red", weight=0]; 49[label="error []",fontsize=16,color="magenta"];50[label="primMinusInt (Pos (Succ zy400)) (fromInt (Pos (Succ Zero)))",fontsize=16,color="black",shape="box"];50 -> 51[label="",style="solid", color="black", weight=3]; 51[label="primMinusInt (Pos (Succ zy400)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];51 -> 52[label="",style="solid", color="black", weight=3]; 52[label="primMinusNat (Succ zy400) (Succ Zero)",fontsize=16,color="black",shape="box"];52 -> 53[label="",style="solid", color="black", weight=3]; 53[label="primMinusNat zy400 Zero",fontsize=16,color="burlywood",shape="box"];66[label="zy400/Succ zy4000",fontsize=10,color="white",style="solid",shape="box"];53 -> 66[label="",style="solid", color="burlywood", weight=9]; 66 -> 54[label="",style="solid", color="burlywood", weight=3]; 67[label="zy400/Zero",fontsize=10,color="white",style="solid",shape="box"];53 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 55[label="",style="solid", color="burlywood", weight=3]; 54[label="primMinusNat (Succ zy4000) Zero",fontsize=16,color="black",shape="box"];54 -> 56[label="",style="solid", color="black", weight=3]; 55[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];55 -> 57[label="",style="solid", color="black", weight=3]; 56[label="Pos (Succ zy4000)",fontsize=16,color="green",shape="box"];57[label="Pos Zero",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: new_genericIndex(:(zy30, zy31), Pos(Succ(zy400)), ba) -> new_genericIndex(zy31, new_primMinusNat(zy400), ba) The TRS R consists of the following rules: new_primMinusNat(Succ(zy4000)) -> Pos(Succ(zy4000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule new_genericIndex(:(zy30, zy31), Pos(Succ(zy400)), ba) -> new_genericIndex(zy31, new_primMinusNat(zy400), ba) at position [1] we obtained the following new rules [LPAR04]: (new_genericIndex(:(y0, y1), Pos(Succ(Succ(x0))), y3) -> new_genericIndex(y1, Pos(Succ(x0)), y3),new_genericIndex(:(y0, y1), Pos(Succ(Succ(x0))), y3) -> new_genericIndex(y1, Pos(Succ(x0)), y3)) (new_genericIndex(:(y0, y1), Pos(Succ(Zero)), y3) -> new_genericIndex(y1, Pos(Zero), y3),new_genericIndex(:(y0, y1), Pos(Succ(Zero)), y3) -> new_genericIndex(y1, Pos(Zero), y3)) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: new_genericIndex(:(y0, y1), Pos(Succ(Succ(x0))), y3) -> new_genericIndex(y1, Pos(Succ(x0)), y3) new_genericIndex(:(y0, y1), Pos(Succ(Zero)), y3) -> new_genericIndex(y1, Pos(Zero), y3) The TRS R consists of the following rules: new_primMinusNat(Succ(zy4000)) -> Pos(Succ(zy4000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_genericIndex(:(y0, y1), Pos(Succ(Succ(x0))), y3) -> new_genericIndex(y1, Pos(Succ(x0)), y3) The TRS R consists of the following rules: new_primMinusNat(Succ(zy4000)) -> Pos(Succ(zy4000)) new_primMinusNat(Zero) -> Pos(Zero) The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: new_genericIndex(:(y0, y1), Pos(Succ(Succ(x0))), y3) -> new_genericIndex(y1, Pos(Succ(x0)), y3) R is empty. The set Q consists of the following terms: new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. new_primMinusNat(Succ(x0)) new_primMinusNat(Zero) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: new_genericIndex(:(y0, y1), Pos(Succ(Succ(x0))), y3) -> new_genericIndex(y1, Pos(Succ(x0)), y3) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_genericIndex(:(y0, y1), Pos(Succ(Succ(x0))), y3) -> new_genericIndex(y1, Pos(Succ(x0)), y3) The graph contains the following edges 1 > 1, 3 >= 3 ---------------------------------------- (18) YES