/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.hs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty H-Termination with start terms of the given HASKELL could be proven: (0) HASKELL (1) LR [EQUIVALENT, 0 ms] (2) HASKELL (3) BR [EQUIVALENT, 0 ms] (4) HASKELL (5) COR [EQUIVALENT, 0 ms] (6) HASKELL (7) Narrow [SOUND, 0 ms] (8) AND (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES ---------------------------------------- (0) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; ap :: Monad b => b (a -> c) -> b a -> b c; ap = liftM2 id; liftM2 :: Monad c => (d -> a -> b) -> c d -> c a -> c b; liftM2 f m1 m2 = m1 >>= (\x1 ->m2 >>= (\x2 ->return (f x1 x2))); } ---------------------------------------- (1) LR (EQUIVALENT) Lambda Reductions: The following Lambda expression "\x2->return (f x1 x2)" is transformed to "liftM20 f x1 x2 = return (f x1 x2); " The following Lambda expression "\x1->m2 >>= liftM20 f x1" is transformed to "liftM21 m2 f x1 = m2 >>= liftM20 f x1; " ---------------------------------------- (2) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; ap :: Monad b => b (a -> c) -> b a -> b c; ap = liftM2 id; liftM2 :: Monad b => (d -> a -> c) -> b d -> b a -> b c; liftM2 f m1 m2 = m1 >>= liftM21 m2 f; liftM20 f x1 x2 = return (f x1 x2); liftM21 m2 f x1 = m2 >>= liftM20 f x1; } ---------------------------------------- (3) BR (EQUIVALENT) Replaced joker patterns by fresh variables and removed binding patterns. ---------------------------------------- (4) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; ap :: Monad b => b (c -> a) -> b c -> b a; ap = liftM2 id; liftM2 :: Monad c => (d -> b -> a) -> c d -> c b -> c a; liftM2 f m1 m2 = m1 >>= liftM21 m2 f; liftM20 f x1 x2 = return (f x1 x2); liftM21 m2 f x1 = m2 >>= liftM20 f x1; } ---------------------------------------- (5) COR (EQUIVALENT) Cond Reductions: The following Function with conditions "undefined |Falseundefined; " is transformed to "undefined = undefined1; " "undefined0 True = undefined; " "undefined1 = undefined0 False; " ---------------------------------------- (6) Obligation: mainModule Main module Maybe where { import qualified Main; import qualified Monad; import qualified Prelude; } module Main where { import qualified Maybe; import qualified Monad; import qualified Prelude; } module Monad where { import qualified Main; import qualified Maybe; import qualified Prelude; ap :: Monad b => b (c -> a) -> b c -> b a; ap = liftM2 id; liftM2 :: Monad b => (c -> a -> d) -> b c -> b a -> b d; liftM2 f m1 m2 = m1 >>= liftM21 m2 f; liftM20 f x1 x2 = return (f x1 x2); liftM21 m2 f x1 = m2 >>= liftM20 f x1; } ---------------------------------------- (7) Narrow (SOUND) Haskell To QDPs digraph dp_graph { node [outthreshold=100, inthreshold=100];1[label="Monad.ap",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 3[label="Monad.ap vy3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 4[label="Monad.ap vy3 vy4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 5[label="Monad.liftM2 id vy3 vy4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 6[label="vy3 >>= Monad.liftM21 vy4 id",fontsize=16,color="burlywood",shape="triangle"];49[label="vy3/vy30 : vy31",fontsize=10,color="white",style="solid",shape="box"];6 -> 49[label="",style="solid", color="burlywood", weight=9]; 49 -> 7[label="",style="solid", color="burlywood", weight=3]; 50[label="vy3/[]",fontsize=10,color="white",style="solid",shape="box"];6 -> 50[label="",style="solid", color="burlywood", weight=9]; 50 -> 8[label="",style="solid", color="burlywood", weight=3]; 7[label="vy30 : vy31 >>= Monad.liftM21 vy4 id",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 8[label="[] >>= Monad.liftM21 