/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) QDP (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; foldM :: Monad a => (c -> b -> a c) -> c -> [b] -> a c; foldM _ a [] = return a; foldM f a (x : xs) = f a x >>= (\fax ->foldM f fax xs); foldM_ :: Monad c => (b -> a -> c b) -> b -> [a] -> c (); foldM_ f a xs = foldM f a xs >> return (); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\_->q" is transformed to "gtGt0 q _ = q; " The following Lambda expression "\fax->foldM f fax xs" is transformed to "foldM0 f xs fax = foldM f fax xs; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; foldM :: Monad b => (a -> c -> b a) -> a -> [c] -> b a; foldM _ a [] = return a; foldM f a (x : xs) = f a x >>= foldM0 f xs; foldM0 f xs fax = foldM f fax xs; foldM_ :: Monad b => (c -> a -> b c) -> c -> [a] -> b (); foldM_ f a xs = foldM f a xs >> return (); } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; foldM :: Monad c => (b -> a -> c b) -> b -> [a] -> c b; foldM vz a [] = return a; foldM f a (x : xs) = f a x >>= foldM0 f xs; foldM0 f xs fax = foldM f fax xs; foldM_ :: Monad a => (b -> c -> a b) -> b -> [c] -> a (); foldM_ f a xs = foldM f a xs >> return (); } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; foldM :: Monad c => (b -> a -> c b) -> b -> [a] -> c b; foldM vz a [] = return a; foldM f a (x : xs) = f a x >>= foldM0 f xs; foldM0 f xs fax = foldM f fax xs; foldM_ :: Monad c => (a -> b -> c a) -> a -> [b] -> c (); foldM_ f a xs = foldM f a xs >> return (); } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.foldM_",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.foldM_ wu3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.foldM_ wu3 wu4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="Monad.foldM_ wu3 wu4 wu5",fontsize=16,color="black",shape="triangle"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="Monad.foldM wu3 wu4 wu5 >> return ()",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 7[label="Monad.foldM wu3 wu4 wu5 >>= gtGt0 (return ())",fontsize=16,color="burlywood",shape="triangle"];30[label="wu5/wu50 : wu51",fontsize=10,color="white",style="solid",shape="box"];7 -> 30[label="",style="solid", color="burlywood", weight=9]; 30 -> 8[label="",style="solid", color="burlywood", weight=3]; 31[label="wu5/[]",fontsize=10,color="white",style="solid",shape="box"];7 -> 31[label="",style="solid", color="burlywood", weight=9]; 31 -> 9[label="",style="solid", color="burlywood", weight=3]; 8[label="Monad.foldM wu3 wu4 (wu50 : wu51) >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9[label="Monad.foldM wu3 wu4 [] >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 10 -> 12[label="",style="dashed", color="red", weight=0]; 10[label="wu3 wu4 wu50 >>= Monad.foldM0 wu3 wu51 >>= gtGt0 (return ())",fontsize=16,color="magenta"];10 -> 13[label="",style="dashed", color="magenta", weight=3]; 11[label="return wu4 >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];11 -> 14[label="",style="solid", color="black", weight=3]; 13[label="wu3 wu4 wu50",fontsize=16,color="green",shape="box"];13 -> 19[label="",style="dashed", color="green", weight=3]; 13 -> 20[label="",style="dashed", color="green", weight=3]; 12[label="wu6 >>= Monad.foldM0 wu3 wu51 >>= gtGt0 (return ())",fontsize=16,color="burlywood",shape="triangle"];32[label="wu6/Nothing",fontsize=10,color="white",style="solid",shape="box"];12 -> 32[label="",style="solid", color="burlywood", weight=9]; 32 -> 17[label="",style="solid", color="burlywood", weight=3]; 33[label="wu6/Just wu60",fontsize=10,color="white",style="solid",shape="box"];12 -> 33[label="",style="solid", color="burlywood", weight=9]; 33 -> 18[label="",style="solid", color="burlywood", weight=3]; 14[label="Just wu4 >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];14 -> 21[label="",style="solid", color="black", weight=3]; 19[label="wu4",fontsize=16,color="green",shape="box"];20[label="wu50",fontsize=16,color="green",shape="box"];17[label="Nothing >>= Monad.foldM0 wu3 wu51 >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];17 -> 22[label="",style="solid", color="black", weight=3]; 18[label="Just wu60 >>= Monad.foldM0 wu3 wu51 >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];18 -> 23[label="",style="solid", color="black", weight=3]; 21[label="gtGt0 (return ()) wu4",fontsize=16,color="black",shape="box"];21 -> 24[label="",style="solid", color="black", weight=3]; 22[label="Nothing >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];22 -> 25[label="",style="solid", color="black", weight=3]; 23[label="Monad.foldM0 wu3 wu51 wu60 >>= gtGt0 (return ())",fontsize=16,color="black",shape="box"];23 -> 26[label="",style="solid", color="black", weight=3]; 24[label="return ()",fontsize=16,color="black",shape="box"];24 -> 27[label="",style="solid", color="black", weight=3]; 25[label="Nothing",fontsize=16,color="green",shape="box"];26 -> 7[label="",style="dashed", color="red", weight=0]; 26[label="Monad.foldM wu3 wu60 wu51 >>= gtGt0 (return ())",fontsize=16,color="magenta"];26 -> 28[label="",style="dashed", color="magenta", weight=3]; 26 -> 29[label="",style="dashed", color="magenta", weight=3]; 27[label="Just ()",fontsize=16,color="green",shape="box"];28[label="wu60",fontsize=16,color="green",shape="box"];29[label="wu51",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(wu3, wu51, h, ba) -> new_gtGtEs0(wu3, wu51, h, ba) new_gtGtEs0(wu3, :(wu50, wu51), h, ba) -> new_gtGtEs(wu3, wu51, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs0(wu3, :(wu50, wu51), h, ba) -> new_gtGtEs(wu3, wu51, h, ba) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3, 4 >= 4 *new_gtGtEs(wu3, wu51, h, ba) -> new_gtGtEs0(wu3, wu51, h, ba) The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3, 4 >= 4 ---------------------------------------- (10) YES