/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.hs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) BR [EQUIVALENT, 0 ms] (2) HASKELL (3) COR [EQUIVALENT, 0 ms] (4) HASKELL (5) Narrow [SOUND, 0 ms] (6) QDP (7) QDPSizeChangeProof [EQUIVALENT, 0 ms] (8) YES ---------------------------------------- (0) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (1) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (2) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (3) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (4) Obligation: mainModule Main module Main where { import qualified Prelude; } ---------------------------------------- (5) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="zipWith3",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="zipWith3 wv3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="zipWith3 wv3 wv4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 5[label="zipWith3 wv3 wv4 wv5",fontsize=16,color="grey",shape="box"];5 -> 6[label="",style="dashed", color="grey", weight=3]; 6[label="zipWith3 wv3 wv4 wv5 wv6",fontsize=16,color="burlywood",shape="triangle"];25[label="wv4/wv40 : wv41",fontsize=10,color="white",style="solid",shape="box"];6 -> 25[label="",style="solid", color="burlywood", weight=9]; 25 -> 7[label="",style="solid", color="burlywood", weight=3]; 26[label="wv4/[]",fontsize=10,color="white",style="solid",shape="box"];6 -> 26[label="",style="solid", color="burlywood", weight=9]; 26 -> 8[label="",style="solid", color="burlywood", weight=3]; 7[label="zipWith3 wv3 (wv40 : wv41) wv5 wv6",fontsize=16,color="burlywood",shape="box"];27[label="wv5/wv50 : wv51",fontsize=10,color="white",style="solid",shape="box"];7 -> 27[label="",style="solid", color="burlywood", weight=9]; 27 -> 9[label="",style="solid", color="burlywood", weight=3]; 28[label="wv5/[]",fontsize=10,color="white",style="solid",shape="box"];7 -> 28[label="",style="solid", color="burlywood", weight=9]; 28 -> 10[label="",style="solid", color="burlywood", weight=3]; 8[label="zipWith3 wv3 [] wv5 wv6",fontsize=16,color="black",shape="box"];8 -> 11[label="",style="solid", color="black", weight=3]; 9[label="zipWith3 wv3 (wv40 : wv41) (wv50 : wv51) wv6",fontsize=16,color="burlywood",shape="box"];29[label="wv6/wv60 : wv61",fontsize=10,color="white",style="solid",shape="box"];9 -> 29[label="",style="solid", color="burlywood", weight=9]; 29 -> 12[label="",style="solid", color="burlywood", weight=3]; 30[label="wv6/[]",fontsize=10,color="white",style="solid",shape="box"];9 -> 30[label="",style="solid", color="burlywood", weight=9]; 30 -> 13[label="",style="solid", color="burlywood", weight=3]; 10[label="zipWith3 wv3 (wv40 : wv41) [] wv6",fontsize=16,color="black",shape="box"];10 -> 14[label="",style="solid", color="black", weight=3]; 11[label="[]",fontsize=16,color="green",shape="box"];12[label="zipWith3 wv3 (wv40 : wv41) (wv50 : wv51) (wv60 : wv61)",fontsize=16,color="black",shape="box"];12 -> 15[label="",style="solid", color="black", weight=3]; 13[label="zipWith3 wv3 (wv40 : wv41) (wv50 : wv51) []",fontsize=16,color="black",shape="box"];13 -> 16[label="",style="solid", color="black", weight=3]; 14[label="[]",fontsize=16,color="green",shape="box"];15[label="wv3 wv40 wv50 wv60 : zipWith3 wv3 wv41 wv51 wv61",fontsize=16,color="green",shape="box"];15 -> 17[label="",style="dashed", color="green", weight=3]; 15 -> 18[label="",style="dashed", color="green", weight=3]; 16[label="[]",fontsize=16,color="green",shape="box"];17[label="wv3 wv40 wv50 wv60",fontsize=16,color="green",shape="box"];17 -> 19[label="",style="dashed", color="green", weight=3]; 17 -> 20[label="",style="dashed", color="green", weight=3]; 17 -> 21[label="",style="dashed", color="green", weight=3]; 18 -> 6[label="",style="dashed", color="red", weight=0]; 18[label="zipWith3 wv3 wv41 wv51 wv61",fontsize=16,color="magenta"];18 -> 22[label="",style="dashed", color="magenta", weight=3]; 18 -> 23[label="",style="dashed", color="magenta", weight=3]; 18 -> 24[label="",style="dashed", color="magenta", weight=3]; 19[label="wv40",fontsize=16,color="green",shape="box"];20[label="wv50",fontsize=16,color="green",shape="box"];21[label="wv60",fontsize=16,color="green",shape="box"];22[label="wv61",fontsize=16,color="green",shape="box"];23[label="wv41",fontsize=16,color="green",shape="box"];24[label="wv51",fontsize=16,color="green",shape="box"];} ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: new_zipWith3(wv3, :(wv40, wv41), :(wv50, wv51), :(wv60, wv61), h, ba, bb, bc) -> new_zipWith3(wv3, wv41, wv51, wv61, h, ba, bb, bc) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_zipWith3(wv3, :(wv40, wv41), :(wv50, wv51), :(wv60, wv61), h, ba, bb, bc) -> new_zipWith3(wv3, wv41, wv51, wv61, h, ba, bb, bc) The graph contains the following edges 1 >= 1, 2 > 2, 3 > 3, 4 > 4, 5 >= 5, 6 >= 6, 7 >= 7, 8 >= 8 ---------------------------------------- (8) YES