vy4 id",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 9 -> 11[label="",style="dashed", color="red", weight=0]; 9[label="Monad.liftM21 vy4 id vy30 ++ (vy31 >>= Monad.liftM21 vy4 id)",fontsize=16,color="magenta"];9 -> 12[label="",style="dashed", color="magenta", weight=3]; 10[label="[]",fontsize=16,color="green",shape="box"];12 -> 6[label="",style="dashed", color="red", weight=0]; 12[label="vy31 >>= Monad.liftM21 vy4 id",fontsize=16,color="magenta"];12 -> 13[label="",style="dashed", color="magenta", weight=3]; 11[label="Monad.liftM21 vy4 id vy30 ++ vy5",fontsize=16,color="black",shape="triangle"];11 -> 14[label="",style="solid", color="black", weight=3]; 13[label="vy31",fontsize=16,color="green",shape="box"];14[label="(vy4 >>= Monad.liftM20 id vy30) ++ vy5",fontsize=16,color="burlywood",shape="box"];51[label="vy4/vy40 : vy41",fontsize=10,color="white",style="solid",shape="box"];14 -> 51[label="",style="solid", color="burlywood", weight=9]; 51 -> 15[label="",style="solid", color="burlywood", weight=3]; 52[label="vy4/[]",fontsize=10,color="white",style="solid",shape="box"];14 -> 52[label="",style="solid", color="burlywood", weight=9]; 52 -> 16[label="",style="solid", color="burlywood", weight=3]; 15[label="(vy40 : vy41 >>= Monad.liftM20 id vy30) ++ vy5",fontsize=16,color="black",shape="box"];15 -> 17[label="",style="solid", color="black", weight=3]; 16[label="([] >>= Monad.liftM20 id vy30) ++ vy5",fontsize=16,color="black",shape="box"];16 -> 18[label="",style="solid", color="black", weight=3]; 17[label="(Monad.liftM20 id vy30 vy40 ++ (vy41 >>= Monad.liftM20 id vy30)) ++ vy5",fontsize=16,color="black",shape="box"];17 -> 19[label="",style="solid", color="black", weight=3]; 18[label="[] ++ vy5",fontsize=16,color="black",shape="triangle"];18 -> 20[label="",style="solid", color="black", weight=3]; 19[label="(return (id vy30 vy40) ++ (vy41 >>= Monad.liftM20 id vy30)) ++ vy5",fontsize=16,color="black",shape="box"];19 -> 21[label="",style="solid", color="black", weight=3]; 20[label="vy5",fontsize=16,color="green",shape="box"];21[label="((id vy30 vy40 : []) ++ (vy41 >>= Monad.liftM20 id vy30)) ++ vy5",fontsize=16,color="black",shape="box"];21 -> 22[label="",style="solid", color="black", weight=3]; 22 -> 23[label="",style="dashed", color="red", weight=0]; 22[label="(id vy30 vy40 : [] ++ (vy41 >>= Monad.liftM20 id vy30)) ++ vy5",fontsize=16,color="magenta"];22 -> 24[label="",style="dashed", color="magenta", weight=3]; 24 -> 18[label="",style="dashed", color="red", weight=0]; 24[label="[] ++ (vy41 >>= Monad.liftM20 id vy30)",fontsize=16,color="magenta"];24 -> 25[label="",style="dashed", color="magenta", weight=3]; 23[label="(id vy30 vy40 : vy6) ++ vy5",fontsize=16,color="black",shape="triangle"];23 -> 26[label="",style="solid", color="black", weight=3]; 25[label="vy41 >>= Monad.liftM20 id vy30",fontsize=16,color="burlywood",shape="triangle"];53[label="vy41/vy410 : vy411",fontsize=10,color="white",style="solid",shape="box"];25 -> 53[label="",style="solid", color="burlywood", weight=9]; 53 -> 27[label="",style="solid", color="burlywood", weight=3]; 54[label="vy41/[]",fontsize=10,color="white",style="solid",shape="box"];25 -> 54[label="",style="solid", color="burlywood", weight=9]; 54 -> 28[label="",style="solid", color="burlywood", weight=3]; 26[label="id vy30 vy40 : vy6 ++ vy5",fontsize=16,color="green",shape="box"];26 -> 29[label="",style="dashed", color="green", weight=3]; 26 -> 30[label="",style="dashed", color="green", weight=3]; 27[label="vy410 : vy411 >>= Monad.liftM20 id vy30",fontsize=16,color="black",shape="box"];27 -> 31[label="",style="solid", color="black", weight=3]; 28[label="[] >>= Monad.liftM20 id vy30",fontsize=16,color="black",shape="box"];28 -> 32[label="",style="solid", color="black", weight=3]; 29[label="id vy30 vy40",fontsize=16,color="black",shape="triangle"];29 -> 33[label="",style="solid", color="black", weight=3]; 30[label="vy6 ++ vy5",fontsize=16,color="burlywood",shape="triangle"];55[label="vy6/vy60 : vy61",fontsize=10,color="white",style="solid",shape="box"];30 -> 55[label="",style="solid", color="burlywood", weight=9]; 55 -> 34[label="",style="solid", color="burlywood", weight=3]; 56[label="vy6/[]",fontsize=10,color="white",style="solid",shape="box"];30 -> 56[label="",style="solid", color="burlywood", weight=9]; 56 -> 35[label="",style="solid", color="burlywood", weight=3]; 31 -> 30[label="",style="dashed", color="red", weight=0]; 31[label="Monad.liftM20 id vy30 vy410 ++ (vy411 >>= Monad.liftM20 id vy30)",fontsize=16,color="magenta"];31 -> 36[label="",style="dashed", color="magenta", weight=3]; 31 -> 37[label="",style="dashed", color="magenta", weight=3]; 32[label="[]",fontsize=16,color="green",shape="box"];33[label="vy30 vy40",fontsize=16,color="green",shape="box"];33 -> 38[label="",style="dashed", color="green", weight=3]; 34[label="(vy60 : vy61) ++ vy5",fontsize=16,color="black",shape="box"];34 -> 39[label="",style="solid", color="black", weight=3]; 35[label="[] ++ vy5",fontsize=16,color="black",shape="box"];35 -> 40[label="",style="solid", color="black", weight=3]; 36[label="Monad.liftM20 id vy30 vy410",fontsize=16,color="black",shape="box"];36 -> 41[label="",style="solid", color="black", weight=3]; 37 -> 25[label="",style="dashed", color="red", weight=0]; 37[label="vy411 >>= Monad.liftM20 id vy30",fontsize=16,color="magenta"];37 -> 42[label="",style="dashed", color="magenta", weight=3]; 38[label="vy40",fontsize=16,color="green",shape="box"];39[label="vy60 : vy61 ++ vy5",fontsize=16,color="green",shape="box"];39 -> 43[label="",style="dashed", color="green", weight=3]; 40[label="vy5",fontsize=16,color="green",shape="box"];41 -> 44[label="",style="dashed", color="red", weight=0]; 41[label="return (id vy30 vy410)",fontsize=16,color="magenta"];41 -> 45[label="",style="dashed", color="magenta", weight=3]; 42[label="vy411",fontsize=16,color="green",shape="box"];43 -> 30[label="",style="dashed", color="red", weight=0]; 43[label="vy61 ++ vy5",fontsize=16,color="magenta"];43 -> 46[label="",style="dashed", color="magenta", weight=3]; 45 -> 29[label="",style="dashed", color="red", weight=0]; 45[label="id vy30 vy410",fontsize=16,color="magenta"];45 -> 47[label="",style="dashed", color="magenta", weight=3]; 44[label="return vy7",fontsize=16,color="black",shape="triangle"];44 -> 48[label="",style="solid", color="black", weight=3]; 46[label="vy61",fontsize=16,color="green",shape="box"];47[label="vy410",fontsize=16,color="green",shape="box"];48[label="vy7 : []",fontsize=16,color="green",shape="box"];} ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs0(:(vy30, vy31), vy4, h, ba) -> new_gtGtEs0(vy31, vy4, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs0(:(vy30, vy31), vy4, h, ba) -> new_gtGtEs0(vy31, vy4, h, ba) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: new_gtGtEs(:(vy410, vy411), vy30, h, ba) -> new_gtGtEs(vy411, vy30, h, ba) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_gtGtEs(:(vy410, vy411), vy30, h, ba) -> new_gtGtEs(vy411, vy30, h, ba) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3, 4 >= 4 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: new_psPs(:(vy60, vy61), vy5, h) -> new_psPs(vy61, vy5, h) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *new_psPs(:(vy60, vy61), vy5, h) -> new_psPs(vy61, vy5, h) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 ---------------------------------------- (17) YES