/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) AND (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM3 :: Monad e => (c -> b -> a -> d) -> e c -> e b -> e a -> e d; liftM3 f m1 m2 m3 = m1 >>= (\x1 ->m2 >>= (\x2 ->m3 >>= (\x3 ->return (f x1 x2 x3)))); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\x3->return (f x1 x2 x3)" is transformed to "liftM30 f x1 x2 x3 = return (f x1 x2 x3); " The following Lambda expression "\x2->m3 >>= liftM30 f x1 x2" is transformed to "liftM31 m3 f x1 x2 = m3 >>= liftM30 f x1 x2; " The following Lambda expression "\x1->m2 >>= liftM31 m3 f x1" is transformed to "liftM32 m2 m3 f x1 = m2 >>= liftM31 m3 f x1; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM3 :: Monad b => (e -> d -> c -> a) -> b e -> b d -> b c -> b a; liftM3 f m1 m2 m3 = m1 >>= liftM32 m2 m3 f; liftM30 f x1 x2 x3 = return (f x1 x2 x3); liftM31 m3 f x1 x2 = m3 >>= liftM30 f x1 x2; liftM32 m2 m3 f x1 = m2 >>= liftM31 m3 f x1; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM3 :: Monad a => (b -> d -> c -> e) -> a b -> a d -> a c -> a e; liftM3 f m1 m2 m3 = m1 >>= liftM32 m2 m3 f; liftM30 f x1 x2 x3 = return (f x1 x2 x3); liftM31 m3 f x1 x2 = m3 >>= liftM30 f x1 x2; liftM32 m2 m3 f x1 = m2 >>= liftM31 m3 f x1; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; liftM3 :: Monad b => (c -> a -> d -> e) -> b c -> b a -> b d -> b e; liftM3 f m1 m2 m3 = m1 >>= liftM32 m2 m3 f; liftM30 f x1 x2 x3 = return (f x1 x2 x3); liftM31 m3 f x1 x2 = m3 >>= liftM30 f x1 x2; liftM32 m2 m3 f x1 = m2 >>= liftM31 m3 f x1; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.liftM3",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.liftM3 vy3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.liftM3 vy3 vy4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="Monad.liftM3 vy3 vy4 vy5",fontsize=16,color="grey",shape="box"];5 -> 6[label="",style="dashed", color="grey", weight=3]; 6[label="Monad.liftM3 vy3 vy4 vy5 vy6",fontsize=16,color="black",shape="triangle"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="vy4 >>= Monad.liftM32 vy5 vy6 vy3",fontsize=16,color="burlywood",shape="triangle"];67[label="vy4/vy40 : vy41",fontsize=10,color="white",style="solid",shape="box"];7 -> 67[label="",style="solid", color="burlywood", weight=9]; 67 -> 8[label="",style="solid", color="burlywood", weight=3]; 68[label="vy4/[]",fontsize=10,color="white",style="solid",shape="box"];7 -> 68[label="",style="solid", color="burlywood", weight=9]; 68 -> 9[label="",style="solid", color="burlywood", weight=3]; 8[label="vy40 : vy41 >>= Monad.liftM32 vy5 vy6 vy3",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="[] >>= Monad.liftM32 vy5 vy6 vy3",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10 -> 27[label="",style="dashed", color="red", weight=0]; 10[label="Monad.liftM32 vy5 vy6 vy3 vy40 ++ (vy41 >>= Monad.liftM32 vy5 vy6 vy3)",fontsize=16,color="magenta"];10 -> 28[label="",style="dashed", color="magenta", weight=3]; 10 -> 29[label="",style="dashed", color="magenta", weight=3]; 11[label="[]",fontsize=16,color="green",shape="box"];28[label="Monad.liftM32 vy5 vy6 vy3 vy40",fontsize=16,color="black",shape="box"];28 -> 38[label="",style="solid", color="black", weight=3]; 29 -> 7[label="",style="dashed", color="red", weight=0]; 29[label="vy41 >>= Monad.liftM32 vy5 vy6 vy3",fontsize=16,color="magenta"];29 -> 39[label="",style="dashed", color="magenta", weight=3]; 27[label="vy8 ++ vy7",fontsize=16,color="burlywood",shape="triangle"];69[label="vy8/vy80 : vy81",fontsize=10,color="white",style="solid",shape="box"];27 -> 69[label="",style="solid", color="burlywood", weight=9]; 69 -> 40[label="",style="solid", color="burlywood", weight=3]; 70[label="vy8/[]",fontsize=10,color="white",style="solid",shape="box"];27 -> 70[label="",style="solid", color="burlywood", weight=9]; 70 -> 41[label="",style="solid", color="burlywood", weight=3]; 38[label="vy5 >>= Monad.liftM31 vy6 vy3 vy40",fontsize=16,color="burlywood",shape="triangle"];71[label="vy5/vy50 : vy51",fontsize=10,color="white",style="solid",shape="box"];38 -> 71[label="",style="solid", color="burlywood", weight=9]; 71 -> 42[label="",style="solid", color="burlywood", weight=3]; 72[label="vy5/[]",fontsize=10,color="white",style="solid",shape="box"];38 -> 72[label="",style="solid", color="burlywood", weight=9]; 72 -> 43[label="",style="solid", color="burlywood", weight=3]; 39[label="vy41",fontsize=16,color="green",shape="box"];40[label="(vy80 : vy81) ++ vy7",fontsize=16,color="black",shape="box"];40 -> 44[label="",style="solid", color="black", weight=3]; 41[label="[] ++ vy7",fontsize=16,color="black",shape="box"];41 -> 45[label="",style="solid", color="black", weight=3]; 42[label="vy50 : vy51 >>= Monad.liftM31 vy6 vy3 vy40",fontsize=16,color="black",shape="box"];42 -> 46[label="",style="solid", color="black", weight=3]; 43[label="[] >>= Monad.liftM31 vy6 vy3 vy40",fontsize=16,color="black",shape="box"];43 -> 47[label="",style="solid", color="black", weight=3]; 44[label="vy80 : vy81 ++ vy7",fontsize=16,color="green",shape="box"];44 -> 48[label="",style="dashed", color="green", weight=3]; 45[label="vy7",fontsize=16,color="green",shape="box"];46 -> 27[label="",style="dashed", color="red", weight=0]; 46[label="Monad.liftM31 vy6 vy3 vy40 vy50 ++ (vy51 >>= Monad.liftM31 vy6 vy3 vy40)",fontsize=16,color="magenta"];46 -> 49[label="",style="dashed", color="magenta", weight=3]; 46 -> 50[label="",style="dashed", color="magenta", weight=3]; 47[label="[]",fontsize=16,color="green",shape="box"];48 -> 27[label="",style="dashed", color="red", weight=0]; 48[label="vy81 ++ vy7",fontsize=16,color="magenta"];48 -> 51[label="",style="dashed", color="magenta", weight=3]; 49[label="Monad.liftM31 vy6 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];49 -> 52[label="",style="solid", color="black", weight=3]; 50 -> 38[label="",style="dashed", color="red", weight=0]; 50[label="vy51 >>= Monad.liftM31 vy6 vy3 vy40",fontsize=16,color="magenta"];50 -> 53[label="",style="dashed", color="magenta", weight=3]; 51[label="vy81",fontsize=16,color="green",shape="box"];52[label="vy6 >>= Monad.liftM30 vy3 vy40 vy50",fontsize=16,color="burlywood",shape="triangle"];73[label="vy6/vy60 : vy61",fontsize=10,color="white",style="solid",shape="box"];52 -> 73[label="",style="solid", color="burlywood", weight=9]; 73 -> 54[label="",style="solid", color="burlywood", weight=3]; 74[label="vy6/[]",fontsize=10,color="white",style="solid",shape="box"];52 -> 74[label="",style="solid", color="burlywood", weight=9]; 74 -> 55[label="",style="solid", color="burlywood", weight=3]; 53[label="vy51",fontsize=16,color="green",shape="box"];54[label="vy60 : vy61 >>= Monad.liftM30 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];54 -> 56[label="",style="solid", color="black", weight=3]; 55[label="[] >>= Monad.liftM30 vy3 vy40 vy50",fontsize=16,color="black",shape="box"];55 -> 57[label="",style="solid", color="black", weight=3]; 56 -> 27[label="",style="dashed", color="red", weight=0]; 56[label="Monad.liftM30 vy3 vy40 vy50 vy60 ++ (vy61 >>= Monad.liftM30 vy3 vy40 vy50)",fontsize=16,color="magenta"];56 -> 58[label="",style="dashed", color="magenta", weight=3]; 56 -> 59[label="",style="dashed", color="magenta", weight=3]; 57[label="[]",fontsize=16,color="green",shape="box"];58[label="Monad.liftM30 vy3 vy40 vy50 vy60",fontsize=16,color="black",shape="box"];58 -> 60[label="",style="solid", color="black", weight=3]; 59 -> 52[label="",style="dashed", color="red", weight=0]; 59[label="vy61 >>= Monad.liftM30 vy3 vy40 vy50",fontsize=16,color="magenta"];59 -> 61[label="",style="dashed", color="magenta", weight=3]; 60[label="return (vy3 vy40 vy50 vy60)",fontsize=16,color="black",shape="box"];60 -> 62[label="",style="solid", color="black", weight=3]; 61[label="vy61",fontsize=16,color="green",shape="box"];62[label="vy3 vy40 vy50 vy60 : []",fontsize=16,color="green",shape="box"];62 -> 63[label="",style="dashed", color="green", weight=3]; 63[label="vy3 vy40 vy50 vy60",fontsize=16,color="green",shape="box"];63 -> 64[label="",style="dashed", color="green", weight=3]; 63 -> 65[label="",style="dashed", color="green", weight=3]; 63 -> 66[label="",style="dashed", color="green", weight=3]; 64[label="vy40",fontsize=16,color="green",shape="box"];65[label="vy50",fontsize=16,color="green",shape="box"];66[label="vy60",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(:(vy60, vy61), vy3, vy40, vy50, h, ba, bb, bc) -> new_gtGtEs(vy61, vy3, vy40, vy50, h, ba, bb, bc) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs(:(vy60, vy61), vy3, vy40, vy50, h, ba, bb, bc) -> new_gtGtEs(vy61, vy3, vy40, vy50, h, ba, bb, bc) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs1(:(vy40, vy41), vy5, vy6, vy3, h, ba, bb, bc) -> new_gtGtEs1(vy41, vy5, vy6, vy3, h, ba, bb, bc) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs1(:(vy40, vy41), vy5, vy6, vy3, h, ba, bb, bc) -> new_gtGtEs1(vy41, vy5, vy6, vy3, h, ba, bb, bc) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(:(vy50, vy51), vy6, vy3, vy40, h, ba, bb, bc) -> new_gtGtEs0(vy51, vy6, vy3, vy40, h, ba, bb, bc) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs0(:(vy50, vy51), vy6, vy3, vy40, h, ba, bb, bc) -> new_gtGtEs0(vy51, vy6, vy3, vy40, h, ba, bb, bc) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(vy80, vy81), vy7, h) -> new_psPs(vy81, vy7, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(vy80, vy81), vy7, h) -> new_psPs(vy81, vy7, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (20) YES